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SUMMARY

Melt generation and segregation in Earth’s mantle is typically modelled using the mixture

theory of two phase flows, which combine a set of conservation laws for mass, momen-

tum, and energy with phenomenological laws for fluxes of mass and heat. Most current

two phase flow models assume local thermodynamic equilibrium between melt and ma-

trix, but geochemical observations suggest disequilibrium transport may play an impor-

tant role. Here we generalise the existing two phase flow theories to encompass multiple

thermodynamic components and disequilibrium. Our main focus is on the phenomenolog-

ical laws describing phase change, and we present general disequilibrium melting laws,

which reduce to the familiar fractional and equilibrium melting laws in appropriate limits.

To demonstrate the behaviour of our melting laws, we address two simple model problems

for a binary system: melting at constant pressure, and melting in a 1D upwelling column

at steady state. The framework presented here will prove useful in future for modelling

reaction infiltration instabilities in a thermodynamically consistent manner. This frame-
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work will be useful not only for magma dynamics but for a wide range of reactive two

phase flow problems.

Key words: Magma genesis and partial melting; Magma migration and fragmentation;

Mechanics, theory, and modelling; Mid-ocean ridge processes.

1 INTRODUCTION

Beneath the Earth’s mid-ocean ridges the mantle melts, and that melt rises to the surface to form new

crust. Why the mantle melts is well understood: it is a natural consequence of the thermodynamics of

decompression melting (e.g. Stolper & Asimow (2007)). But how the melt rises is still poorly under-

stood, despite many decades of work on the problem. Part of the reason for this poor understanding

is the complex coupling that exists between melt segregation and melt generation. To have a full de-

scription of the system we must consider not only the fluid dynamics of melt segregation but also the

thermodynamics, and perhaps even kinetics, of melt generation.

The main geodynamical modelling approach for this magma dynamics problem has been to use

the mixture theory of two phase flows (Drew 1983). A particularly useful and highly simplified two

phase flow theory appropriate to magma dynamics was written down by McKenzie (1984) and others

(Scott & Stevenson 1984; Fowler 1985), and has since been applied to a wide variety of problems.

In these models, melt percolates through the matrix according to Darcy’s law, and the matrix resists

compaction through an effective bulk viscosity. More recently, these two phase flow theories have

been generalised to account for additional phenomena such as surface tension and damage (Bercovici

et al. 2001; Ricard et al. 2001; Bercovici & Ricard 2003), and have been made more rigorous by the

formal homogenisation of microscale models (Simpson et al. 2010a,b).

The present work seeks to extend the current two phase flow models of magma dynamics in two

ways: 1) to allow chemical disequilibrium between the two phases, and 2) to encompass multiple

thermodynamic components. In most two phase flow models, local thermodynamic equilibrium is

assumed to hold everywhere. This is a very useful assumption, as it means that the thermodynamic

variables are constrained to lie on phase diagrams, which has been much exploited in recent geody-

namic models (Katz 2008; Tirone et al. 2009). However, there is compelling geochemical evidence

which suggests that melts are not always in chemical equilibrium with the matrix through which they

pass (Kelemen et al. 1997), and indeed mantle melting is thought to be closer to a fractional process
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than an equilibrium process. Chemical disequilibrium has been invoked in models of the reaction in-

filtration instability (Aharonov et al. 1995; Spiegelman et al. 2001), a mechanism that may explain the

focusing of melt into channels, promoting rapid transport of the melt.

Recent models of reactive transport have used somewhat ad hoc linear kinetic laws to describe

mass transfer between phases, but the aim here is to provide a more rigorous treatment. For single

component melting, two phase flow equations encompassing chemical disequilibrium were derived by

Sramek et al. (2007) (although no disequilibrium calculations were performed). Sramek et al. (2007)

invoked the theory of non-equilibrium thermodynamics (e.g. de Groot & Mazur (1984)) to provide

linear phenomenological laws for disequilibrium melting, and we follow their approach in our gener-

alisation to multiple components.

The manuscript is organised as follows: First, we write down the equations governing conservation

of mass, momentum, and energy. The set of governing equations are completed by equations of state

and phenomenological laws for transfer of heat and mass between and within the phases. The main

focus here is on the phenomenological laws governing transfer of mass between the phases (i.e. melt-

ing, crystallisation, or dissolution). Non-equilibrium thermodynamics provides a theoretical basis for

linear phenomenological laws, but it seems than non-linear laws are required if fractional melting is to

be described accurately. Finally, the theory is applied to two well-studied model problems for a binary

system: melting due to increasing temperature at constant pressure, and melting by decompression in

a upwelling 1D column.

