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Abstract

The spatial distribution of grains in a solidifying igneous rock controls the physical
properties of the crystal mush, and is in turn controlled by the rate of crystal growth
and accumulation. A predominant non-spherical habit for igneous minerals brings
into question the use of spherical particles in reference packings used for quantifi-
cation of spatial distribution. Furthermore, variations of crystal clustering/ordering
with length scale require spatial statistics which take into account the distribution
of particles beyond nearest neighbours. Using random close packings of spherocylin-
ders we demonstrate the importance of aspect ratio for the aggregation index (usually
known as R) and show that packings of spherical particles have more structure than
packings of rods. The spatial distribution functions demonstrate that the plagioclase
grains in the colonnade from the Holyoke basalt are clustered on a length scale of 0.5
mm. Understanding the controls on grain spatial distribution in igneous rocks will
depend on application of these techniques to well-understood environments.

Keywords cumulates · textural analysis · spatial statistics · point patterns · random
packing

Introduction

The spatial distribution of crystals in a solidifying plutonic rock exerts a major control
on the distribution and connectivity of residual liquid, with consequences for physical
properties such as permeability and rock rheology. The spatial distribution itself is a
complex function of the mechanism of crystal accumulation (whether the crystals grew
in situ in the thermal boundary layers of a magma chamber (Campbell 1978; Maaløe
1987; Marsh 1996), or whether they accumulated from gravity-driven crystal-rich slurries
falling off the chamber roof and floor (Irvine 1987; Tepley and Davidson 2003; Wager
et al. 1960) and the extent of deformation by compaction (McKenzie 1984; Shirley 1986)
or flow (McBirney and Nicolas 1997). Furthermore, empirical studies have demonstrated
that the initial porosity and structure of a crystal mush are highly sensitive to the rate
at which the crystals accumulate (Blumenfeld et al. 2005), with immediate implications
for the rheology and mass transport properties of the crystal mush on the boundaries of
an open-system magma chamber in which periodic replenishment and discharge affected
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the crystallisation rate. The complexity of the interplay between external controls and
the architecture of the crystal mush is further illustrated by the control of crystal growth
rates on grain shape, with rapid growth (for example, during degassing episodes in hydrous
magmas) resulting in elongate or branching crystals (Donaldson 1976; Dunbar et al. 1995;
Swanson and Fenn 1986). The packing and spatial distribution characteristics of such
crystals will be different to those of rounded crystals of the same mineral formed during
episodes of slower growth.

The first step towards understanding how these different processes affect rock rheology
and the architecture of a crystal mush is an appropriate quantification of the spatial
distribution of the component grains, which can then be used to compare different types of
crystal mush. Quantifying spatial structure is usually done by looking at the point pattern
statistics of grain centres in 2D thin sections (e.g. Carlson 1989; Jerram and Cheadle 2000;
Jerram et al. 1996, 2003; Kretz 1966, 1969, 2006; Mock et al. 2003), or in 3D data (Hirsch
et al. 2000; Ketcham et al. 2005). Such statistics can help quantify the complex clustering
and ordering patterns that occur in a rock. To put these statistics into context, comparison
has been made with reference textures based on numerical, experimental, and natural
packings of spherical particles (Hirsch et al. 2000; Jerram and Cheadle 2000; Jerram et al.
1996, 2003; Ketcham et al. 2005). Sphere models have been used to study grain size
variation, overgrowth and mechanical compaction in igneous rocks (Jerram et al. 1996),
and crystal nucleation and growth in metamorphic rocks (Hirsch et al. 2000).

While reference textures based on spheres are appropriate for minerals such as olivine
which generally forms equant, sub-rounded grains, they are not representative of mi-
crostructures formed in magmas in which the dominant phenocrysts are tabular or elon-
gate such as plagioclase-dominated mafic rocks or for olivine-phyric rocks in which crystal
growth forms are dendritic (e.g. O’Driscoll et al. 2007). Furthermore, spheres are ex-
ceptional in their packing behaviour, compared with more general shapes (Weitz 2004).
Recently, there has been great interest in the random packing of non-spherical parti-
cles, such as ellipsoids (Donev et al. 2004), rods (Williams and Philipse 2003), and disks
(Wouterse et al. 2007), providing us with an opportunity to expand our understanding
of the interplay between particle packings, the physical behaviour of a crystal mush and
the external physical controls on crystallisation using more realistic particle shapes. In
this contribution we present the results of a preliminary exploration of the consequences
of shape, specifically aspect ratio of rod-like particles, on the spatial distribution of grains
and show how the grain distribution can be quantified. Due to the simplicity of textural
analysis using thin sections, we focus on the quantitative analysis of randomly oriented
2D slices through a 3D crystal accumulation, although it should be noted that all the
techniques described here have 3D analogues.

