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The double spike technique is a well established method for correcting for instrumental mass fractionation in
mass spectrometry. The precision of the technique is controlled by the choices of double spike composition
and the proportions in which the double spike and sample are mixed. To make these choices easier, we
provide software (“the double spike toolbox”) for calculating optimal double spikes, which are chosen purely
on the basis of minimising error propagation. In addition, we provide “cocktail lists” of optimal double spikes
for all 33 elements that have 4 or more naturally occurring isotopes, using some sensible default parameters.
As examples, we discuss the application of the software to Fe, Pb, and Ca isotopes.
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1. Introduction

The double spike technique is a powerful method to correct for
instrumental mass fractionation in mass spectrometry. It is an old and
well established technique (Dodson, 1963) that is applicable to any
element that has four or more isotopes. The double spike technique has
received much recent attention due its application in non-traditional
stable isotopework (AlbarèdeandBeard, 2004; Fantle andBullen, 2009),
where it is ideally suited to distinguish between natural and instru-
mentalmass fractionation.Double spiking offers a number of advantages
over the alternative standard-sample bracketing technique for estimat-
ing variations in stable isotope composition: With the double spike, the
standard and sample solutions need not be equally pure, and the mass
fractionation that occurs during chemical separation can be corrected
for. If the double spike equilibrates with the sample prior to chemical
separation, quantitative yields and highest purity sample separation are
not necessary. However, practical use of the double spike techniquemay
have been slowed by the perceived difficulties of a) obtaining pure
spikes, b) determining optimal double spike compositions and double
spike-sample mixing proportions, and c) calibrating the double spike.

Key controls on the precision of the double spike technique are the
choices of double spike composition and the proportions in which the
double spike and sample are mixed. The main aim of this work is to help
guide these choices: to make it as easy as possible for experimenters to
calculategooddouble spike compositionswhatever isotope systemisbeing
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studied. To this end, we provide within the electronic appendix MATLAB
codes (“the double spike toolbox”) that can be used to easily determine
optimaldouble spikes forany isotopesystem.Thesecodes canbe tailored to
suit the needs of the individual experimenter. Alongside the codes, we also
provide spreadsheets containing lists of optimal double spikes (“cocktail
lists”) for all 33 elements in the periodic table that have 4 ormore naturally
occurring isotopes, using some sensible default parameters. Both hypothe-
tical pure spikes and the spikes commercially available from Oak Ridge
National Labs, USA have been included in compiling these lists.

The mathematics behind the double spike technique is not new.
Indeed,mostof themathematical derivations contained in the appendices
here can also be seen in one form or another in the early papers on the
subject by Dodson (1963, 1969, 1970) and other authors (Compston and
Oversby, 1969; Hofmann, 1971; Russell, 1971; Cumming, 1973; Hamelin
et al.,1985). Unfortunately, there have been some slightmistakesmade in
the more recent literature, particularly regarding error propagation and
the determination of optimal double spikes, whichwe aim to clarify here.
A lot of the previous work has focused on particular isotope systems, but
the aim here is to be more general and comprehensive.

We begin with a recap of the double spike technique, followed by a
discussion of the optimisation. As concrete examples we look at Fe, Pb,
and Ca isotopes, and make a comparison with some preliminary ex-
perimental data in the case of Fe. Finally, we compare the optimisation
approach taken here with that of other authors (Galer, 1999; Johnson
and Beard, 1999; Fantle and Bullen, 2009).

2. Overview of the double spike technique

The double spike technique involvesmeasuring the relative amounts
of four isotopes, two of which are enhanced by the addition of enriched
isotopic spikes to the sample. From knowledge of the double spike
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Fig.1.Aschematic diagramof thedouble spike technique. Lineswitharrows representmass
fractionation, lines without arrows represent mixing. The single spikes S1 and S2 are mixed
in proportions q to 1−q (per mole of element) to form the double spike (or tracer) T. N is
thenatural sample under consideration,which ismixedwith thedouble spike T to form the
mixtureM. Themixture consists of a proportion p (per mole of element) of double spike to
1−p of natural sample. In the mass spectrometer, the mixtureM undergoes instrumental
mass fractionation with some fractionation factor β so that a different composition m is
measured. Similarly, the composition n reflects a mass fractionation from N with a
fractionation factorα. For radiogenic isotopework,n is measured in themass spectrometer
from an unspiked run, and so α is another instrumental fractionation factor. For stable
isotope work, n is the composition of a standard material, and α reflects the mass
fractionation that has occurred in nature. The double spike inversion takes the circled
compositions n,m, and T as inputs to determine the unknown α, β, p, N andM.
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composition it is possible to invert themeasurements to obtain the true
composition of the sample corrected for instrumental mass fractiona-
tion. A schematic diagram of the technique can be seen in Fig. 1. The
double spike (or tracer) T is a mixture of two single spikes S1 and S2
(solutions concentrated in a particular isotope). The double spike T is
added to a sampleN, and the resultingmixtureM is measured in amass
spectrometer as m. For isotope systems with a radiogenic isotope, or
stable isotope systems which undergo mass-independent natural frac-
tionation, an additional mass spectrometer run is made of the sample
alone, known as the unspiked run n. However, the additional run is not
necessary for stable isotopes systems which undergo mass-dependent
natural fractionation, and n is then the composition of a standard. The
mass fractionation that occurs in the mass spectrometer and in nature
will be assumed throughout this work to follow a single fractionation
law, namely an exponential law, although it should be noted that a lot of
the earlierwork on the subject has used linear laws (Dodson,1963,1969;
Hamelin et al., 1985). Different mass fractionation laws are discussed in
more detail by Young et al. (2002) and Albarède et al. (2004). Natural
variations in stable isotope ratios can be expressed in terms of a mass
fractionation factor α from a standard isotope composition n, which can
be directly converted to standard δ′ notation (Hulston and Thode
(1965), Appendix E), e.g. for 56Fe/54Fe the exponential fractionation law
between sample and standard/unspiked run is

56Fe
54Fe

 !
N

=
56Fe
54Fe

 !
n

55:9349
53:9396

� �−α
; ð1Þ

where 55.9349 and 53.9396 are the atomic weights of 56Fe and 54Fe
respectively. Stable isotope variations can be quoted as δ′56Fe, which is
linearly related to α by

δV56Fe = 1000 log

56Fe=54Fe
� �

N
56Fe=54Fe
� �

n

= − 1000α log
55:9349
53:9396

: ð2Þ

Similarly, a fractionation factor β describes the mass fractionation
occurring in the instrument during measurement of the double spike-
sample mixture,

56Fe
54Fe

 !
M

=
56Fe
54Fe

 !
m

55:9349
53:9396

� �−β
: ð3Þ
The proportions in which the double spike T and sample N are
mixed to form the mixture M can be expressed in terms of a pro-
portion p per mole of element of double spike to 1−p of sample, e.g.
the mixing law for 56Fe is

56Fe
� �

M
= p 56Fe

� �
T
+ 1− pð Þ 56Fe

� �
N
; ð4Þ

where (56Fe) denotes the molar proportion of Fe that is 56Fe. The mass
fractionation laws (1) and (3) and the mixing law (4) form the govern-
ing equations for the double spike technique.