2 MASS

In what follows, subscripts refer to the individual phases (either the fluid melt f or solid matrix s), and

superscripts to the components (1, 2, . . . , n).

2.1 Phases

Conservation of mass for the two phases is

∂ (ϕρf )
∂t

+ ∇ · (ϕρfvf ) = Γ, (1)

∂ ((1 − ϕ)ρs)
∂t

+ ∇ · ((1 − ϕ)ρsvs) = −Γ, (2)

where ϕ is the porosity (the volume fraction of melt), ρf and ρs are densities and vf and vs are

velocities of the fluid and solid respectively. Γ represents the total rate of mass exchange from solid

phase to fluid phase (the melting rate). It follows that given any scalar quantities af and as per unit
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mass we have

∂ (ϕρfaf )
∂t

+ ∇ · (ϕρfafvf ) = ϕρf
Dfaf

Dt
+ Γaf , (3)

∂ ((1 − ϕ)ρsas)
∂t

+ ∇ · ((1 − ϕ)ρsasvs) = (1 − ϕ) ρs
Dsas

Dt
− Γas, (4)

where Df/Dt and Ds/Dt are Lagrangian derivatives following the fluid and solid respectively. It

follows that

∂

∂t
(ϕρfaf + (1 − ϕ)ρsas) + ∇ · (ϕρfafvf + (1 − ϕ)ρsasvs)

= ϕρf
Dfaf

Dt
+ (1 − ϕ) ρs

Dsas

Dt
− Γ∆a, (5)

where ∆a = as − af . These expressions are useful in writing the conservation equations to come in a

more compact form, as throughout expressions will cast in terms of Lagrangian derivatives.

The mass conservation equations (1) and (2) can be rewritten in Lagrangian form as

∇ · vf = − 1
ϕ

Dfϕ

Dt
+ ρf

Df (1/ρf )
Dt

+
Γ

ϕρf
, (6)

∇ · vs =
1

1 − ϕ

Dsϕ

Dt
+ ρs

Ds(1/ρs)
Dt

− Γ
(1 − ϕ)ρs

. (7)

Similarly, the mean velocity v ≡ ϕvf + (1 − ϕ)vs = ϕ(vf − vs) + vs satisfies

∇ · v = ϕρf
Df (1/ρf )

Dt
+ (1 − ϕ)ρs

Ds(1/ρs)
Dt

− Γ∆(1/ρ), (8)

where ∆(1/ρ) = 1/ρs−1/ρf . It is often more convenient to work with mass conservation in the form

of (7) and (8) rather than (1) and (2).

2.2 Components

The two phases are made up of n thermodynamic components e.g. if the phases were pure olivine,

component 1 could be Mg2SiO4 (forsterite) and component 2 could be Fe2SiO4 (fayalite). Using (3)

and (4), conservation of components is

ϕρf

Dfcj
f

Dt
+ Γcj

f = −∇ · Jj
f + Γj , (9)

(1 − ϕ) ρs
Dsc

j
s

Dt
− Γcj

s = −∇ · Jj
s − Γj , (10)

where cj
f and cj

s are the concentrations by mass of component j in the two phases. Γj represents the

rate of mass exchange of component j from solid to fluid (interphase exchange), whereas Jj
f and

Jj
s represent the diffusive mass fluxes of component j within the fluid and solid phases respectively

(intraphase fluxes). For consistency with the conservation of mass equations (1) and (2), the following
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constraints hold ∑
j

cj
f =

∑
j

cj
s = 1, (11)

∑
j

Jj
f =

∑
j

Jj
s = 0, (12)

Γ =
∑

j

Γj . (13)

The first of these constraints simply states that cj
f and cj

s represent the compositions of the two phases

and thus must sum to 1. (12) states that the diffusive intraphase fluxes must sum to zero, and (13) states

that the total rate of interphase mass transfer from solid to liquid is given by the sum of the fluxes from

solid to liquid of the individual components.

3 MOMENTUM

Derivations of the equations governing conservation of momentum are much more involved than those

governing conservation of mass, and have been discussed in detail by many other authors (McKenzie

1984; Scott & Stevenson 1984; Fowler 1985; Bercovici et al. 2001; Ricard et al. 2001; Bercovici &

Ricard 2003; Simpson et al. 2010a,b). Only a brief outline of their derivation is given here.