The paper is organised as follows. First, we describe various point pattern statistics
for analysing textures: the aggregation index (“R”), Ripley’s K function, pair correlation
function, and mark correlation function; and discuss the importance of edge effects. An
alternative to point pattern statistics, the autocorrelation, is then described. Numerical
simulations of random packings of rods are discussed, and the various spatial statistics
are applied to planar sections through the packings. We then explore clustered textures,
illustrated with a natural example of a clustered texture from the colonnade of the Holyoke
flood basalt. Finally, we discuss the relationship between 2D and 3D statistics.
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Statistical methods for quantitative textural analysis

Point pattern statistics

Much information is recorded in the spatial distribution of centroids of grains observed
in thin section, i.e. a point pattern. There are a wide range of statistical techniques for
analysing such point patterns (the theory underpinning the generation of these patterns
generally refers to point processes). Detailed reviews of these techniques can be found in
Dixon (2002a,b); Mattfeldt (2005); Stoyan and Penttinen (2000). Many software packages
are available for performing point pattern analysis: we used the freely available “spatstat”
package (Baddeley and Turner 2005; R Development Core Team 2007).

At first order, a point pattern can be characterised by its intensity λ, which is defined
as the number of points per unit area. Here we focus on the second order statistics which
describe how the points are distributed relative to each other and can be used to determine
if points are clustered (occurring close to each other) or ordered (repelled from each other).
There are several popular second order statistics:

The aggregation index (“R”)

The main statistic used by petrologists is the aggregation index R of Clark and Evans
(1954) (also known as the ordering index). Its use to describe rock textures was pioneered
by Kretz (1966, 1969), and it has since been used by many other authors (e.g. Boorman
et al. 2004; Carlson 1989; Denison et al. 1997; Higgins 2006; Jerram et al. 1996, 2003;
Kretz 2006). It is defined by

R =
rA

rE
, (1)

where rA is the mean of the distances separating points from their nearest neighbours,
and rE is the expected value of rA for complete spatial randomness. rE is given by

rE =
1

2
√

λ
, (2)

where λ is the intensity.
By definition, R = 1 for complete spatial randomness. If the points are clustered,

the distance to nearest neighbours is shorter than that expected for complete spatial
randomness and R < 1. Conversely, if points are ordered (with points further away than
expected for spatial randomness) R > 1.

Fig. 1 shows four examples of 2D point patterns, with their R values. These were
generated using models built into the “spatstat” package and give examples of: a) complete
spatial randomness, b) clustering, c) ordering, and d) clustering and ordering on different
scales. The aggregation index R clearly distinguishes between the random, the clustered,
and the ordered patterns in Fig. 1a-c, but does not distinguish between complete spatial
randomness (Fig. 1a) and the case with both clustering and ordering (Fig. 1d), since
R = 1.00 in both cases. Fig. 1d demonstrates a key shortcoming of the aggregation index
R: it cannot distinguish between clustering and ordering that occurs on different scales. R
is “short-sighted” and cannot take into account behaviour further away than the nearest
neighbour.

Fig. 1b shows an example generated by a Neyman-Scott cluster process. Instead of
placing individual points randomly on the plane, the Neyman-Scott process places clusters
of points randomly with a given cluster diameter and intensity. In Fig. 1b the cluster
diameter was chosen to be 0.09. Fig. 1c is an example of a Strauss hard core process, in
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which individual points are placed at random except they are not permitted to come closer
to each other than a certain specified distance, known as a “hard core” distance (here a
distance of 0.025 was chosen). The points can be thought of as disks in the plane with
these radii that are not allowed to overlap. The presence of a hard core mimics the effect
of finite grain size in a real rock: grain centres in a real rock cannot approach each other
closer than their own diameter. Fig. 1d is a combination of the two above processes in
which a Neyman-Scott process with a cluster diameter of 0.075 was “thinned” by removal
of points closer than r = 0.015. Of all four example patterns, Fig. 1d is the closest to a
real rock texture as it has clustering on a large scale in addition to the hard core (see later
discussion of the Holyoke colonnade).

In order to quantify the complex ordering and clustering structure that occurs on
multiple scales in a real rock we require a more sophisticated descriptor than R. This can
be achieved using a function rather than an index, since functions can provide information
about clustering and ordering on a variety of scales. We focus on Ripley’s K function, the
pair correlation function, and the mark correlation function. These functions have thus far
been used by only a few authors in petrology, all interested in quantifying porphyroblast
distribution in 3D in metamorphic rocks (Daniel and Spear 1999; Hirsch 2008; Hirsch
et al. 2000; Ketcham et al. 2005; Raeburn 1996). The functions are very useful and
straightforward to calculate.

Ripley’s K function

Ripley’s K function (Ripley 1976, 1977) is defined by

K(r) =
E (number of extra points within radius r of a randomly chosen point)

λ
, (3)

where E denotes expectation. For complete spatial randomness, K(r) = πr2. For conve-
nience, Ripley’s K function is usually plotted in the transformed form

L(r) =

√
K(r)

π
, (4)

where L(r) = r for complete spatial randomness. Note that alternative transformed forms
are also popular, such as L̃(r) = L(r)− r.

Fig. 1 shows plots of L(r) for the four example point patterns. The dashed line shows
the behaviour expected for complete spatial randomness. Regions below the line indicate
ordering of points, while those above denote clustering. The complete spatial random-
ness pattern we generated (Fig. 1a) shows no appreciable difference from the theoretical
behaviour. The clustered pattern (Fig. 1b) lies above the line, while the ordered patten
(Fig. 1c) falls below the line, as expected. The presence of the hard core in the ordered
pattern is clearly visible in the L(r) plot (Fig. 1c): there are no points closer than a dis-
tance of 0.025 and so L(r) is zero for r < 0.025. Finally, L(r) for the combined pattern
(Fig. 1d) demonstrates both features: there is a hard core at small scales, followed by
clustering at a larger scale.

