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1 Introduction

After the initial drilling of an oil well, a circular steel pipe is lowered into the hole and cement is
pumped up through the thin eccentric annulus between the steel pipe and the drilled rock. This
cement drives out mud that initially fills the thin annulus. Due to the eccentricity of the annulus,
the flow of cement is faster on the wider side of the annulus leading to the possibility of channelling
of cement through the mud, leaving a layer of mud behind on the narrow side. However, the cement
is usually more dense than the mud and this causes an azimuthal flow of the denser cement toward
the narrow side reducing this channelling effect. As such, under some circumstances it is thought
that stable steady state displacements can occur. This project sets out to investigate this flow.

2 Approach

A highly idealised version of this problem is examined. The radius a of the steel pipe is large
compared to the narrow gap h(θ) between the pipe and the rock. The length of the pipe 2L is also
large compared to this thin gap. The cement and mud are treated as Newtonian viscous fluids. Given
the small gap, lubrication theory can be used to study the flow.

Non-dimensionalise all lengths on the gap thickness. Let h(θ) = 1 + ε cos θ, where ε gives the
eccentricity of the annulus.

Introduce the dynamic pressure pdyn = p − ρgz. Henceforth drop the dyn suffix and work with
dynamic pressure. The thin layer approximations give

µ
∂2uθ

∂r2
=

1

a

∂p

∂θ

µ
∂2uz

∂r2
=

∂p

∂z

Here cylindrical polar co-ordinates centred at the centre of the pipe are used. r is taken to be
the distance away from the inner pipe. Assume µ, ρ are constant for given θ, z; i.e. ignore radial
variation. Under this assumption these equations can be easily integrated up to find the velocity
field.

uθ =
1

2µa

∂p

∂θ
r(r − h)

uz =
1

2µ

∂p

∂z
r(r − h)
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Integrating this over the gap yields the volume flux which can be concisely written as:

q =
h3

12µ
∇p

Conservation of volume flux gives simply ∇.q = 0. Note that µ may be discontinuous across the
boundary. Across the interface there is continuity of tangential velocity; u.n is continuous. This
implies q.n is continuous across the boundary. Pressure must also be continuous across the interface,
and hence there is a jump in the dynamic pressure across interface given by [p]interface = −[ρ]interfacegz.

Let the cement have viscosity µ1, density ρ1, and let the applied dynamic pressure gradient at
z = −L be G1. Similarly the parameters for the mud are µ2, ρ2, and the applied gradient at z = L

is G2. Note conservation of flux in and out the pipe imposes:

G1

µ1

=
G2

µ2

We can further non-dimensionalise the problem by scaling viscosities with µ1 and pressures with
G1. Hence the important non-dimensional parameters in this problem are:

µ̃ =
µ2

µ1

and ρ̃ =
(ρ1 − ρ2)g

G1

along with non-dimensional lengths a, L, and the eccentricity parameter ε.
To track the interface introduce a level set function φ(θ, z, t). This is a continuous function, the

zero level set of which gives the location of the interface. Usually a signed distance function is used.
φ < 0 in the cement, and φ ≥ 0 for the mud. The level set equation governing the motion of the
interface is [5]:

∂φ

∂t
+ ū.∇φ = 0

Here ū is the averaged velocity over r given by

ū =
q

h

An example initial starting condition would be a flat interface given by a level set function
φ(θ, z, 0) = z.

Therefore, the problem breaks down into solving a hyperbolic system for the level set function,
within which an elliptic problem is solved for the velocity field at each time step.

3 Elliptic Problem

In solving this problem numerically the following elliptic problem, a modified Poisson equation, has
to be tackled:

∇.

(

h3

µ
∇p

)

= 0

Subject to boundary conditions on the interface

[p]interface = −[ρ]interfacegz
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[

h3

µ
∇p.n

]

interface

= 0

and Neumann boundary conditions at the ends

dp

dz
= G1 on z = −L

dp

dz
= G2 on z = L

To solve this the method of Liu, Fedkiw, and Kang [3] was used. This method has the advantage
of being easy to implement and can be easily solved with “black box” solvers built into Matlab. The
resultant matrix problem is sparse symmetric positive definite, and was solved using preconditioned
conjugate gradients with an incomplete Cholesky pre-conditioner (using Matlab’s pcg and cholinc
functions) as recommended in [2]. Since this is an iterative scheme the solution at the previous time
step can be exploited to speed up the calculations. In practise very few iterations of pcg were needed
at each time step. The main disadvantage of this method is that it is first order, which can cause
problems as it is the velocity field, not the pressure field that we are most interested in. However,
second order methods are harder to implement, produce harder to solve asymmetric systems, and so
for this project this method was used.