Given the double spike composition T, measurements of themixture
m, andmeasurements of the unspiked run/standard composition n, it is
possible to invert to find the true composition of the sample N, the
mixture M, double spike to sample proportion p, and the fractionation
factors α and β. The relative amounts of the four isotopes can be
expressed in terms of three isotopic ratios with common denominator
e.g. 56Fe/54Fe, 57Fe/54Fe, 58Fe/54Fe. The inversion involves the solution of
three simultaneousnon-linearequations (one for each isotopic ratio) for
the three unknowns p, α, and β. This can be done iteratively, and the
procedure is described in detail in Appendix A. It should be particularly
noted that the results of the inversion depend only on the relative
amounts of the four isotopes, and not on how these relative amounts are
expressed in the calculations: In particular, the results of the inversion
are independent of the choice of denominator isotope (Mel'nikov,
2005).

3. Optimising the double spike

To judge a double spike to be optimal an objective criterion is
needed that determines how good a particular double spike is. A very
natural criterion for a good double spike is one which produces low
errors (Cumming, 1973). Indeed, the whole aim of double spiking is to
get precise measurements: the more precise the better. However,
there is still the question of which error tominimise. For stable isotope
work, it seems natural to minimise the error on the fractionation
factor α between standard and sample since it is the mass fraction-
ation processes that occur in nature that are of interest. For radiogenic
isotope work, we may be interested instead in a particular isotopic
ratio, and it is the error on that particular ratio which we wish to
minimise. These different choices of which error to minimise will lead
to slightly different optimal double spikes, as we shall discuss later in
the context of Pb isotopes.

To calculate the errors for a particular double spike we must first
specify a model of the errors in the inputs n,m, and T (Appendix C). By
default, the error model used in the software assesses the expected
internal precision of the technique rather than its accuracy. For the
mixture measurements m, the default error model is that of indepen-
dent ion beams whose intensities are measured with errors due to
a) Johnson–Nyquist noise of the impedance amplifiers (thermal noise of
the electronic baseline) and b) counting statistics of the ion beam
intensities (shot noise). It is assumed that the mean total ion beam
intensity of the element remains constant (10 V by default [100 pA on
1011 Ω resistors], but adjustable). The double spike composition T is
assumed to have no error, since its composition is fixed and does not
fluctuate during the course of a mass spectrometer run. Similarly, for
stable isotope work it is also assumed that the standard composition n
has no error, but for radiogenic isotope work it is assumed that the
unspiked run n has instrumental errors similar to m.

The default error model represents a best case scenario, and ap-
plies to any isotope system and mass spectrometer. In practice, there
may be additional sources of error that depend on the details of the
particular isotope system and mass spectrometer and these must be
dealt with on a case by case basis e.g. additional errors can arise due to
corrections for interferences, acid blanks, and hydride/oxide pro-
duction. The software allows for customisation of the error model



Fig. 2. Contour plot of error in α for the 57Fe⁎–58Fe⁎ ORNL double spike. The horizontal
axis gives the proportion p of double spike in the double spike-sample mixture, and the
vertical axis gives the proportion q of 57Fe⁎ in the double spike. The optimum is marked
by a cross, with 45.74% double spike to 54.26% sample with a double spike of 46.80%
57Fe⁎ to 53.20% 58Fe⁎ (see Table 2). The plot is thresholded so that only contours within
25% of the optimal error are shown, and contours are evenly spaced with interval 1% of
the optimal error on α. Note that there is quite a broad region around the optimum
where low errors are found.

Table 1
Optimal double spikes for Fe isotopes using pure spikes.

Double spike composition Mixture composition Error estimates (1SD)
54Fe 56Fe 57Fe 58Fe Double spike Sample Error in α ppm/amu

77.28% 22.72% 55.40% 44.60% 0.0032 57
47.65% 52.35% 44.86% 55.14% 0.0035 62

75.31% 24.69% 69.16% 30.84% 0.0045 80
79.96% 20.04% 21.48% 78.52% 0.0093 166
44.87% 55.13% 39.82% 60.18% 0.0109 193
70.23% 29.77% 23.06% 76.94% 0.0263 469

All 6 possible double spikes have been considered. Errors are for a 10 Vmean total beam
intensitywith 8-second integrations. The ppm/amu column gives a rescaling of the error
in α to give an approximate estimate of parts per million per atomic mass unit errors on
the isotope ratios (the scaling factor is 106/mean atomic mass, see Appendix E). The
56Fe–58Fe double spike has the lowest error, closely followed by the 57Fe–58Fe double
spike. The Fe standard composition is (5.85%, 91.75%, 2.12%, 0.28%) (Rosman and Taylor,
1998).
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(see Appendix C), and can be used to explore some of these additional
sources of error. All the calculations shown here use the default error
model.

While the double spike and standard compositions do not fluctuate,
the compositions themselvesmay not be known accurately, and this can
lead to systematic biases (inaccuracies) in the results of thedouble spike
inversion. These biases can be reduced by good calibration, and cal-
ibration is discussed further in Appendix F. Since we are only usually
interested in the composition of the sample relative to the standard, it is
not necessary to know accurately the absolute composition of the
standard, but only themass fractionation line onwhich it lies. Similarly,
it is not necessary to know the absolute composition of the double spike,
only its composition relative to the chosen standard value.

Once an error model has been specified, the errors have to be
propagated through the double spike inversion procedure to get the
errors on the quantities of interest, such as α. There are two main
approaches to error propagation: Monte Carlo simulation and linear
error propagation. Monte Carlo simulations are by far the easiest to
code, but are slower and give answers that vary slightly each time the
code is run. Linear error propagation is more involved to code as it
requires calculating various partial derivatives and performing matrix
manipulations (Appendix B), but once coded it is much faster and
there is no variability in the answer. Linear error propagation is only
valid for small errors, but this holds true here. For optimisation of the
double spike, linear error propagation is much preferred for its speed
and the fact that the estimated error varies smoothly with changes in
parameters. However, Monte Carlo simulations are still useful to verify
that the linear error propagation is accurate, and a routine for per-
forming Monte Carlo simulations is available in the software.

We calculate the expected errors using linear error propagation. The
errors are given as the theoretical standard deviation for repeated mea-
surements (each measurement is an 8-second integration by default).
Given 100 repeated measurements the analytical precision should thus
be 5 times smaller than this if given as 2 standard errors of the mean.
If the errors are doubled, 4 times as many repeat measurements are
required to obtain the same internal analytical precision. Note that
typically thermal noise ismuch less than shot noise (thermal noise has a
standard deviation of 0.01mVby default), and so the default errors scale
approximately with the square root of mean total beam intensity
provided this intensity is not too low.
Given the 4 isotopes used in the inversion, there are 6 possible
double spikes. Once one of these possibilities is chosen, there are then
two parameters we can vary: the proportion q (by mole of element) in
which the two single spikes are mixed to form the double spike, and
the proportion p in which the double spike is mixed with the sample
(Fig. 1). q describes a mixing law similar to that for p in Eq. (4), e.g.

56Fe
� �

T
= q 56Fe

� �
S1

+ 1− qð Þ 56Fe
� �

S2
: ð5Þ

The single spikes S1 and S2 may be hypothetical pure spikes, or real
spikeswhich contain small amounts of the other isotopes, such as those
commercially available from Oak Ridge National Labs (ORNL). The opti-
misationworks identically inboth cases.Wewill denote theORNL spikes
by an asterisk (⁎) to distinguish them from the hypothetical pure spikes.

An example of this is shown in Fig. 2,where a contour plot of theerror
in α is shown for a 57Fe⁎–58Fe⁎ ORNL double spike as a function of p
and q. The error surface is bowl-shaped with a single minimum. Finding
the optimal double spike is simply a matter of locating this minimum,
which is done effectively with gradient methods (Appendix D). The
contour plot is useful not only because it shows theoptimal double spike,
but also because it gives an idea of how robust the optimal double spike
is: Oftenwe cannot mix in exactly the proportions we would like as the
sample concentration is not well known, and so it is important to
understand how the error varies in the vicinity of the optimum. In the
particular example of Fig. 2, the optimum is quite robust as the error
surface is very flat there. Indeed, for this example there are awide range
of values of p and q that are within 25% of the optimum error on α. It
should be noted that the optimal values of p and q depend only slightly
on the actual sample composition and mass fractionation factors. Thus
once the optimal double spike composition and double spike-sample
mixing proportions have been determined for a standard composition,
they can then be used effectively for measurement of all samples.