Pair correlation function

An alternative, and sometimes clearer, representation of the information in Ripley’s K
function is the pair correlation function (or radial distribution function) g(r), defined by

g(r) =
1

2πr

dK(r)
dr

, (5)
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where g(r) = 1 for complete spatial randomness. g(r) determines how likely an interpoint
distance of r is: if g(r) > 1 then it is more frequent than complete spatial randomness, if
g(r) < 1 then it is less frequent than complete spatial randomness. The difference between
Ripley’s K(r) and the pair correlation function, g(r) (Fig. 1) is essentially the difference
between a cumulative distribution function and a probability density function, where g(r)
is the probability density function for interpoint distances, appropriately normalised.

Fig. 1 shows plots of g(r) for the four example point patterns. These are obtained by
smoothing over a chosen length scale (analogous to the choice of bin size in a histogram,
a technique known formally as kernel density estimation). The simulation of complete
spatial randomness again shows no appreciable difference from that expected theoretically
(except perhaps at small scales, but this is an artifact of small sample size). For the
clustered pattern (Fig. 1b), g(r) is initially much greater than 1, and decreases with
increasing r until around r = 0.09 where it is then flat, lying on the dotted line g(r) = 1.
r = 0.09 is a length scale characterising the clustering: until r = 0.09 interpoint distances
are more common than they would be for complete spatial randomness. In this particular
example, the characterstic length scale reflects the average size of clusters in the point
pattern, which were chosen to have a diameter of 0.09.

The pair correlation for the ordered pattern (Fig. 1c) is zero for r < 0.025, but increases
abruptly to 1 for r = 0.025, again demonstrating the hard core effect. Note that the sharp
jump in gradient in the L(r) plot has been smoothed out in the g(r) plot, as a result of
kernel density estimation. g(r) for the combined clustered and ordered pattern (Fig. 1d)
again shows both features: there is a small-scale hard core up to r = 0.015, followed by
clustering up to a length scale of r = 0.075.

It should be noted that two point patterns can have the same pair correlation func-
tion whilst having quite different structures. For example, a pattern of isolated clusters
can have the same pair correlation function as a pattern of linked chains. As such, the
interpretion of pair correlation length scales requires some care, as the length scales will
relate to different aspects of different patterns e.g. the clustering length scale could relate
to the size of isolated clusters or to the spacing between chains. Despite this limitation,
the pair correlation function still provides a useful summary of the point pattern and the
characteristic length scales for clustering and ordering.

Mark correlation function

There is much more information in a thin section than simply the location of the centroids:
the areas, orientations, long and short axes, etc. can also be calculated for each grain cross-
section. One way of including such information in the point pattern statistics is to consider
a marked point pattern. This is a point pattern in which each point has an associated
numerical value (a mark). For example, the marks could be the effective radius of each
grain cross-section (

√
area/π). The correlation of these marks can be expressed in terms

of the mark correlation function, which depends on the interpoint distance r. The mark
correlation function is defined in terms of a suitable test function h(m1,m2) of two marks.
A typical choice is the product

h(m1,m2) = m1m2. (6)

The mark correlation function is loosely defined by

m(r) =
E(h(m1,m2))

Λ
(7)
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where m1 and m2 are marks separated by a distance r, E denotes expectation, and Λ is
a normalisation such that m(r) ≡ 1 if the marks were independently distributed amongst
the points. For the function in (6), Λ = m2 where m is the mean mark. Values of m(r) 6= 1
indicate some degree of correlation. For example, for thin sections it is expected that close
pairs of points will correspond to small grains adjacent to other small grains and thus we
expect m(r) < 1 at small scales for the radii mark correlation function. Note that, unlike
the pair correlation function and Ripley’s L function, the mark correlation function does
not directly describe the clustering or ordering of the point pattern.

The mark correlation function using particle radius as the mark is sensitive to inter-
actions due to crystal size. It is therefore useful in studies of the relative rates of growth
of adjacent crystals in metamorphic rocks (i.e. the size isolation effect for porphyroblast
growth (Hirsch et al. 2000) for which the radii mark correlation coefficient falls below
unity at scales over which crystal growth is significantly retarded by diffusion), studies of
competing crystals growing in situ from a liquid, or to the extent of mixing of different
sized crystals in the context of a cumulate.

Ripley’s L function, the pair correlation function, and the mark correlation function
are most effectively used in combination with each other: A notable example of this is that
the part of the clustering or ordering of a point pattern due to crystal size interactions can
be distinguished from that due to other factors by comparing the pair correlation with the
radii mark correlation.

Alternative statistics

An alternative method for studying the clustering and ordering of 2D point patterns of
centroids was proposed by Jerram and Cheadle (2000). This method was based on cluster
analysis, which has a very different aim to the spatial statistics described above. Cluster
analysis is primarily a classification technique, and assigns points to groups based on their
closeness to each other. It is particularly useful for identifying well separated groups of
points. By contrast, Ripley’s K function and the pair correlation function describe the
overall clustering or ordering of a point pattern, rather than identify individual clusters.
As such, we believe the functions discussed above provide a better description of the overall
texture. An earlier study by Jerram et al. (1996) studied overall clustering and ordering on
different length scales using inter-point distances and a technique called “pair analysis”.
This technique is closely related to, but different from, the pair correlation function used
here.