Following the notation of Liu et al. have a variable coefficient Poisson equation of the form:

∇. (β(θ, z)∇p) = 0

[p]interface = a(θ, z) = (ρ1 − ρ2)gz

[β∇p.n]
interface

= b(θ, z) = 0

Where

β(θ, z) =
h3(θ)

µ(θ, z)

Set up a grid of n points in θ, and m points in z. Introduce variables pi,j, βi,j, and ai,j (correspond-
ing to p(θ, z), β(θ, z), and a(θ, z) respectively) at each grid point. To avoid introducing unnecessary
anisotropy in the elliptic solver n and m were always chosen so that a∆θ = ∆z.

The governing equation becomes:

βi+ 1

2
,j

(pi+1,j−pi,j

a∆θ

)

− βi− 1

2
,j

(pi,j−pi−1,j

a∆θ

)

a∆θ
+

βi,j+ 1

2

(pi,j+1−pi,j

∆z

)

− βi,j− 1

2

(pi,j−pi,j−1

∆z

)

∆z
= gi,j + F θ

i,j + F z
i,j

Where gi,j is a term from the boundary condition at the ends, and F θ
i,j and F z

i,j are terms from
the boundary condition across the interface.

Each βi− 1

2
,j is calculated from the side of the interface that xi−1,j and xi,j lie on. If they both

lie on the same side then β at the midpoint can be calculated directly from the formula. Otherwise
interpolate as follows.

βi− 1

2
,j =

βi−1,jβi,j (|φi−1,j| + |φi,j|)

βi,j|φi−1,j| + βi−1,j|φi,j|

Similarly βi,j− 1

2

can be defined.
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Let F θ = F L + F R and F z = F B + F T . Consider the left arm of the stencil connecting xi,j and
xi−1,j . If both points lie on the same side of the interface let F L

i,j=0. Otherwise let

aΓ =
ai,j|φi−1,j| + ai−1,j|φi,j|

|φi,j| + |φi−1,j|

If φi,j < 0 and φi−1,j ≥ 0, then

F L
i,j =

βi− 1

2
,jaΓ

(a∆θ)2

Otherwise

F L
i,j = −

βi− 1

2
,jaΓ

(a∆θ)2

Similarly we can define F for the other arms of the stencil.
Neumann boundary conditions at the end of the pipe give gi,j non zero only for the following

values:

gi,1 =
βi, 1

2

G1

∆z

gi,m = −
βi,m+ 1

2

G2

∆z

Periodic boundary conditions are easily applied by letting xn+1,j = x1,j for example.

4 Hyperbolic problem

The hyperbolic equation to solve is

∂φ

∂t
+ u.∇φ = 0

To tackle this an adaption of the methods of Sussman, Fatemi, Smereka and Osher [6] were used.
The method for solving the elliptic problem gives the velocity field on the edges of the main grid
- i.e. have uθ

i− 1

2
,j

and uz

i,j− 1

2

, where these are calculated in the same way as the gradient of p is in

the discretisation of the Poisson problem, taking in to account the discontinuity factors gi,j and Fi,j.
Simple averaging is then used to get the values on the main grid.

uθ
i,j =

uθ

i+ 1

2
,j

+ uθ

i− 1

2
,j

2

uz
i,j =

uz
i,j+ 1

2

+ uz
i,j− 1

2

2

The u.∇φ term is then disretised as follows:

u.∇φ =
uθ

i,j

(

φi+ 1

2
,j − φi− 1

2
,j

)

a∆θ
+

uz
i,j

(

φi,j+ 1

2

− φi,j− 1

2

)

∆z

Where the edge values of φ are calculated from the following first order up-winding scheme:
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k1 =

{

i − 1 uθ
i− 1

2
,j
≥ 0

i otherwise

φi− 1

2
,j = φk1,j

φi,j− 1

2

is calculated similarly.
The temporal derivative is discretised using a simple Euler scheme.

φk+1 = φk − ∆t(u.∇φ)k

Finally, there is a CFL time step restriction given by:

∆t

(

|uθ|
max

a∆θ
+

|uz|
max

∆z

)

≤
1

2

There are many more sophisticated methods for solving this hyperbolic system, but for reasons of
speed of development this simple scheme was used. Simple refinements include Runge-Kutta schemes
which can easily extend the Euler update to higher accuracy. Higher order up-winding schemes are
also available.