Conservation of momentum for the slow creeping flow of the two phases is

∇ · (ϕσf ) + ϕρfg = F, (14)

∇ · ((1 − ϕ) σs) + (1 − ϕ) ρsg = −F, (15)

where F is the interphase force, representing the work one phase can do on the other, and g is the

acceleration due to gravity. σf and σs are the stress tensors for the two phases. It will be assumed that

the momentum of individual components is locked to the phases.

(14) and (15) can be summed to give the total conservation of momentum equation

∇ · σ + ρg = 0, (16)

where the average stress tensor and density are defined by

σ = ϕσf + (1 − ϕ) σs, (17)

ρ = ϕρf + (1 − ϕ) ρs. (18)
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Mechanical pressures for the two phases are defined in the standard way by

pf = −1
3

trσf , (19)

ps = −1
3

trσs, (20)

with a mean mechanical pressure given by

p = −1
3

tr σ = ϕpf + (1 − ϕ)ps. (21)

The stress tensors can be split into isotropic and deviatoric (trace-free) parts as

σf = −pfI + τ f , (22)

σs = −psI + τ s, (23)

where τ f and τ s are the deviatoric stress tensors, and I is the identity tensor.

A simple phenomenological law for the interphase force F is given by (Drew 1983)

F = d (vf − vs) − P∇ϕ, (24)

where d is a drag coefficient associated with resistance of motion of the two phases past each other,

and P is the interface pressure, representing resistance to changes in porosity. Throughout this work

we will neglect surface tension, but a generalisation of the above law to encompass surface tension

effects can be found in Bercovici et al. (2001).

To complete the set of equations, phenomenological laws are needed to determine the pressure

differences P − pf and P − ps, and the deviatoric stress tensors τ f and τ s. To be consistent with the

simplified two phase flow theory of McKenzie (1984), the phenomenological laws must take the form

P − pf = 0, (25)

P − ps =
ζϕ

1 − ϕ
∇ · vs, (26)

τ f = 0, (27)

τ s =
ηϕ

1 − ϕ

(
∇vs + ∇vT

s − 2
3

(∇ · vs) I
)

. (28)

These laws appear somewhat asymmetric due to an assumption that the matrix is much more viscous

that the melt. (14), (24), (25), and (27) then lead to the usual Darcy’s law for the melt,

ϕ (vf − vs) = −
kϕ

µ
(∇P − ρfg) , (29)

where the permeability kϕ (a function of porosity) is related to the drag coefficient by d = µϕ2/kϕ.
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(16) and (25-28) lead to a total conservation of momentum equation

∇P = ∇ ·
(
ηϕ

(
∇vs + ∇vT

s

))
+ ∇

((
ζϕ − 2

3
ηϕ

)
∇ · vs

)
+ ρg, (30)

which resembles the equation governing compressible Stokes flow, where ηϕ and ζϕ can be interpreted

as effective shear and bulk viscosities for the two phase mixture (which are also porosity dependent).

More general phenomenological laws than those in (25-28) were developed by Bercovici & Ricard

(2003) to preserve material invariance, and these laws are outlined briefly in Appendix A (also see

discussion in Simpson et al. (2010a)).

4 ENERGY

When considering the thermodynamics of two phase flow, as we must when considering conserva-

tion of energy, a key difficulty is the notion of pressure, and in particular the difference between

“thermodynamic” and “mechanical” definitions of pressure. The thermodynamic pressure appears in

definitions of thermodynamic potentials e.g. in the relationship between enthalpy and internal energy,

H = U +pV . The mechanical pressures are defined by minus one third the trace of the stress tensor, as

in (19), (20), and (21). Even for a compressible single phase viscous fluid there is difference between

these two definitions of pressure. This difference depends on the divergence of the velocity field, and

disappears in equilibrium. For a two phase system, the situation is much less clear as there are multiple

mechanical pressures and potentially multiple thermodynamic pressures.