There are two subtle assumptions that are implicit in the spatial statistics used here.
Note that L(r), g(r) and m(r) are functions of distance r alone, and thus there is an implicit
assumption of isotropy (no preferred direction in the texture). The random packings we
discuss are isotropic, but a real rock texture may not be. A second implicit assumption is
stationarity (or homogeneity): loosely, that the point pattern is invariant to translation in
a statistical sense. Only if a point pattern is assumed to be stationary does it make sense
to describe it by a single intensity λ rather than an intensity λ(x) as a function of position.
There are generalisations of the point pattern statistics that do not assume isotropy and
stationarity. For example, the reduced second moment measure (Stoyan et al. 1995; Stoyan
and Stoyan 1994) generalises Ripley’s K function to use a vector displacement rather than
distance, and thus does not assume isotropy. Such generalised statistics and more can be
found in “spatstat” (Baddeley and Turner 2005).
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Edge effects

In practice, point patterns are only observed over a finite region. When studying a point
pattern, it is therefore important to specify not only the locations of the points, but also
the window in which the points are observed. It is important to understand, and correct
for, the edge effects that arise from having a limited observation window.

Edge effects arise in two main ways in the point pattern analysis of thin sections. The
first edge effect arises in going from the 2D slice to the point pattern. On the edge of the
window there may be incomplete grains where part of the grain lies outside the window.
However, the centroid of this incomplete grain may lie within the window. Hence, if
incomplete grains are omitted, then the point pattern will have fewer points near the edge
than it should, and all the statistics will be biased (e.g. Baddeley and Jensen 2004, Ch.
3).

An example of this first kind of edge effect is shown in Fig. 2. Here a slice through the
experimental random close packing of spheres of Finney (1970) has been taken, following
the method of Jerram et al. (1996). The slice contains complete grains only. If the point
pattern of centroids is chosen to have the same observation window as the original 2D
slice, then there is a notable lack of points near the edge of the domain (solid box, middle
figure). This leads to an underestimate of the intensity of the point pattern, and thus
to an underestimate of the aggregation index R (since rE will be overestimated). The
simplest way of correcting for this bias is to reduce the size of the observation window
appropriately (‘minus sampling’), and ignore any points outside the new window (solid
box, right figure). The intensity of the point pattern is then estimated by the number of
points per unit area inside the new window, and rE follows from equation 2.

The second kind of edge effect is common to all point pattern analyses. When cal-
culating statistics involving neighbouring points, a bias is introduced because nothing is
known about points outside the observation window. For example, it may be that the
true nearest neighbour of a point lies outside the observation window, and so a naive
calculation of rA will be an overestimate, and thus R will be overestimated. The simplest
correction for this is to introduce a “guard region” or “buffer zone” (Fig. 2, dashed box,
right figure) near the edge of the observation window where nearest neighbour distances
are not calculated, but the points are available as neighbours for the points in the inner
region (Clark and Evans 1954). The buffer zone should be large enough so that the nearest
neighbours of points in the inner region can always be found either in the inner region or
in the buffer zone. Choosing the size of the buffer zone optimally is difficult: if it is too
large, valuable data is discarded; if too small, edge effects will remain (Pommerening and
Stoyan 2006). It should be noted that the buffer zone is ignored in the calculation of rE ,
as there is no bias in estimating the intensity using the whole observation window (solid
box, right figure).

The particular example in Fig. 2 shows that edge effects can be significant. For the
slice shown, a naive calculation leads to an aggregation index R = 1.64. When the first
edge effect is corrected, this rises to 1.74, and is reduced only slightly by correcting for the
second effect, to 1.73. On averaging the results from 1000 random slices, the new estimate
for the Finney (1970) sphere packing is R = 1.73, 5% larger than R = 1.65 originally
quoted by Jerram et al. (1996).

All the statistics described in the previous section have been edge corrected using
routines built in to the “spatstat” package (Baddeley and Turner 2005), and this should
usually be done. The main disadvantage of edge correction is that the variability of
the result will increase if points are neglected (as in “minus sampling”), resulting in less
representative values of the statistical measures. This may be a problem if there are only
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very few points in the sample.

Autocorrelation

As an alternative to point pattern statistics, there are a number of image processing
techniques that directly yield information about spatial structure from raw 2D slice images.
One of the simplest techniques is the calculation of the autocorrelation function C(r) (also
known as the two-point correlation function (Berryman and Blair 1986; Blair et al. 1996)
or the covariance (Stoyan et al. 1995). C(r) is defined by

C(r) = 〈f(x)f(x + r)〉 (8)

where r is a given vector, and 〈·〉 denotes an average over all points x in the image. f(x)
is an indicator function, defined by

f(x) =

{
1 if x is in a grain,

0 otherwise.
(9)

The autocorrelation measures how well an image matches a spatially shifted version of
itself. Autocorrelations are efficiently calculated using Fast Fourier Transforms, and are
available in standard image processing packages such as ImageJ (Rasband 1997-2007). For
isotropic textures, C(r) = C(r), a function of distance alone (indeed, examining whether
C(r) satisfies this condition is a good way of identifying anisotropy). The autocorrelation
function satisfies

C(0) = 1− φ, (10)

C(r) → (1− φ)2 as r →∞, (11)

where φ is the porosity and 1− φ is the volume fraction of grains. As such, some authors
work with a rescaled version (Morishita 1998; Morishita and Obata 1995)

σ(r) =
C(r)− (1− φ)2

φ (1− φ)
, (12)

which satisfies

σ(0) = 1, (13)
σ(r) → 0 as r →∞. (14)

For a closer comparison with what is typically found in the packing literature, we use the
unscaled version.