5 Testing the elliptic solver

Simple checks of the elliptic solver were made. The matrix system was confirmed to be positive
definite, symmetric, and the existence of a zero eigenvalue with eigenvector of ones was confirmed
(this exists since pressure is unique up to a constant). Figures 1 and 2 show the change in the
calculated velocity by the elliptic solver under some given example parameters. A large sinusoidal
interface has been chosen in both cases. The example data used had viscosity ratio µ̃ = 2, density
difference ρ̃ = 2, eccentricity ε = 0.5, radius a = 100, and length L = 100. In figure 1 uz is calculated
at a position away from the interface. The graph oscillates, but the oscillations do seem to get smaller
as the step size is reduced, and it seems possible that uz is converging at this point, although it is
hard to say at what order. Note that there are at least three figures of accuracy for all step sizes
chosen.

Figure 2 shows the velocity as calculated at a point on the interface. Looking at the values for
small step sizes a linear trend can be observed, demonstrating first order convergence. For step sizes
less than 0.1 (around 60 mesh points in each direction) three significant figure accuracy starts be
achieved.

Although the figures give some evidence for a first order convergence in the elliptic solver, it is
not something to be expected from an analysis of the algorithm. The algorithm as it stands can be
shown only to be first order in solving for the pressure, and as such we should not expect it to be
first order in the velocity field which is essentially the derivative of the pressure field. However, due
the additional complications in programming a second order algorithm, this solver was used.

6 Results

In runs of the program a = 100 was used throughout as an example of a large pipe radius compared
to the gap thickness, and in most cases L = 100π. Larger L values were occasionally used when
examining late time behaviour. The subsequent graphs show plots of the interface at set time intervals
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so the motion of the interface can be seen. z is plotted against aθ with the lower fluid being the
cement which is being pumped upwards against gravity into the mud.

There are a few simple tests of the full program that can be made. Figure 3 clearly demonstrates
the convergence as the step size is reduced for some particular parameters. Note that the cement
is more dense and more viscous than the mud in this example. Figure 4 shows the straightforward
advection for the non-eccentric problem. This particular case can be solved easily analytically, and
has a piecewise linear pressure profile. Analytically it can be shown that the non-dimensional mean
velocity is ū = 1

12
. The program solves for this velocity exactly.

Eccentricity causing channelling can be seen in figure 5. Here there is no difference in viscosity or
density between the two fluids, so they are essentially a single fluid. Only the eccentricity parameter
is changed. Note that it seems that the velocity at the centre of the wide side of the annulus depends
linearly on the eccentricity. Also, note that the velocity on the narrow side is very much reduced as
the eccentricity increases, showing a stronger power law dependence.

Figure 6 shows the effect of a density difference on the flow in an eccentric annulus, with viscosity
identical between the two fluids. With the cement denser than the mud a steady state appears to
form and the azimuthal flow reduces the channelling effect. As the density difference grows the
profile becomes flatter, as expected since this increases the azimuthal flow. The case of the mud
being more dense than the cement has not be examined as it is unstable - in fact it is an example of
a Rayleigh-Taylor instability, and the program is not able to resolve the detail needed to study this
effect. However, this is the unphysical case as in practise the cement is always more dense than the
mud.

Figure 7 looks at the steady state density difference problem more closely. Carrying on with the
parameter values studied in figure 6 it shows a plot of the reciprocal of the steady state height against
density difference. The steady state height was determined after a fixed time, a time chosen so that
visually at least steady state seemed to be achieved. Note the clear linear trend, which suggests that
the height is inversely proportional to the density parameter. The extrapolated linear best fit line
does not quite go through the origin, but the predicted equilibrium height for zero density difference
is around twice the length of the tube so is fairly large. There should not be a steady state when there
is no difference in the properties of the two fluids, as the fluid on the wider side will always move
faster than on the narrow side and there is no azimuthal flow. It is expected that greater numerical
resolution will make the predicted equilibrium height at zero density difference even larger.