In what follows all thermodynamic potentials for both phases are defined with P , the interface

pressure, as the appropriate thermodynamic pressure. There is some justification for this in the work

of Sramek et al. (2007) where it was shown that this leads to a particularly natural characterisation

of phase change. For the phenomenological laws considered, the difference between mechanical and

thermodynamic pressures only depends on the divergences of the velocity fields, in a way analogous to

the compressible single phase case. Using P for the thermodynamic pressure is also identical to the as-

sumption made by McKenzie (1984) where the fluid pressure (identical to the interface pressure, (25))

was chosen as the common thermodynamic pressure for the two phases. Nevertheless, thermodynamic

pressure remains a thorny aspect of two phase flow theories and deserves further careful study.

Conservation of total internal energy is

ϕρf
Dfuf

Dt
+ (1 − ϕ) ρs

Dsus

Dt
− Γ∆u

= Q −∇ · q + ∇ · (ϕσf · vf + (1 − ϕ) σs · vs) + ϕρfvf · g + (1 − ϕ) ρsvs · g, (31)

where uf and us are the internal energies per unit mass of the two phases, Q is the rate of internal heat

production (e.g. from radioactivity), q is the diffusive heat flux, and the remaining terms on the right
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hand side are sources of energy due to work. Using the momentum equations (14), (15), and (24), the

energy equation can be simplified to

ϕρf
Dfuf

Dt
+ (1 − ϕ) ρs

Dsus

Dt
− Γ∆u = Q −∇ · q − P∇ · v + Ψ, (32)

where Ψ is the viscous dissipation,

Ψ = d (vf − vs)
2+ϕ (P − pf )∇·vf +(1−ϕ) (P − ps)∇·vs+ϕτ f : ∇vf +(1−ϕ)τ s : ∇vs. (33)

With the simplified phenomenological laws (25-28), the viscous dissipation can be written as

Ψ =
µϕ2

kϕ
(vf − vs)

2 + ζϕ (∇ · vs)
2 +

ηϕ

2

(
∇vs + ∇vT

s − 2
3
I (∇ · vs)

)2

. (34)

Here squares represent a dot product for vectors a2 = a·a and a double dot product for second

rank tensors A2 = A : A. A more general expression for the viscous dissipation can be found in

Appendix A using the phenomenological laws of Bercovici & Ricard (2003).

Conservation of energy (32) can be rewritten using conservation of mass (8) as

ϕρf
Dfuf

Dt
+ (1 − ϕ) ρs

Dsus

Dt
− Γ∆u

= Q −∇ · q − P

(
ϕρf

Df (1/ρf )
Dt

+ (1 − ϕ) ρs
Ds(1/ρs)

Dt
− Γ∆(1/ρ)

)
+ Ψ. (35)

In applications it is useful to rewrite the energy equation in terms of different thermodynamic poten-

tials. For example, specific enthalpy satisfies

hi = ui +
P

ρi
,

Dihi

Dt
=

Diui

Dt
+

1
ρi

DiP

Dt
+ P

Di(1/ρi)
Dt

, (36)

where the subscript i refers to the phase, i = s, f . As discussed above, the definition of specific

enthalpy used here is in terms of the interface pressure P . Using (36), conservation of energy (31) can

be written as an enthalpy equation

ϕρf
Dfhf

Dt
+ (1 − ϕ) ρs

Dshs

Dt
− Γ∆h = ϕ

DfP

Dt
+ (1 − ϕ)

DsP

Dt
+ Q −∇ · q + Ψ, (37)

which is the form of the energy equation used in the enthalpy method (Katz 2008). We will return to

this enthalpy equation in section 6 to write a temperature equation.

4.1 Entropy

Perhaps the most important rewriting of the energy equation is as an equation for entropy. Since

hi = Tsi +
∑

j

µj
i c

j
i ,

Dihi

Dt
= T

Disi

Dt
+

1
ρi

DiP

Dt
+
∑

j

µj
i

Dic
j
i

Dt
, (38)
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the enthalpy equation (37) can be written as an entropy equation,

Tϕρf
Dfsf

Dt
+ T (1 − ϕ) ρs

Dsss

Dt
− ΓT∆s

= Q −∇ · q + Ψ +
∑

j

(
µj

f∇ · Jj
f + µj

s∇ · Jj
s + Γj∆µj

)
, (39)

where we have used conservation of components (9), (10). The above expression can be written as an

entropy balance,

ϕρf
Dfsf

Dt
+ (1 − ϕ) ρs

Dsss

Dt
− Γ∆s = −∇ · j + σ (40)

where j is the entropy flux and σ is the entropy production. Comparing (39) and (40), we see that the

entropy flux j is related to fluxes of heat and components by

j =
q
T

−
∑

j

Jj
fµj

f + Jj
sµ

j
s

T
, (41)

and the entropy production σ is given by

σ =
1
T

Q + Ψ − j · ∇T +
∑

j

Γj∆µj − Jj
f · ∇µj

f − Jj
s · ∇µj

s

 . (42)

The second law of thermodynamics requires that σ ≥ 0 (also known as the Clausius-Duhem inequal-

ity).