The autocorrelation function provides a compact description of the microstructure of
the packing. The length scale over which it decays can provide insight into the grain scale
and length scale of clustering. It can also be used to calculate the specific surface area of
the microstructure, which is proportional to C ′(0) (Berryman and Blair 1986). However,
unlike point pattern statistics, the autocorrelation does not identify individual grains: it
simply deals with the group of grains as a whole. It should be noted that there are other
techniques that have been used for analysing 2D slice images (e.g. Gaillot et al. 1997), but
for simplicity we consider only the autocorrelation.
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Random packings of rods

In order to develop an understanding of real rock microstructures, comparison must be
made between natural samples and reference textures. There are many different ways to
generate a random packing of particles, and the packing that results is highly dependent on
the scheme used (Stoyan 2002). We concentrate on random close packing (more formally
known as maximally random jammed packing (Torquato et al. 2000)) which is loosely
defined as the maximum density state for a random collection of particles. A random
close packing of identical spheres has a porosity φ = 0.36. Remarkably, particles with a
slightly larger aspect ratio can pack more densely than spheres, with a minimum porosity
of 0.30 achieved for rods (Williams and Philipse 2003) and φ = 0.26 for ellipsoids (Donev
et al. 2004). This improvement in packing density may be due to the extra rotational
degrees of freedom associated with non-spherical particles (a sphere is invariant under any
rotation, a rod is not) (Weitz 2004).

Here we use identical rods as a simple analogue for elongate crystals. The rods are
actually spherocylinders, which are cylinders with spherical caps, specified by the diameter
D and length L of the cylinder (Fig. 3), described by an aspect ratio α = L/D. Note
that the true aspect ratio of spherocylinders is 1 + α, and that α = 0 corresponds to a
sphere. We use the rod packings generated by Williams and Philipse (2003) who performed
numerical simulations using a mechanical contraction algorithm inside a periodic box to
generate 3-dimensional packings. We re-examine their rod packings in thin section by
slicing through the 3D packings at random orientations. Fig. 4 shows 3D plots of the
spherocylinder packings along with a representive thin section for different values of α.

Fig. 5 shows the variation in porosity with α found by Williams and Philipse (2003).
As α increases, the porosity decreases down to a minimum around α = 0.5, after which it
monotonically increases. For large α, the porosity is thought to increase as φ ∼ 1− 5.4/α
(Philipse 1996a,b). This result has important implications for the solidification of ig-
neous rocks as the initial porosity of a crystal mush on a chamber floor, accumulating by
gravitational settling, will be highly sensitive to grain shape (assuming that no preferred
orientation of elongate grains develops during either the settling process or subsequent
compaction). Comparison of cumulates thought to have formed by gravitational settling,
and with only insignificant, post-accumulation over-growth of the cumulus grains, demon-
strate this first-order control on mush architecture. The initial porosity of a cumulate
formed predominantly of rounded equant olivine grains, such as that common in the peri-
dotite horizons of the Rum Layered Suite (Fig. 6a), will generally be much less than that
in a cumulate formed of elongate crystals with large aspect ratio (& 3.5 : 1, Fig. 6b), if
orientation effects and early clustering are ignored.

Analysis of rod packings

The spatial statistics described earlier were calculated from 1000 random slices through
each of the rod packings and are shown in Figs. 7, 8 and 9. To generate the random
slices, the packings were first rotated or reflected by one of the 48 symmetries of the
cube. A high resolution digital slice (4096 × 4096 pixels) was then taken at a random
height uniformly distributed in the z-direction. The packings are periodic, and this was
exploited in calculating the spatial statistics of the 2D slices.
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R versus porosity

The aggregation index R compares the mean nearest neighbour distance to that of com-
plete spatial randomness. However, complete spatial randomness is not a good reference
for point patterns created by centroids of real particles. Due to the finite grain size, two
centroids cannot approach closely, and this produces larger than expected nearest neigh-
bour distances. This discrepancy increases with decreasing porosity and is also affected
by a spread in the population of grain diameters. To avoid these problems, Jerram et al.
(1996) proposed that R for centroids should be compared to a value generated from a
reference texture.

The reference textures Jerram et al. (1996) proposed were based on random packings
of monodisperse spheres (i.e. spheres of a single size). The general idea was to compare a
given R to that produced by a random packing of spheres with equal porosity. This was
expressed in terms of the R against porosity plot (Fig. 7). Jerram et al. (1996) proposed a
reference line for this plot called the “Random Sphere Distribution Line (RSDL)”. All but
one of the points on the RSDL were generated by numerical simulations of sphere packings
with various porosities, by random sequential addition of spheres. The final point on the
RSDL (the one with lowest porosity φ = 0.36) was that of the experimental random close
packing of spheres by Finney (1970). If a sample lay below the RSDL its grains were said
to be clustered; if above, ordered (Jerram et al. 1996).