Figure 8 looks at the viscosity ratio when the cement is more viscous than the mud, all other
parameters constant. As the cement is made more viscous the channelling effect is reduced, but
unlike in the density case it doesn’t seem to tend to a flat profile in the limit of zero viscosity
ratio, and instead tends to a curved profile. Note the close similarity between the last three pictures.
There doesn’t seem to be any significant change in behaviour when reducing the viscosity ratio below
µ̃ = 0.1. Figure 9 shows the case when the mud is more viscous. This increases the channelling effect,
and an instability can be observed as the finger of cement gets longer. Again, note a close similarity
between the last three pictures, and in this case there doesn’t seem to be a significant change in
behaviour when increasing the viscosity ratio above µ̃ = 10.

Figure 10 examines this instability further. It shows a particular example run with positive
viscosity ratio for increasing step size. When the finger becomes steep oscillations occur on the
interface. These oscillations have a frequency related to the the grid size, which suggests they
may be numerical instabilities. Note the sharp gradient changes in the oscillations shown in the
step pattern on the interface. However, before the oscillations set in there does seem to be good
agreement in the interface position with step size.
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7 Conclusions

This simple model shows a lot of the features that have been found in more complicated models
and in experimental results. Bittleston, Ferguson and Frigaard [1] look at numerics for a more
complicated non-Newtonian model and they also find steady state displacements and static channels
on the narrow side under certain conditions. They do not use the method of level sets, and instead
have a concentration variable which leads to a certain smearing of the interface which level set
methods avoid. Curiously, they also mention the existence of an instability when the cement finger
extends too far ahead, and they too have problems distinguishing between physical and numerical
phenomena for this case. Pelipenko and Frigaard [4] have gone on to extend this work with a more
analytic look at the problem and have proved the existence of steady state displacements in their
model, which should be able to be adapted to this simpler model.

Experimental results [7] show that a positive density difference improves the displacement ef-
ficiency - as can be seen from this model, as it causes steady state displacements with decreasing
equilibrium height. Also, for situations where the interface starts to become vertical interfacial insta-
bilities were observed, which suggests the instabilities observed in the model may be a manifestation
of true instabilities in the flow. Certainly it is important to investigate further the cause of the
oscillations that were observed in figures 9 and 10.

Throughout this project there has been an emphasis on speed of development. As such in choice
of methods simplicity has been the main deciding factor. Matlab was chosen for development for this
reason, as although it may not produce the most optimised code it is easy to use built in routines
for solving linear systems, graph plotting and the like. As such there is a lot of room for further
optimisation of the method. Some better hyperbolic solvers should be investigated - there are good
schemes for third order up-winding and third order Runge-Kutta methods which could be used
[6]. This would allow a better study of the instabilities that have been observed to see if they are
numerical or features of the flow. Improving the elliptic solver will probably prove harder. Second
order methods such as the “immersed interface” method are thought to have a number of problems
[3], and in particular have problems obtaining discontinuous solution profiles as is needed in this
problem. A further improvement to the numerical algorithm would be by including a re-distancing
routine, which would return the level-set function closer to a signed distance function at each step
as used in [6]. This stops the level set function becoming too steep, but in practise this effect was
not observed so this may be unnecessary.

Overall this method seems a good way of investigating the problem, and there are many ways it
could be extended. Modern drilling methods produce more horizontal configurations [1] and this can
be easily added in to the model by changing the jump condition on the pressure. Non-Newtonian
effects could be considered, perhaps by applying the level sets methods to the model of Frigaard et
al.[4], but it is probably best to understand the features of the Newtonian model further first. It
would be good to examine the combined effects of density and viscosity, going beyond the single
parameter variations discussed earlier. Since this model is fairly simple further analytic work should
be able to be done, for example the steady shape profile for small eccentricity may be able to be
calculated analytically in a similar way to Frigaard et al. [4] in their model. In particular it would
be good to compare this with the main result found from these numerics, namely of the steady state
height being inversely proportional to the density difference parameter.
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Figure 1: Graph showing velocity away from interface against step size for example data
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Figure 3: Graph showing an example run for different step sizes, demonstrating convergence (aθ on
the horizontal axes, z on the vertical axes.)
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Figure 4: Graph showing simple advection for the case of zero eccentricity
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Figure 5: Graph showing the effect of eccentricity.
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Figure 6: Graph showing the effect of density difference, with the cement more dense
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Figure 7: Graph showing the linear variation between density difference and the reciprocal of the
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Figure 8: Graph showing the effect of viscosity difference, with the cement more viscous
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Figure 9: Graph showing the effect of viscosity difference, with the cement less viscous
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Figure 10: Graph showing the dependence of the viscous instability on step size
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