4. Examples

4.1. Fe

As a concrete example, we now consider Fe in more detail, which
has four naturally occurring isotopes: 54Fe, 56Fe, 57Fe, and 58Fe. The 6
possible double spikes are 54Fe–56Fe, 54Fe–57Fe, 54Fe–58Fe, 56Fe–57Fe,
56Fe–58Fe, and 57Fe–58Fe. The results of optimising the error on α for
each of these pairs for pure spikes are shown in Table 1. The different
choices of double spike have been ranked in order of increasing error.
A 56Fe–58Fe double spike appears to be best, with an optimal com-
position of 77.28% 56Fe to 22.72% 58Fe and 55.40% double spike to
44.60% sample. The 57Fe–58Fe double spike is a close second.

Lower down the table in fourth place is the 54Fe–58Fe double spike,
which has been used by a number of researchers (Johnson and Beard,

http://dx.doi.org/10.1016/j.jdeveco.2008.07.003


Table 2
Optimal double spikes for Fe using the spikes available from Oak Ridge National Labs (ORNL).

Double spike composition ORNL proportions Mixture composition Error estimates (1SD)

54Fe 56Fe 57Fe 58Fe 54Fe⁎ 56Fe⁎ 57Fe⁎ 58Fe⁎ Double spike Sample Error in α ppm/amu

0.15% 79.57% 0.33% 19.96% 76.41% 23.59% 55.86% 44.14% 0.0033 59
0.25% 10.59% 44.13% 45.02% 46.8% 53.2% 45.74% 54.26% 0.0036 65
0.08% 76.54% 23.37% 0.02% 74.87% 25.13% 69.61% 30.39% 0.0046 83
78.63% 4.01% 0.31% 17.04% 79.86% 20.14% 21.21% 78.79% 0.0095 169
42.93% 57.01% 0.05% 0.01% 43.6% 56.4% 40.14% 59.86% 0.0111 197
69.06% 3.17% 27.75% 0.02% 70.17% 29.83% 23.28% 76.72% 0.0267 476

The ORNL spike compositions are 54Fe⁎=(98.37%, 1.55%, 0.07%, 0.01%), 56Fe⁎=(0.07%, 99.88%, 0.04%, 0.01%), 57Fe⁎=(0.10%, 6.97%, 92.88%, 0.05%), and 58Fe⁎=(0.39%, 13.78%, 1.25%,
84.58%). Errors are again for a 10 V mean total beam intensity with 8-second integrations. The errors are only slightly worse than for the pure spikes shown in Table 1.
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1999). The proportions found optimal by Johnson and Beard (1999)
have ~90% 54Fe to ~10% 58Fe, which is not too dissimilar to the 79.96%
54Fe to 20.04% 58Fe given in Table 1. However, the calculations suggest
that three times greater precision could be gained by moving to either
the 56Fe–58Fe or 57Fe–58Fe double spikes, which have been used in
more recent work (Konter et al., 2008b,a; Lacan et al., 2008).

As remarked earlier, the commercially available spikes contain
impurities, and the corresponding optimal double spikes for the Fe
spikes sold by ORNL are shown in Table 2. Note that this table has extra
columns, distinguishing the proportions in which the impure ORNL
spikes are mixed from the actual isotopic proportions in the double
spike. Spike purity has only a small impact here: the optimal ORNL
57Fe⁎–58Fe⁎ double spike contains 10.84% impurities as 54Fe and 56Fe,
and yet the error on α is only 4% worse than for the pure 57Fe–58Fe
double spike. It has been found that in many isotope systems spike
purity has only a negligible effect (Russell,1971), but it is easy to explore
the effects of spike purity in detail with the software we provide.

A useful plot for comparing the different double spikes is shown in
Fig. 3, where the error in each of the optimal double spikes given in
Table 2 is shown as a function of the proportion p of double spike in
the mixture. The fact that these curves are fairly flat around the
minimum for the 56Fe⁎–58Fe⁎ and 57Fe⁎–58Fe⁎ double spikes demon-
strates their robustness to changes in the double spike-sample mix.
Indeed the fact that the 57Fe⁎–58Fe⁎curve is flatter than the 56Fe⁎–
58Fe⁎ curve may be one reason to prefer the 57Fe⁎–58Fe⁎ double spike
despite its slightly greater error.

The theoretical error estimates can be tested experimentally, and
an example of this is shown in Fig. 4. A double spike consisting of
50% 57Fe⁎ and 50% 58Fe⁎ (ORNL) was added to a standard in a range
Fig. 3. Plot of error in α against proportion p of double spike in double spike-sample
mixture for the optimal ORNL Fe double spikes (compositions given in Table 2). The
54Fe⁎–57Fe⁎ double spike is outside the plot range. The 57Fe⁎–58Fe⁎ curve here is a 1D
transect of the contour plot in Fig. 2 at the optimal double spike composition of 46.80%
57Fe⁎ to 53.20% 58Fe⁎.
of different proportions. The resulting mixtures were measured by
MC-ICP-MS, and the within run error on α calculated (for further
experimental details, see Appendix G). These preliminary experi-
mental results lie fairly close to the theoretical curves, providing some
good validation for the theory. For this particular example the default
error model successfully accounts for most of the error that is
observed, but in other situations there may well be additional sources
of error (e.g. from interference corrections) that are not accounted for
in the default error model. Work on the practical development of the
Fe double spike usingMC-ICP-MS is ongoing, and is a topic for a future
manuscript. For practical details on the implementation of Fe isotope
mass spectrometry the reader is referred to the literature (Johnson
and Beard, 1999; Kehm et al., 2003; Fantle and Bullen, 2009).

4.2. Pb

ThePbdouble spikehas beenmuchstudied (Dodson,1969;Compston
and Oversby, 1969; Dallwitz, 1970; Hofmann, 1971; Cumming, 1973;
Hamelin et al., 1985; Galer, 1999; Mel'nikov, 2005). Like Fe, there are just
four naturally occurring isotopes of Pb: 204Pb, 206Pb, 207Pb, 208Pb; but
unlike Fe, Pb is a radiogenic system. As such, n now represents an addi-
tional mass spectrometer run (the unspiked run), and α is the instru-
mental fractionation associated with this run. In choosing the optimal
double spike for radiogenic systems it is more natural to minimise the
Fig. 4. Comparison of theoretical curves with MC-ICP-MS data for Fe. The double spike
consists of 50% 57Fe⁎ and 50% 58Fe⁎, near the calculated optimum composition. The solid
line is a theoretical curve for a total mean beam intensity of 15.3 V with four-second
integrations. In the experiments the total beam intensity was not precisely controlled,
but varied from 12.7 to 17.1 V over the different runs, and the theoretical curves for
these intensities are shown as dashed lines. Each data point on the plot (crosses) is
based on experimental results from 100 four-second integrations. The general
agreement between theory and experiment is encouraging, although the match is not
perfect. The right hand side y-axis re-expresses the standard deviation on α as the 2
standard error on δ′56Fe, which is more typically reported (the scaling factor is
1000 log 55:9349 = 53:9396ð Þ × 2=

ffiffiffiffiffiffiffiffiffi
100

p
, Appendix E).