An important first observation is that the sphere packing used here (φ = 0.36, R =
1.73) does not lie on the RSDL proposed by Jerram et al. (1996). The discrepancy is
probably caused by edge effects. When Jerram’s analysis of the Finney packing (top end
of the RSDL) is edge corrected the value goes from R = 1.65 to R = 1.73 and is then in
very close agreement with the numerical simulation used here. It seems likely that all R
values on the RSDL are slightly biased, and need reanalysing for edge effects.

The value of R calculated for the rod packings are also shown in Fig. 7. R monotonically
decreases with α (Fig. 8). As porosity does not behave in the same way (Fig. 5), the rod
packing trend in Fig. 7 is curved. Shape seems to plays an important role in determining
R: for example, α = 0.0 and α = 2.0 have very similar porosities, but their R is quite
different: R = 1.73, and R = 1.58 respectively. Jerram et al. (1996) discusses in more
detail other factors that influence R, such as overgrowth, compaction and polydispersivity.

It should be noted that all the rod packings shown in Fig. 7 are random close packings,
and thus form touching frameworks. This is not the case with the points on the RSDL,
as only the Finney packing is a random close packing. For large porosities the points
on the RSDL do not come from touching frameworks, and this led Jerram et al. (2003)
to propose that the R against porosity plot may provide a way to distinguish touching
and non-touching frameworks. However, in general, whether crystals form a touching
framework or not will depend in a complicated way on grain shape, grain size, and how
the grains are packed. As such, a simple classification of touching and non-touching
frameworks by the R versus porosity plot seems unlikely.

Correlation functions

More detailed information about the packings can be gained by looking at the various
functions described earlier. Fig. 9 plots Ripley’s L function, the pair correlation function,
the radii mark correlation function, and the autocorrelation for 2D slices through the rod
packings shown in Fig. 4. The units of distance have been chosen so that the diameter D
of the spheres and rods is 1.

For all of the packings, all of the point pattern statistics (L(r), g(r) and m(r)) show
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clear evidence of small scale repulsion, as is expected from the finite size of the rods: all
the curves are below the dashed lines for small values of r. The length scale of the small
scale repulsion is near 1 in each case, which corresponds to the diameter D of the spheres
and rods.

One striking observation is the amount of structure present in a random packing of
monodisperse spheres (top row, Fig. 9). An alternating pattern of clustering and ordering
of the point pattern on different scales is clearly visible. This structure is clearest in the
pair correlation function. An interpoint distance of 1 is very common (the diameter of the
spheres), and this is reflected by a sharp peak. Closer distances are much less common,
as is expected from volume exclusion effects. However, it should be noted that the slices
through the sphere packing do not have a hard core, unlike the examples shown in Fig. 1c-
d: both L(r) and g(r) are non-zero for all r > 0. This is understandable, for while two
sphere centres cannot approach each other closer than their diameters, the centroids of two
sphere cross-sections can. As such, it is merely less likely that short interpoint distances
are found, not impossible, and this is sometimes referred to as “soft core” behaviour.

As α is increased, a lot of the alternating structure vanishes due to the broken symme-
try. A hard core appears to develop, with very few points occurring at less than a distance
of 1. This is also understandable, as interpoint distances less than 1 can only occur in
thin section when the end of a rod is sliced. As the rods get longer, this scenario becomes
less likely. The L function and pair correlation function for α = 40.0 somewhat resembles
the hard core ordered pattern in Fig. 1c.

There is no variation in grain size in any of the packings. However, there is a variation
in the size of grain cross-sections (“apparent grain size”) in the 2D slices, and the 2D mark
correlation function is sensitive to this. Short interpoint distances are associated with small
grain cross-sections due to slicing the ends of rods. Hence the mark correlation function is
below the dashed line for small interpoint distances, and increases with increasing r until
around r = 1 in each case, corresponding to the diameter D of the rods and spheres. As
with the pair correlation function, there is some additional oscillating structure visible in
the mark correlation function for small α, but this diminishes as α increases.

For all the packings, the autocorrelation C(r) dies away over a length scale of 1 in
keeping with 1 being the diameter of the rods. The sphere packing again shows the most
structure, with oscillations above and below the long range value. These oscillations again
diminish as α increases.

Clustered textures

Correlation functions can be used to detect the clustering of grains, and the length scale
over which clustering takes place. As an example, Figs. 10 and 11 show two artificially
clustered textures, where again the diameter D of the rods and spheres is 1. In Fig. 10
the random sphere packing has been altered by randomly removing groups of spheres to
leave a “swiss-cheese” texture. The holes in the swiss-cheese texture were chosen to have
a radius of 3.5. Fig. 10 should be compared to the first row of Fig. 9. The L function is
now above the dotted line at large scales, indicative of clustering. The pair correlation has
likewise been shifted so that interpoint distances for r . 3.5 are more common than they
were, although the alternating structure remains. This identifies 3.5 as a characteristic
length scale for the clustering, which is equal to the chosen diameter of the holes. The radii
mark correlation function is unchanged: this is expected, since the radii mark correlation
is only sensitive to the radii of points separated by a particular distance, not to how many
points are separated by a particular distance. It is thus useful to compare the radii mark
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correlation function with the pair correlation function to distinguish between crystal size
interactions and overall clustering of the framework. In this case, apparent crystal size
interactions are important on interpoint distances up to 1 (mark correlation), and overall
clustering on interpoint distances up to 3.5 (pair correlation). The autocorrelation also
hints at the different scales in the packing: there is a kink near 1, and the curve tails off
near 3.5.