5 EQUATIONS OF STATE

Equations of state need to be prescribed for the two phases. In theory, this could be done using the

internal energy, by specifying functions ui(si, ρi, c
j
i ) for the two phases. The temperature, pressure,

and chemical potentials could then be derived from these functions using the Gibbs relation dui =

Tdsi − Pd(1/ρi) +
∑

j µj
idcj

i or

T =
∂ui

∂si
, P = − ∂ui

∂(1/ρi)
, µj =

∂ui

∂cj
i

. (43)

However, thermodynamic data is not usually given in (si, ρi, c
j
i ) co-ordinates, but rather in (P, T, cj

i )

co-ordinates, and it is helpful to re-express the equations of state. Such co-ordinates are also use-

ful since we are assuming P and T are the same for both phases. The co-ordinate change uses the

following standard partial derivatives in (P, T, cj
i ) co-ordinates,

αi = ρi
∂(1/ρi)

∂T
, βi = −ρi

∂(1/ρi)
∂P

, (44)

Ci = T
∂si

∂T
=

∂hi

∂T
, (45)
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αi is the thermal expansion coefficient, βi is the isothermal compressibility, and Ci is the specific

heat capacity at constant pressure. The dependence on composition is captured by introducing partial

specific quantities as

hi =
∑

j

cj
ih

j
i ,

1
ρi

=
∑

j

cj
i

ρj
i

, (46)

where 1/ρj
i is the partial specific volume of component j in phase i and hj

i is the corresponding partial

specific enthalpy. Using (44-46), we may then write

ρi
Di(1/ρi)

Dt
= αi

DiT

Dt
− βi

DiP

Dt
+
∑

j

ρi

ρj
i

Dic
j
i

Dt
, (47)

Dihi

Dt
= Ci

DiT

Dt
+

1 − αiT

ρi

DiP

Dt
+
∑

j

hj
i

Dic
j
i

Dt
. (48)

Of course, the quantities αi, βi, etc. may be functions of P , T and cj
i but are often assumed constant

for simplicity. Equations of state are also needed to describe the chemical potentials µj
i , and these are

discussed later in section 7.

6 TEMPERATURE EQUATIONS

Using (47) we may rewrite the mass conservation equations (6) and (7) as

∇ · vf = − 1
ϕ

Dfϕ

Dt
+ αf

DfT

Dt
− βf

DfP

Dt
+
∑

j

Γj −∇ · Jj
f

ϕρj
f

, (49)

∇ · vs =
1

1 − ϕ

Dsϕ

Dt
+ αs

DsT

Dt
− βs

DsP

Dt
−
∑

j

Γj + ∇ · Jj
s

(1 − ϕ)ρj
s

, (50)

where the derivatives of composition have been removed using conservation of components (9), (10).

The corresponding equation for the mean velocity (8) becomes

∇·v = ϕαf
DfT

Dt
+(1−ϕ)αs

DsT

Dt
−ϕβf

DfP

Dt
−(1−ϕ)βs

DsP

Dt
−
∑

j

(
Γj∆(1/ρj) +

∇ · Jj
f

ρj
f

+
∇ · Jj

s

ρj
s

)
.

Using (48), the conservation of energy equation (37) can be rewritten as

ϕρfCf
DfT

Dt
+ (1 − ϕ) ρsCs

DsT

Dt
− ϕαfT

DfP

Dt
− (1 − ϕ) αsT

DsP

Dt

= Q + Ψ −∇ · q′ +
∑

j

(
Γj∆hj − Jj

f · ∇hj
f − Jj

s · ∇hj
s

)
, (51)

where again the derivatives of composition have been removed using conservation of components (9),

(10). q′ is an alternative definition of heat flux, related to the original fluxes by

q′ = q −
∑

j

Jj
fhj

f + Jj
sh

j
s. (52)
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The temperature equation (51) can also be written in terms of averaged quantities,