Table 3
Optimal double spikes for Pb isotopes using pure spikes.

Double spike composition Mixture composition Error estimate (1SD)

204Pb 206Pb 207Pb 208Pb Double spike Sample Error in 206Pb/204Pb

63.44% 36.56% 51.24% 48.76% 0.0031
72.90% 27.10% 50.73% 49.27% 0.0032

71.83% 28.17% 52.74% 47.26% 0.0034
22.19% 77.81% 56.29% 43.71% 0.0045

10.93% 89.07% 61.50% 38.50% 0.0048
37.68% 62.32% 53.37% 46.63% 0.0056

Double spike composition Mixture composition Error estimate (1SD)

204Pb 206Pb 207Pb 208Pb Double spike Sample Error in 207Pb/204Pb

53.85% 46.15% 52.92% 47.08% 0.0031
72.97% 27.03% 47.01% 52.99% 0.0032

76.04% 23.96% 56.48% 43.52% 0.0044
21.50% 78.50% 54.49% 45.51% 0.0052

10.10% 89.90% 62.70% 37.30% 0.0060
38.60% 61.40% 54.91% 45.09% 0.0077

Double spike composition Mixture composition Error estimate (1SD)

204Pb 206Pb 207Pb 208Pb Double spike Sample Error in 208Pb/204Pb

56.63% 43.37% 48.94% 51.06% 0.0079
69.94% 30.06% 46.74% 53.26% 0.0083

78.04% 21.96% 56.77% 43.23% 0.0131
20.62% 79.38% 55.16% 44.84% 0.0159

9.62% 90.38% 64.11% 35.89% 0.0192
38.27% 61.73% 55.79% 44.21% 0.0250

Errors are fora10Vmeantotal beam intensitywith8-secondintegrations for both thespiked
and unspiked runs. The optimal double spikes in these three tablesminimise the error in the
sample 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios respectively. In all cases, the 204Pb–
207Pb double spike has the lowest error, although the optimal proportions vary slightly. The
Pb standard composition is (1.40%, 24.10%, 22.10%, 52.40%) (Rosman and Taylor, 1998).

Table 4
Optimal double spikes for Ca isotopes using pure spikes.

Errors are for a 10 V mean total beam intensity with 8-second integrations. Columns are the
in the inversion. Ca has 6 naturally occurring isotopes, and thus 15 possible choices of the 4 i
errors less than 200 ppm/amu are shown here (the full list can be found in the cocktail list in
0.00%, 0.19%) (Rosman and Taylor,1998).
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error on a particular isotopic ratio rather thanα (Cumming,1973).Which
ratio to choose depends on the particular application.

An example is shown in Table 3, where optimal pure double spikes
are shownwhich minimise the error on three different isotopic ratios:
206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb. In each case, themuch used
204Pb–207Pb double spike is optimal,with the 204Pb–206Pb double spike
a close second. The optimal proportions vary slightlywith the different
choices of ratio, but all have fairly equal amounts of 204Pb to 207Pb.
Minimising the error on α gives a fairly similar result, with 49.12%
204Pb to 50.88% 207Pb. These optimal proportions are not too dissimilar
to those originally proposed by Dodson (1969) and Cumming (1973)
(~33% 204Pb to ~67% 207Pb), although all have slightly more 204Pb. If
instead the error on the sample 207Pb/206Pb ratio is minimised, the
optimal double spike is much closer to that proposed by Dodson
(1969) and Cumming (1973), with 35.24% 204Pb to 64.76% 207Pb.

4.3. Ca

Ca is a stable isotope systemwith six naturally occurring isotopes:
40Ca, 42Ca, 43Ca, 44Ca, 46Ca, 48Ca. For elements with more than four
isotopes an additional choicemust bemade:which four isotopes to use
in the inversion. An example is shown in Table 4, where the optimal
double spikes for all possible choices of the four isotopes have been
calculated. In this case, the optimal choice of isotopes for the inversion
is 40Ca, 42Ca, 44Ca, and 48Ca using a 42Ca–48Ca double spike. The error
surface for this double spike is shown in Fig. 5. In fact, this double spike
is exactly what was used in the pioneering work on Ca isotopes by
Russell et al. (Russell et al., 1978; Russell and Papanastassiou, 1978),
although the proportions chosen were somewhat different. More
recent work has used double spike compositions with roughly equal
same as in Table 1 with additional highlighting showing the choice of 4 isotopes used
sotopes to use in the inversion and a total of 90 possible double spikes. Only thosewith
the electronic appendix). The Ca standard composition is (96.94%, 0.65%, 0.14%, 2.09%,



Fig. 5. Contour plot of error in α for the 42Ca⁎–48Ca⁎ ORNL double spike using 40Ca, 42Ca,
44Ca, and 48Ca in the inversion. The horizontal axis gives the proportion p of double
spike in the double spike-sample mixture, and the vertical axis gives the proportion q of
42Ca⁎ in the double spike. The optimum is marked by a cross, with 14.17% double spike
to 85.83% sample with a double spike of 38.92% 42Ca⁎ to 61.08% 48Ca⁎. The plot is
thresholded so that only contours within 25% of the optimal error are shown, and
contours are evenly spaced with interval 1% of the optimal error on α. Again there is
quite a broad region around the optimumwhere low errors are found. The ORNL spike
compositions are 42Ca⁎=(4.88%, 94.48%, 0.07%, 0.55%, 0.01%, 0.01%) and 48Ca⁎=
(2.10%, 0.02%, 0.01%, 0.07%, 0.01%, 97.78%).

Fig. 6. An example of the effect of spike purity. Shown is the error in α for the optimal
pure 42Ca–46Ca double spike (46.42% to 53.58%) and the optimal ORNL 42Ca⁎–46Ca⁎
double spike (32.99% to 67.01%) as a function of the proportion of double spike in the
double spike-sample mix. 40Ca, 42Ca, 44Ca, and 46Ca are used in the inversion. The ORNL
46Ca⁎ spike is not very pure, and is less than a third 46Ca: the composition is 46Ca⁎=
(60.79%, 0.76%, 0.19%, 5.69%, 30.91%, 1.65%). The impurity leads to a 28% larger error at
the optimum.
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amounts of 42Ca to 48Ca, very close to the optimumcalculated here (see
review by DePaolo, 2004 for more details). The use of 40Ca as an
inversion isotope is sometimes problematic because of the existence of
radiogenic anomalies from the decay of 40K, but inmany stable isotope
studies (e.g. carbonate systems) such radiogenic anomalies are
negligible. For cosmochemistry applications there may also be vari-
ations in the amount of natural 48Ca due to s-process nuclides.

Since the error estimates are based on comparing the same total
amount of Ca ions, but only some of the ions are used in the inversion,
there is a bias towards using the more abundant natural isotopes in
the inversion. In Table 4, over 97% of the total Ca ions are used in the
inversions which include 40Ca (the most abundant natural isotope),
but less than 14% of the Ca ions are used in the inversions without
40Ca. When the total beam intensities are scaled so that the sum of the
ion beams used in the inversion is kept constant instead, the lowest
error estimates are for inversions without 40Ca. In fact, the lowest
error is for a 43Ca–46Ca double spike, using 42Ca, 43Ca, 46Ca, and 48Ca
in the inversion. This is important for the applicability of double
spike techniques to the measurement of Ca stable isotope variations
by MC-ICP-MS, where the 40Ca ion beam cannot be accurately mea-
sured due to the interference of 40Ar.