Fig. 11 shows a similar artificially clustered packing, this time for a rod packing with
α = 10, to be compared with the fourth row of Fig. 9, with a chosen hole diameter of
10. The effect of the clustering is easier to distinguish in this example, because there
is less structure present in the original packing. Again L(r) is above the dotted line at
large scales. The pair correlation is above the line up to around r = 10, so that 10 is the
characteristic length scale of the clustering, which again reflects the chosen diameter of the
holes. Again, the radii mark correlation function is unchanged while the autocorrelation
function has a noticeable kink near r = 1, again showing the presence of different scales
in the packing.

The Holyoke colonnade

The 200m thick Holyoke flood basalt (Connecticut and Massachusetts, USA) is notable for
the demonstration that plagioclase micro-crystals in experimentally-melted samples form
a framework of chains of touching grains when the porosity is as high as 75% (Philpotts
et al. 1998). The basalt flow comprises a quench-textured roof-crust (the entablature)
while the texture in the upwards-crystallising floor zone (the colonnade) results from the
recrystallisation of crystal-rich plumes fallen from the roof zone (Philpotts and Dickson
2000). The plagioclase crystals in the colonnade inherit the clustering formed early in the
solidification history of the entablature (Jerram et al. 2003), with the chains separated
by granular pyroxene aggregates which are recrystallised remnants of ophitic pyroxene-
plagioclase clusters that nucleated within the spaces between the chains (Jerram et al.
2003; Philpotts and Dickson 2000).

Fig. 12 shows a line drawing of the plagioclase grains in a sample from the colonnade
of the Holyoke flood basalt. The clustering of the plagioclase grains is clear in both the
raw image and the statistics (Fig. 12). R = 0.75 for the point pattern, which indicates
clustering regardless of which reference texture it is compared to. The pair correlation
function shows ordering at length-scales below about 0.05 mm (an obvious consequence of
finite grain size), and then clustering up to around 0.5 mm. The autocorrelation function
similarly shows a characteristic length scale of 0.5 mm associated with the clustering.
The mark correlation function indicates that crystal size interactions are only important
on scales up to 0.15 mm. Unlike the packing examples, the Holyoke colonnade has a real
variation in grain size and not just apparent grain size. Since the length scale for clustering
of the point pattern (0.5 mm) is so different to that of crystal size interactions (0.15 mm),
the crystals must be forming a clustered framework. The characteristic length scale of
the clustering probably corresponds to the characteristic spacing between the plagioclase
chains (c.f. Philpotts and Dickson 2000), in a similar way that the characteristic clustering
length scales of Figs. 10 and 11 relate to hole size.

It is not entirely clear how to interpret the mark correlation function in the context of
igneous textures. For metamorphic textures, the length scale for crystal size interactions
found from the mark correlation function has been interpreted in terms of the distance
over which diffusion controls crystal size (e.g Hirsch et al. 2000; Ketcham et al. 2005).
This would be appropriate for the Holyoke colonnade if it were the case that the plagio-
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clase grains had nucleated and grown in situ. However, consideration of the compositions
of plagioclase grains within the clusters lead Philpotts et al. (1998) to suggest that the
plagioclase crystals nucleated and remained freely suspended for some time before joining
to form the chains by synneusis. Hence, crystal size interactions in igneous textures may
depend on how different sizes of crystals mix. A better understanding is likely to come
from combining the information in the mark correlation function with crystal size distri-
bution data. Despite this current lack of understanding, the mark correlation function still
provides an important constraint on the length scale over which crystal size interactions
are important.

The relationship between 2D and 3D

All the analysis shown has been on 2D thin sections, but the statistical techniques can also
be applied in 3D (e.g. Hirsch et al. 2000). Unfortunately, there are no general stereological
relationships between 2D point pattern statistics of grain cross-sections and 3D statistics
of grain centres. A key advantage of the autocorrelation over point pattern statistics is
that it is the same in 3D as 2D, assuming the medium is isotropic. This is not to say
that 2D point pattern statistics are not useful: indeed, as has been shown, 2D statistics
provide a good description of the structure. Moreover, the 2D statistics are similar to the
3D statistics at larger scales (Stoyan et al. 1995). For example, the 3D pair correlation
function of sphere centres for random sphere packing is shown in Fig. 13. Apart from
near r ≤ 1 the 3D pair correlation function is very similar to the 2D pair correlation
shown in Fig. 9. The difference at small scales arises because while two sphere centres
can never be less than a distance D apart, the centroids of two profiles can. For a more
detailed discussion of the stereology of spatial statistics see Chapter 8 of Stoyan et al.
(1995). 3D textural information is becoming more readily available (Jerram and Higgins
2007), and future studies should quantify spatial structure in terms of the 3D versions of
the techniques. 3D pair correlation functions and autocorrelations are commonly quoted
in the packing literature, and will provide a good source for comparison.

Conclusions

When studying the spatial distribution of grains in a rock it is important to compare with
reference textures that have grains with a similar aspect ratio. Whilst packings of spheres
should be an appropriate reference texture for materials with equant grains, materials
with elongate grains are better compared to packings of rods. The statistical techniques
discussed here, based on correlation functions, rather than on single indices such as R,
show that sphere packings contain a great deal of structure that is not found in packings
of more general shapes.