ρC
∂T

∂t
+ρCv ·∇T −Tα

∂P

∂t
−Tαv ·∇P = Q+Ψ−∇·q′−

∑
j

(
ΓjLj + Jj

f · ∇hj
f + Jj

s · ∇hj
s

)
,

(53)

where Lj = −∆hj = hj
f − hj

s is the latent heat (enthalpy of fusion) for melting of component j, and

the overbars represent averages as

ρC = ϕρfCf + (1 − ϕ)ρsCs, (54)

ρCv = ϕρfCfvf + (1 − ϕ)ρsCsvs, (55)

α = ϕαf + (1 − ϕ)αs, (56)

αv = ϕαfvf + (1 − ϕ)αsvs. (57)

The temperature equation (53) closely resembles the standard temperature equation for single phase

flow. The two phase nature of the flow appears in the averaging of specific heat capacities, thermal

expansivities, and velocities, and through the latent heat term. The multicomponent nature of the flow

appears in the terms involving diffusive fluxes of components, the different latent heats for the different

components, and the potential for composition dependent properties.

7 CHEMICAL POTENTIALS

To have a full description of the thermodynamics, we need to relate chemical potentials to tempera-

ture, pressure, and composition. It is an unfortunate fact that when working with chemical potentials

we have to deal with both mass fractions (denoted by cj) and mole fractions (denoted by xj). It is

straightforward to convert between the two sets of variables:

cj =
M jxj

M
, xj =

Mcj

M j
, (58)

where M j are the molar masses of each component (kg mol−1), and M is the mean molar mass, given

by

M =
∑

j

M jxj =

∑
j

cj

M j

−1

. (59)

Another way of expressing these relationships is by

cj =
{
M jxj

}
, xj =

{
cj/M j

}
, (60)

where {·} refers to normalising to unit sum,
{
aj
}

= aj/
∑

k ak.

The chemical potentials are related to temperature, pressure, and composition by the standard
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relationships (Anderson 2005)

µj
s = µj◦

s (P, T ) + RjT log
(
γj

sx
j
s

)ν
, (61)

µj
f = µj◦

f (P, T ) + RjT log
(
γj

fxj
f

)ν
, (62)

where γj are activity coefficients and xj are molar concentrations. The activity coefficients γj =

1 for an ideal solution. ν is the number of lattice sites per formula unit (e.g. ν = 2 for olivine

(Mg,Fe)2SiO4). Rj is the specific gas constant for component j, Rj = R̃/M j , where R̃ is the uni-

versal gas constant (R̃ = 8.314472 J K−1 mol−1), and M j is the molar mass. This is consistent with

the earlier definition of the chemical potential as being per unit mass (the units of µ are J kg−1). The

chemical potentials per mole are given by µ̃j
s = µsM

j , µ̃j
f = µfM j (with units J mol−1).

The differences in chemical potentials, ∆µj = µj
s − µj

f satisfy

∆µj = −RjT log Kj + RjT log Qj , (63)

where Kj are the equilibrium constants, functions only of temperature and pressure, defined by

− RjT log Kj = µj◦
s − µj◦

f , (64)

and Qj are the activity ratios, defined by

Qj =

(
γj

sx
j
s

γj
fxj

f

)ν

. (65)

(63) can be rewritten as
Qj

Kj
= exp

(
∆µj

RjT

)
. (66)

In equilibrium ∆µj = 0 and Qj = Kj .

It is often more desirable to work with concentration ratios rather than activity ratios. If we define

Kj
x and Qj

x by

Kj
x =

γj
f

γj
s

(
Kj
)1/ν

, Qj
x =

xj
s

xj
f

, (67)

where Qj
x is a molar concentration ratio, then Qj

x = Kj
x in equilibrium. We can relate Qj

x and Kj
x to

the chemical potential differences by

Qj
x

Kj
x

=
(

Qj

Kj

)1/ν

= exp
(

∆µj

νRjT

)
. (68)

7.1 Solidus and liquidus surfaces

Since Qj
x = Kj

x in equilibrium, the equilibrium molar compositions xj
s(eq) and xj

f(eq) satisfy

xj
s(eq) = Kj

xxj
f(eq),

∑
xj

s(eq) = 1,
∑

xj
f(eq) = 1. (69)
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The permissible values of xj
s(eq) and xj

f(eq) describe the solidus and liquidus surfaces respectively.