Unlike Fe and Pb, spike purity has a noticeable effect for Ca, par-
ticularly for those double spikes which use a 46Ca spike. The ORNL
46Ca⁎ spike is notably impure, with less than a third of the total Ca
isotopes in the spike being 46Ca. The effect this impurity has on the
error on α is shown in Fig. 6 for the 42Ca–46Ca double spikes.While the
42Ca–46Ca double spike ranks second amongst the pure double spikes
(Table 4), the 42Ca⁎–46Ca⁎ ranks only sixth amongst the ORNL double
spikes (electronic appendix). As a result of the impurity, the error on α
increases by 28%.

There has been considerable discussion in the literature aboutwhich
double spikes provide the lowest errors for Ca (Gopalan et al., 2006,
2007; Fantle and Bullen, 2009; Feineman et al., 2009). However, the
choice of double spike is but one factor of many that go into generating
precise and accurate measurements. In particular, since internal pre-
cisions are typically much better than external reproducibility for Ca,
errors are not ultimately limited by the chosen double spike composi-
tion, but by the instrumentation (Fantle and Bullen, 2009). Potentially
this problem could be minimised in several ways that are dependent
upon the source of the additional error: for example, by choosing
inversion isotopes of limited dynamic range to minimise ion-optic
effectswithin themass spectrometer (e.g. a 42Ca–43Cadouble spikewith
a 40Ca, 42Ca, 43Ca, 44Ca inversion, Holmden, 2005), or by neglecting 40Ca
which requires a large dynamic range of measured currents if non-
linearity in amplifier response is problematic.

5. Double spike cocktail lists

Themethods that have beendescribed above can be applied to anyof
the 33 elements that have four ormore naturally occurring isotopes. For
each element we have produced tables of optimum double spikes that
minimise the error on α (as in Tables 1, 2, and 4). These are available as
two spreadsheets in the electronic supplement. One spreadsheet
provides the optimal pure double spikes, and the other provides the
optimal ORNL double spikes.

The recipes in these “cocktail lists” should prove very useful in
choosing good double spikes, but as with all good recipes they should
be takenwith a pinch of salt: As has been pointed out in the examples,
there are a number of other factors that are important in choosing a
good double spike that have not been taken into account in producing
the cocktail lists. For example, if it is difficult to mix in the desired
proportions, then the flatness of the error surface near the optimum is
important. Often there are interferences on certain isotopes, or the
mass spectrometer may only be able to measure a particular mass
range, excluding some isotopes from consideration. The cocktail list
double spike compositions minimise the error on α rather than on
particular isotopic ratios, and so may not be as well suited to radio-
genic systems. Problems such as these need to be dealt with on a case
by case basis, and the “double spike toolbox” software is provided to
help with this.

It should be noted that the whole double spike technique is reliant
on the chosen mass fractionation law being an accurate description of
the processes occurring in nature and in the mass spectrometer — if
this is not so (Vance and Thirlwall, 2002; Thirlwall, 2002; Thirlwall
and Anczkiewicz, 2004), e.g. due to mass-independent fractionations,
or due to different mass-dependent fractionations occurring than
expected, then the whole method breaks down. Large interferences
are also particularly troublesome for the double spike technique if
they cannot be corrected for, and can cause spurious results to be
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produced on inversion. It should also be reiterated that the accuracy of
the technique is dependent on good calibration of the double spike,
without which systematic biases can occur (Appendix F).

6. Alternative approaches

The methodology of this work is largely based on the algebraic
approach of Dodson (1969), Cumming (1973), and Hamelin et al.
(1985). Alternative geometrical methods for double spike optimisa-
tion have been proposed by Galer (1999, 2007, 2008) and Johnson and
Beard (1999). One geometrical idea proposed by these authors is that
an optimal double spike should maximise the angle θ between the
planes defined by N−n−T andM−m−T in a particular isotope ratio
space (Hofmann, 1971; Russell, 1971). While it is certainly true that
double spikes with angles of θ near zero are poor (which corresponds
to the formation of a singular matrix in the linear algebraic approach),
it is not clear that themaximum θ corresponds to the optimum double
spike. It seemsmore natural to us to directly consider the errors rather
than focus on intermediate geometrical quantities such as θ.
Geometrical quantities have a further disadvantage, in that they can
be coordinate dependent: different values of θ arise from different
choices of denominator isotope. The transformation from one isotope
denominator to another does not preserve θ (transformations
between isotope ratio spaces with different denominators are often
approximately linear, but they are not orthogonal), and so results can
depend on which denominator is used. The physical processes of
mixing and mass fractionation are coordinate independent, and thus
any scheme for choosing optimal double spikes should also be coor-
dinate independent (Mel'nikov, 2005).

Both Galer (1999) and Johnson and Beard (1999) also consider
linear error propagation, but both find results which again depend on
which isotope is used in the denominator e.g. it is argued that lower
errors are found in 206Pb denominatored space than in 204Pb de-
nominatored space (Galer, 1999), and lower errors in 57Fe denomi-
natored space than in 54Fe denominatored space (Johnson and Beard,
1999). However, error propagation should be no better or worse in
one isotopic ratio space than another (Mel'nikov, 2005). The reason
for coordinate dependent results by both these authors is likely the
same: the assumption of uncorrelated isotopic ratios when perform-
ing linear error propagation (neglecting the off-diagonal terms in the
covariance matrix). Uncorrelated isotopic ratios in one isotopic ratio
space will be correlated in another isotopic ratio space. Assuming
uncorrelated isotopic ratios in each isotopic ratio space leads to dif-
ferent answers for different isotopic ratio spaces. In our opinion, it is
more appropriate to assume an error model based on independent ion
beams (Dodson, 1969) than on a set of fixed errors on independent
isotopic ratios. However, this criticism aside, methods that assume
independent isotopic ratios still produce reasonable estimates of op-
timal double spikes with only slightly different results with different
denominators.

The problem of assuming fixed errors on independent isotopic
ratios affects a number of other studies, including those using Monte
Carlo simulations (Fantle and Bullen, 2009). The approach of Fantle
and Bullen (2009) also differs to that taken here in where errors are
assumed to occur: Fantle and Bullen (2009) place errors on the
standard and double spike composition and propagate these errors
through the inversion, whereas we assume errors only on the mass
spectrometer measurements. Propagating errors on the standard and
double spike compositions essentially provides information about the
accuracy of the technique i.e. the potential systematic bias, as the true
standard and double spike compositions do not fluctuate. However,
mass spectrometer measurements fluctuate, and propagating the
measurement errors provides information on the precision of the
technique. Both of these errors can be studied with the software
we provide, but by default it is the precision we focus on. We agree
with Fantle and Bullen (2009) that the error in Ca is minimised “using
a [42Ca⁎–48Ca⁎] double spike composed of anywhere from 10 to 90% of
the 42Ca⁎ ORNL single spike” (Fig. 5), but find that the optimum has
slightly less double spike in the double spike-sample mix (more like
5% to 40% double spike rather than 25% to 55%).

An intriguing suggestion made by Galer (1999) is that of a “triple
spike”, a combination of three single spikes rather than two. Indeed,
one can consider optimising for an arbitrary tracer composition rather
than just a mixture of two particular single spikes. To do this is a little
more demanding as the optimisation problem becomes higher
dimensional, and multiple minima occur in the objective function.
However, in our searching we have not found a scenario where a pure
triple spike has a lower error than a pure double spike (and nor could
Mel'nikov, 2005), but we cannot yet rule out such a possibility. The
particular Pb triple spike suggested by Galer (1999) does produce low
errors, but there are still double spikes with slightly lower error.