The rod packings we have used have notable shortcomings as a reference texture. The
main disadvantage is that all the packings studied here comprise populations of identical
particles (i.e. they are monodisperse). Real rocks contain crystals of a wide range of sizes,
and this will play an important role in their packing behaviour. While there are some
published studies of polydisperse packings of spheres (e.g. Bezrukov et al. 2001; Lochmann
et al. 2006), there seem to be few corresponding studies of polydisperse packing of more
general shapes. The polydisperse packings more representative of igneous rocks are likely
to show less inherent structure than the monodisperse packings described here. Future
reference textures need to be more random in the shape and size of their crystals, to better
model real rocks.
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A further drawback is that it is not clear how applicable random close packing is for
igneous rocks. The reference textures we have used here all have the maximum density, and
while this state undoubtedly is possible to achieve for e.g. a sandstone or oolitic limestone
(Fig. 6c), the relatively small density difference between solid and liquid, together with
the high viscosity of typical silicate liquids, means that gravitational settling may result in
a much looser packing than our reference textures. A further complication is presented by
in situ nucleation and growth of primocrystic phases in the cumulate mush. Such grains
infill primary porosity but may not be easily distinguishable from the gravitationally
accumulated grains. They may also nucleate and grow on pre-existing grains, inheriting
a pre-determined crystal orientation.

The illustration of the information which can be extracted from a thin section of basalt
using functions rather than indices to quantify grain distributions demonstrates not only
that there is much information which can be extracted relatively easily, but also that
we are in the very early stages of understanding what the information actually means.
Although such sophisticated treatments have already been applied to metamorphic rocks
(e.g. Hirsch et al. 2000) the case of igneous rocks, in which individual particles can move
relative to each other in the early stages of solidification, is still unexplored territory. We
are yet to begin to tease apart the importance of crystal accumulation rate on the extent
and size of clusters in solidifying rocks (e.g. Blumenfeld et al. 2005), despite the importance
of such an effect on the rheology of ascending magmas and the permeability and ease of
compaction of cumulates. Application of the techniques outlined here to suites of rocks
from different magmatic environments is the way forward.
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Fig. 1: Four example point patterns, with estimates of the aggregation index R, Ripley’s
L(r) and the pair correlation function g(r). Dashed lines show the behaviour expected for
complete spatial randomness. The point patterns were generated by the following models:
a) Complete spatial randomness; b) Neyman-Scott process (shows clustering); c) Hard
core Strauss process (shows ordering); d) a different Neyman-Scott process, additionally
thinned by removal of points closer than a particular distance (shows small scale ordering,
large scale clustering).
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Fig. 3: Cross-section through a spherocylinder along its symmetry axis. α = L/D.

21



−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x

y

−60 −40 −20 0 20 40 60

−
60

−
40

−
20

0
20

40
60

x

y

−10 −5 0 5 10

−
10

−
5

0
5

10

x

y

−4 −2 0 2 4

−
4

−
2

0
2

4

x

y

−4 −2 0 2 4

−
4

−
2

0
2

4

x

y

α=40.0

α=10.0

α=2.0

α=0.5

α=0.0

Fig. 4: Random close packings of spherocylinders for α = 0.0, 0.5, 2.0, 10.0 and 40.0. Left
column, 3D plots, with box of periodicity shown. Middle column, representative 2D slices.
Right column, point patterns generated by the centroids of the 2D slices.
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Fig. 5: Plot of porosity φ against α for random close packings of spherocylinders (based
on Fig. 2 of Williams and Philipse (2003)).
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Fig. 6: Photomicrographs of thin sections under plane polarised light. The lower margin
of each image is 4.5 mm long. (a) Olivine cumulate from the Eastern Layered Suite,
Isle of Rum, in which rounded grains of olivine (with occasional small opaque grains of
Cr-spinel) are enclosed by interstitial plagioclase. There is no evidence of compaction,
although adjacent olivine grains have recrystallised to form mutual grain boundaries. (b)
A polydisperse population of randomly oriented, framework-forming, elongate plagioclase
primocrysts enclosed by a later-crystallising clinopyroxene oikocryst. This sample comes
from the lower part of the Skaergaard Layered Series, where olivine and plagioclase were
the only liquidus phases. (c) Oolitic limestone comprising a polydisperse population of
rounded ooids enclosed by coarsely crystalline calcite cement.
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Fig. 7: Plot of aggregation index R against porosity φ (after Jerram et al. (1996)). Circles
show points for random close packings of spherocylinders with α = 0.0, 0.2, 0.5, 1.0, 2.0,
4.0, 6.0, 8.0, 10.0, 20.0, 40.0. The “Random Sphere Distribution Line” (RSDL) of Jerram
et al. (1996) is also shown. Crosses show the numerical and experimental simulations of
sphere packing used by Jerram et al. (1996) to define the RSDL.
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Fig. 9: Summary 2D thin section statistics for the random close packings shown in Fig. 4.
First column, Ripley’s L(r). Second column, pair correlation function g(r). Third column,
mark correlation function m(r), where marks are the effective radius of each grain cross-
section. Fourth column, autocorrelation function C(r). Units of distance are such that
the diameter D of the spherocylinders is 1.
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