7. Conclusions

The main outcome of this work is the “double spike toolbox”
software found in the electronic appendix. The software should make
picking a good double spike easier for all experimenters. The optimal
double spikes are decided purely on the basis of minimising error, and
the software makes it easy to produce plots of error curves and
surfaces to assess robustness to varying mixing proportions. While we
have focused in this manuscript on the examples of Fe, Pb, and Ca, the
software is completely general. In addition to the software, the
“cocktail lists” provide a useful reference for quickly obtaining good
double spike compositions. The source code to the software is freely
available, and thus can be readily modified to satisfy the needs of
individual users.
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Appendix A

A.1. The double spike inversion

The double spike inversion is based on the relative amounts of four
isotopes, which can be conveniently expressed in terms of vectors of
three isotopic ratios with a common denominator e.g. (56Fe/54Fe,
57Fe/54Fe, 58Fe/54Fe). Generally, it does not matter which isotope of
the four is chosen as the common denominator: all choices will
produce the same answer. The only exception to this is when one of
the compositions contains none or almost none of a certain isotope, in
which case that isotope should not be chosen as the denominator to
avoid the numerical problems of dividing by very small quantities.

The key variables in the double spike inversion are shown in Fig. 1.
The inversion is based on the following simple equations,

ni = Nie
αPi ; ð6Þ

mi = Mie
βPi ; ð7Þ

Mi = λTi + 1− λð ÞNi: ð8Þ

Ni refers to the ith isotopic ratio of the sample (i=1, 2, 3), e.g.
N1=(56Fe/54Fe)sample. Mi, mi, and Ti are defined similarly (see Fig. 1).

http://dx.doi.org/10.1016/j.jdeveco.2008.07.003
http://www.johnrudge.com/doublespike
http://www.johnrudge.com/doublespike
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Pi is the natural log of the ratio of the atomic masses e.g. P1=log
(55.9349/53.9396). Eqs. (6) and (7) are exponential mass fractionation
laws for the sample and the double spike-sample mixture, with mass
fractionation factorsα andβ. Eq. (8) is themixing relationship in isotope
ratio space between double spike and sample (which is linear in
the isotopic ratios as they have a common denominator). λ is related
to the proportion p by mole in which the double spike and sample mix
(Eq. (4)),

p = 1 +
1−λ
λ

1 +
P

k Nk

1 +
P

k Tk

� �� �−1
; ð9Þ

where Σk represents the sum over all isotope ratios for the element,
not just the three ratios used in the inversion. Note that λ depends on
which isotope is used as a denominator, unlike α and β which are
coordinate independent.

Eqs. (6), (7), and (8) can be combined to give

Fi λ;α;β;n;m;Tð Þ = λTi + 1− λð Þnie
−αPi − mie

−βPi = 0; ð10Þ

where n=(n1, n2, n3) etc. This is a set of three non-linear equations,
which can be solved to find the three unknowns λ, α, and β.

If α and β are small (α, β≪1), these equations can be linearised,

Fi λ;α;β;n;m;Tð Þ≈ni − mi + λ Ti − nið Þ− 1− λð ÞαniPi + βmiPi;

ð11Þ

and written in matrix form as

F x;n;m; Tð Þ≈ − b + Ax; ð12Þ

where

A =
T1 − n1 −n1P1 m1P1
T2 − n2 −n2P2 m2P2
T3 − n3 −n3P3 m3P3

0
@

1
A; b =

m1 − n1
m2 − n2
m3 − n3

0
@

1
A; x =

λ
1− λð Þα

β

0
@

1
A:

ð13Þ

Thus for small fractionations, the double spike inversion is simply a
matter of solving the linear equations Ax=b for x, and then obtaining
λ, α, and β from x (Dodson, 1970; Dallwitz, 1970).

For larger α and β, we must solve the full non-linear equations

F x;n;m; Tð Þ = 0: ð14Þ

This can be done effectively by iterative methods (e.g. Newton–
Raphson) (Albarède and Beard, 2004). A good starting point for the
iteration is provided by the linear solution, and the following
analytical Jacobian can be used to aid the iteration

AF
Ax

=
T1 − n1e

−αP1 1 + αP1ð Þ −n1P1e
−αP1 m1P1e

−βP1

T2 − n2e
−αP2 1 + αP2ð Þ −n2P2e

−αP2 m2P2e
−βP2

T3 − n3e
−αP3 1 + αP3ð Þ −n3P3e

−αP3 m3P3e
−βP3

0
B@

1
CA: ð15Þ

The iteration is performed in the software using fsolve, MATLAB's
non-linear equation solving routine. An alternative geometrically moti-
vated way of performing the iteration can be found in Siebert et al.
(2001).

Appendix B. Error propagation

Standard linear error propagation can be used to calculate the
errors in x given the errors in n,m, and T (Hamelin et al., 1985). Let Vx,
Vn, Vm and VT be the corresponding covariance matrices. Assuming
the errors in n, m and T are independent of one another, the cov-
ariance matrix Vx is given by

Vx =
Ax
An

· Vn ·
Ax
An

T
+

Ax
Am

· Vm ·
Ax
Am

T
+

Ax
AT

· VT ·
Ax
AT

T
; ð16Þ

where

Ax
An

= − AF
Ax

� �−1AF
An

; ð17Þ

Ax
Am

= − AF
Ax

� �−1 AF
Am

; ð18Þ

Ax
AT

= − AF
Ax

� �−1AF
AT

; ð19Þ

and

AFi
Anj

= 1− λð Þe−αPiδij;
AFi
Amj

= − e−βPiδij;
AFi
ATj

= λδij; ð20Þ

whereδij is the Kronecker delta. The covariancematrix for y=(λ,α,β)Tcan
be calculated from the covariance matrix of x=(λ,(1−λ) α, β)T by

Vy =
Ay
Ax

· Vx ·
Ay
Ax

T
; ð21Þ

where

Ay
Ax

=
1 0 0

α = 1− λð Þ 1= 1− λð Þ 0
0 0 1

0
@

1
A: ð22Þ

The error propagation for N can be done in a similar fashion,

VN =
AN
An

· Vn ·
AN
An

T
+

AN
Am

· Vm ·
AN
Am

T
+

AN
AT

· VT ·
AN
AT

T
; ð23Þ

where the partial derivatives of N can be calculated from Eq. (6) as

ANi

Anj
= δije

−αPi − Pinie
−αPi Aα

Anj
; ð24Þ

ANi

Amj
= − Pinie

−αPi Aα
Amj

; ð25Þ

ANi

ATj
= − Pinie

−αPi Aα
ATj

: ð26Þ

The partial derivatives of α in the above can be found from the
second rows of ∂y/∂n, ∂y/∂m and ∂y/∂T, given by Eqs. (17), (18), (19),
and (22) as

Ay
An

=
Ay
Ax

·
Ax
An

; ð27Þ

Ay
Am

=
Ay
Ax

·
Ax
Am

; ð28Þ

Ay
AT

=
Ay
Ax

·
Ax
AT

: ð29Þ

Finally, the covariance matrix VM is given by

VM =
AM
An

· Vn ·
AM
An

T
+

AM
Am

· Vm ·
AM
Am

T
+

AM
AT

· VT ·
AM
AT

T
; ð30Þ
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where the partial derivatives of M can be calculated from Eq. (7) as

AMi

Anj
= − Pimie

−βPi Aβ
Anj

; ð31Þ

AMi

Amj
= δije

−βPi − Pimie
−βPi Aβ

Amj
; ð32Þ

AMi

ATj
= − Pimie

−βPi Aβ
ATj

; ð33Þ

and the partial derivatives of β can be found from the third rows of ∂y/
∂n, ∂y/∂m and ∂y/∂T.

Appendix C. Error model

Consider n ion beams with intensities in volts given by the random
variables I1, I2,…, In. We will assume that each beam intensity is inde-
pendent and normally distributed, with means µj and variances

σ2
j = aj + bjμ j + cjμ

2
j ; ð34Þ

for some specified error parameters aj, bj, and cj (Dodson, 1969). The
relative values of the means µj are determined by the isotopic
composition of the substance being measured. We will assume the
mean total intensity Σjµj is set at some fixed value (10 V by default, but
this can be adjusted in the software). For the variances, we use a
simplemodel of an ion beam that incorporates Johnson–Nyquist noise
in the amplifiers (for aj) and counting statistics (for bj):

aj =
4kTR
Δt

; bj =
eR
Δt

; cj = 0; ð35Þ

where k is the Boltzmann constant 1.3806504×10−23 J K−1 and e is
the elementary charge 1.602176487×10−19 C. The remaining con-
stants are properties of the mass spectrometer, which we have chosen
defaults as follows: the resistance R=1011 Ω, the temperature
T=300 K, and the integration time Δt=8 s.

The beam covariance matrix is diagonal,

VI =

σ2
1 0 : : : 0

0 σ2
2

: : : 0

0 0 O v

0 0 : : : σ2
n

0
BBBBB@

1
CCCCCA: ð36Þ

In order to perform the error propagation of the previous section,
the covariance matrix of the ratios is needed. Suppose we use the
last isotope as the denominator, taking ratios R1= I1/In, R2= I2/In,…,
Rn−1= In−1/ In. Then the covariance matrix of the ratios is

VR =
AR
AI

· VI ·
AR
AI

T
; ð37Þ

where

AR
AI

=

1= In 0 : : : 0 −I1 = I
2
n

0 1= In : : : 0 −I2 = I
2
n

v O v v

0 0 : : : 1 = In −In−1 = I
2
n

0
BBBBB@

1
CCCCCA: ð38Þ

Note that the covariance matrix of the ratios is certainly not
diagonal. The software uses the above error model by default, but can
be customised if needed e.g. it is possible to manually adjust the error
parameters aj, bj, and cj, which can be used to incorporate some types
of additional error.

An important source of additional error that can affect the internal
precision arises from the corrections that are made to account for
interferences. For example, corrections are often made for interfering
isotopes of the samemass (isobaric interferences) e.g. the interference of
58Ni during measurement of 58Fe. This interference is usually corrected
for by measuring neighbouring masses (in this case, 60Ni) and applying
an approximate correction factor based on an assumed 58Ni/60Ni ratio
and an assumed mass fractionation. The additional noise this correction
induces on the 58Fe measurement depends on the strength of the 60Ni
ion beam, and taking this into account requires a more sophisticated
error model than that described above. However, an approximate
treatment is to simply increase the value of aj corresponding to the 58Fe
beam by an appropriate amount. For example, a typical correction
formula is

I58c = I58 −
58Ni
58Ni

 !
std

57:9353
59:9308

� �βNi

I60; ð39Þ

where I58 and I60 are the measured beam intensities at masses 58 and
60, and I58c is the mass 58 beam intensity corrected for Ni interference.
57.9353 and 59.9308 are the atomicmasses of 58Ni and 60Ni respectively.
With an assumed standard value (58Ni/60Ni)std=2.596 and assumed
mass bias βNi=1.6, the correction is

I58c = I58 − 2:459I60; ð40Þ

and thus the noise on the corrected intensity is

σ2
58c = σ2

58 + 6:047σ2
60: ð41Þ

Typically, the magnitude of themass 60 beam is quite small, and so
its error is dominated by thermal noise rather than counting statistics,
i.e.

σ2
60≈

4kTR
Δt

: ð42Þ

Thus an approximate method for modelling the noise due to the
interference correction is to change the coefficient aj on the 58mass to

a58 = 7:047 ×
4kTR
Δt

: ð43Þ

Acommonlyencountered issue inMC-ICP-MSwork is the effect of the
acid “blank” that is used todissolve the sample. Theblank can forma large
part of the baseline, but can be corrected for by measuring an “on-peak
zero”, ameasurement of the acid excluding the sample (Nelms, 2005). By
subtracting the on-peak zeromeasurement from themeasurementof the
spike-sample mixture, an additional source of noise is introduced due to
the additional measurement. This can similarly be included in the error
model by increasing the coefficients aj appropriately.

There are many other kinds of interferences that occur in different
situations, and each must be dealt with on a case by case basis. It
should be noted that not all interferences can be corrected for, and
that some of the corrections applied are only approximate e.g. the
correction formula in Eq. (39) is only approximate as the standard
value and mass bias take assumed values and not actual values.
Uncorrected interferences can lead to serious biases and inaccuracies
in any isotopic measurements and must be avoided where possible.

Appendix D. Optimal double spikes

The most natural criterion for a good double spike is one which
minimises the error on a quantity of interest. However, different quan-
tities are of interest in different situations. For stable isotope work, the
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most natural quantity to focus on is α, the fractionation factor which
describes themass fractionationbetween the sampleNand the standard
composition n. The error onα can be obtained from themiddle element
of thematrixVy in Eq. (21). However, for radiogenic isotopework,where
the composition n is a measured quantity (the unspiked run), it is not
clear that α is the appropriate quantity of interest. Instead, a more
natural quantity to minimise could be the error on a particular ratio, i.e.
Nj for some choice of j, which can be obtained from the diagonal entries
of the matrix VN in Eq. (23). The different choices of error to minimise
will lead to different optimal double spikes.

A double spike consists of a mixture of two single spikes which
may or may not have impurities. We mix a proportion q (by mole of
element) of the first spike to 1−q of the second spike to make the
double spike (Fig. 1). The double spike is added to the sample in
proportion p of spike to 1−p of sample. Finding the optimal double
spike is simply a matter of finding the values of the proportions p and
q that minimise the appropriate error. This is a 2D optimisation
problem that can be solved quickly and efficiently by gradient based
methods. As can be seen in Fig. 2, the objective function appears to be
convex with a single minimum (it is bowl-shaped), which makes
optimisation particularly straightforward. It should be noted that error
estimates also depend on α and β (and hence the sample composi-
tion). By default α and β are set to zero in the software during
optimisation. However, the error estimates vary very little for
reasonable values of α and β (between −2 and 2), and thus this
dependence on α and β can be neglected.

Appendix E. δ and parts per million notation

For stable isotope work, the main quantity of interest is α, the
natural mass fractionation factor. However, α is not usually quoted in
the experimental results. Instead, results are usually presented in
terms of the isotopic ratios, either as δ values, as parts per million
(ppm), or as part per million per atomic mass unit (ppm per amu).
These are defined by

δi = 103 Ni

ni
− 1

� �
; ð44Þ

ppmi = 106 Ni

ni
− 1

� �
; ð45Þ

ppmper amui =
106

ΔiA
Ni

ni
− 1

� �
; ð46Þ

where ΔiA is the difference in atomic masses between the two iso-
topes e.g. Δ1A=55.9349−53.9396. The ratios Ni/ni (sample over
standard) are related to α through the exponential mass fractionation
law (6),

−αPi = log
Ni

ni
: ð47Þ

The above equation has prompted some authors to report their
results using the logarithm of the ratios (Hulston and Thode, 1965;
Young et al., 2002), which is much more convenient when comparing
with α,

δVi = 103 log
Ni

ni
= − 103αPi; ð48Þ

ppmVi = 106 log
Ni

ni
= − 106αPi; ð49Þ

ppmper amuVi =
106

ΔiA
log

Ni

ni
= − 106 αPi

ΔiA
: ð50Þ
These quantities are simple linear rescalings of α, and thus mini-
mising the error on α is equivalent to minimising the error on any
of these quantities. In most practical cases, the logarithmic quantities
(Eqs. (48)–(50)) differ a little from the original quantities (Eqs. (44)–
(46)), as they are related by linear approximation about Ni/ni=1. Also,
since the differences in atomic masses of the isotopes are usually small
compared to the atomic masses themselves, we can make an approxima-
tion to Eq. (50) as

ppmper amuV≈ − 106 α
A

ð51Þ

where A ̅ is a mean or typical atomic mass for the element under
consideration. The above rescaling is used in Tables 1, 2, and 4.

Appendix F. Calibration

F.1. Standard calibration

It is vital for the accuracy of the double spike technique that the
double spike and standard bewell calibrated. For standard calibration, it
is only important to know the mass fractionation line the standard lies
on, rather than the absolute composition of the standard, since all results
are generally quoted relative to the standard value. This can be clearly
seen from the governing equations. The double spike equations (Eq.
(10)) are

λTi + 1− λð Þnie
−αPi − mie

−βPi = 0: ð52Þ

Suppose instead of the true standard composition n, we use an
alternate standard composition n′ in the inversion, which lies at a
different point along the mass fractionation line, given by a mass
fractionation factor α0,

nVi = nie
α0Pi : ð53Þ

Multiplying Eq. (52) by eα0Pi, we have

λTie
α0Pi + 1− λð Þnie

α0 −αð ÞPi − mie
α0 −βð ÞPi = 0; ð54Þ

which can be rewritten in exactly the same form as Eq. (52),

λVT Vi + 1− λVð ÞnVie−α VPi − mie
−β VPi = 0; ð55Þ

where

T Vi = Tie
α0Pi ; ð56Þ

λV= λ; ð57Þ

αV= α; ð58Þ

βV= β − α0: ð59Þ

Thus provided the double spike T′ is calibrated relative to the
alternate standard value n′, the only difference in the inversionwill be
in the values of β. α is unchanged, and thus the composition of the
sample relative to the standard can be determined even if the absolute
composition of the standard is not known.

F.2. Double spike calibration

Onewayof performing the double spike calibration is bymeasuring
a series of double spike-standard mixtures in different proportions
(Dodson, 1963). Suppose J different double spike-standard mixtures
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aremeasured as the set of isotopic ratiosmi
j; i=1, 2, 3; j=1,…, J. These

measurements satisfy the double spike equations (Eq. (10))

λjTi + 1− λj
� �

ni − mj
ie

−βjPi = 0; ð60Þ

where λj are the J mixing proportions and β j are the J instrumental
fractionation factors. Note that α does not appear in the above
expression because it is the standard itself that is used in themixtures.
It is convenient to rewrite the double spike composition T in terms of
its difference from the standard value n (assumed known),

Ti = ni + fui; ð61Þ

where u is a unit vector along the double spike-sample mixing line,
and ζ is a scalar. Eq. (60) can be rewritten as

ni + fλjui − mj
i e

−β jPi = 0: ð62Þ

Letting μ j=ζλj, this becomes

ni + μ jui − mj
i e

−β jPi = 0: ð63Þ

This a set of 3J equations in 2J+2unknowns: the J unknown values
of β j, the J unknown values of μ j, and the 2 unknown independent
components of the unit vectoru (e.g. as specified by two angles θ andϕ
in spherical co-ordinates). At least two different mixing proportions
(J=2) are required to solve these equations. If further mixtures are
measured (JN2) then the above systemof equations is overdetermined
and can be solved in a least squares sense, potentially improving the
precision of the double spike calibration.

While solution of the equations above determines the double
spike-sample mixing line (the unit vector u can be calculated), the
position of the double spike along this line is not determined: There is
a trade off between ζ and the aj, as only their product μj=ζλj can be
determined. There are twomainways to determine the actual position
of the double spike along the double spike-sample mixing line. One
way is to use very careful weighing to determine the mixing pro-
portions accurately. The otherway is to use a second standardmaterial
(ideally with a composition quite different to the first standard) and
perform another series of standard-double spike mixtures with this
second standard. The intersection of the two standard-double spike
mixing lines should then provide an accurate calibration of the double
spike composition.

It is possible estimate to the bias that arises from using a double
spike composition which lies at the wrong point along the double
spike-standardmixing line. For example, suppose that instead of using
the true double spike composition T in the inversion, we use a dif-
ferent double spike composition T′ that lies at a different point along
the double spike-standard mixing line, namely

T Vi = ρTi + 1− ρð Þni; ð64Þ

for some ρ. If ρ=1, the double spike has been calibrated perfectly,
otherwise there is a bias. If we look at the corresponding linear
equations (Eq. (13)) for the miscalibrated double spike T′ we have

AV=
ρ T1 − n1ð Þ −n1P1 m1P1
ρ T2 − n2ð Þ −n2P2 m2P2
ρ T3 − n3ð Þ −n3P3 m3P3

0
@

1
A;

bV=
m1 − n1
m2 − n2
m3 − n3

0
@

1
A; xV=

λV
1− λVð ÞαV

βV

0
@

1
A:

ð65Þ
Thus the linear inversion solutions with the true double spike T
and the miscalibrated double spike T′ are related through

λV
λ

− 1 =
1− ρ

ρ
; ð66Þ

αV
α

− 1 =
λ 1− ρð Þ
ρ − λ

; ð67Þ

βV
β

− 1 = 0: ð68Þ

The above can also be expressed using proportion by mole of
element instead of in ratio space as

pV
p

− 1 =
1− r

r
; ð69Þ

αV
α

− 1 =
p 1− rð Þ
r − p

; ð70Þ

βV
β

− 1 = 0; ð71Þ

where p is the proportion per mole of double spike in the double spike-
sample mix (related to λ by Eq. (9)), and r is the proportion per mole of
true double spike in the miscalibrated double spike (related to ρ). As an
example, suppose the miscalibrated double spike had r=0.99 (i.e.
has a compositionpermole of 99% of the true double spike value, with
a contamination of 1% of the standard), and that the double spike-
sample mixing proportion p=0.5, then the resulting bias in α from
Eq. (70) is 0.0102 (i.e. a 1.02% relative bias). The potential biases for
the full non-linear inversion can be explored in more detail using the
software, but the above equations give a good approximation.

Appendix G. Experimental details

The Fe isotope analyses were carried out on the Nu Plasma 1700 high-
resolution MC-ICP-MS (at ETH Zürich) in normal dry plasma mode. The
Nu Plasma 1700 provides true mass-resolution (defined by the peak
width, m/Δm) from an adjustable source defining slit and individual
adjustable collector slitwidths,whichallow the complete resolutionof the
polyatomic isobaric interferences, including ArO+, ArN+, and CaO+. The
four Fe ion beams were collected simultaneously on Faraday collectors,
equipment with 1011 Ω resistors, but with a dynamic range of 20 V. The
direct interferences of 54Cr+ and 58Ni+were assessed and corrected for by
the simultaneousmeasurement of 52Cr, 53Cr, 60Ni, and 61Ni. The ~200 ppb
Fe solutions in 0.1MHCl were introduced into the plasma via an Aridus II
desolvator equipped with a PFA nebuliser and using a 60–80 µl/min
uptake rate. Analyses consisted of 100×4 s integrations and a 5 minute
wash cycle between spiked standards. Background levels are reduced to
b10−13 A for 56Fe+ between measurements.

Appendix H. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.chemgeo.2009.05.010.
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