If Kx is a function only of temperature and pressure (as is the case for an ideal solution, and will

be assumed from here on), the two surfaces can be described separately as follows. The solidus is

given by those molar compositions xj
s(eq) satisfying

∑
j

xj
s(eq)

Kj
x

= 1,
∑

xj
s(eq) = 1, (70)

and the liquidus is given by those molar compositions xj
f(eq) satisfying∑

j

Kj
xxj

f(eq) = 1,
∑

xj
f(eq) = 1. (71)

(70) and (71) embody the Gibbs’ phase rule: For a two-phase n-component system the phase rule

states that there are n thermodynamic degrees of freedom in equilibrium. The n degrees of freedom

could be T , P and n − 2 of the components of xj
s. In a binary system n = 2 and the equilibrium

compositions can be completely specified by T and P . The solidus is given by (70),

x1
s(eq)

K1
x(P, T )

+
x2

s(eq)

K2
x(P, T )

= 1, x1
s(eq) + x2

s(eq) = 1, (72)

and the liquidus by (71),

K1
x(P, T )x1

f(eq) + K2
x(P, T )x2

f(eq) = 1, x1
f(eq) + x2

f(eq) = 1. (73)

In each case there are two simultaneous equations for two unknowns, which can be solved uniquely.

These expressions are used to calculate the solidus and liquidus surfaces for olivine in Figure 1 and

Figure 2.

7.2 Temperature and pressure dependence of equilibrium constants

The temperature and pressure dependence of the equilibrium constants Kj(P, T ) need to be pre-

scribed. The van’t Hoff equation describes the temperature dependence

∂ log Kj

∂T
=

∆hj

RjT 2
, (74)

where ∆hj is the change in enthalpy for melting of pure component j. The pressure dependence is

∂ log Kj

∂P
= −∆(1/ρj)

RjT
. (75)

It is helpful to look at a simplified form of these dependencies. For example, if we assume that ∆hj is

independent of temperature and pressure, then a suitable approximate expression is (Bradley 1962)

log Kj = −∆hj

Rj

(
1
T

− 1

T j
m(P )

)
. (76)
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T j
m(P ) is the melting temperature of the pure component as a function of pressure. Recall that ∆hj ≡

−Lj , where Lj is the latent heat. In terms of Kj
x, (76) can be rewritten as

log Kj
x = log

(
γj

f/γj
s

)
− ∆hj

νRj

(
1
T

− 1

T j
m(P )

)
. (77)

The function T j
m(P ) satisfies the Clapeyron equation,

dT j
m

dP
=

T j
m∆(1/ρj)

∆hj
, (78)

which could formally be integrated to determine T j
m(P ). However, it is often easier to use an approx-

imate parametrised form for T j
m(P ), such as Simon’s law,

T j
m(P ) = T j

m0

(
1 +

P

aj

)1/bj

, (79)

for some coefficients aj and bj . This is the approach taken here.

8 PHENOMENOLOGICAL LAWS FOR INTERPHASE MASS TRANSFER

To complete the governing equations, phenomenological laws are required describing the fluxes of

mass and heat. In this section we focus on the phenomenological laws for interphase mass transfer, and

the corresponding discussion for intraphase vector fluxes can be found in Appendix B. The simplest

closure is to assume local thermodynamic equilibrium (e.g. Ribe (1985a); Hewitt & Fowler (2008);

Katz (2008); Tirone et al. (2009)). This adds n algebraic equations to the system, e.g. of the form

xj
s = Kxxj

f (see (69)), and constrains the solid and liquid to lie on the solidus and liquidus on the

phase diagram. The interphase mass fluxes are then implicitly determined. However, in this work we

are interested in disequilibrium effects, and thus do not assume local thermodynamic equilibrium.

According to the theory of non-equilibrium thermodynamics (de Groot & Mazur 1984), linear

phenomenological laws can be obtained by examining the expression for entropy production. For

example, the part of the entropy production due to transfer of components between phases is given in

(42) as

σ =
∑

j

Γj ∆µj

T
. (80)

This expression defines a natural set of conjugate thermodynamic forces (∆µj/T ) and fluxes (Γj),

and suggests linear phenomenological laws of the form

Γj =
∑

k

Ejk ∆µk

T
, (81)

for some matrix of coefficients Ejk. Onsager’s reciprocal relations state that Ejk is a symmetric ma-

trix, Ejk = Ekj , and the second law ensures that Ejk is positive semi-definite. More precisely, the
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theory states that any scalar flux can depend on any scalar force in the entropy production, and this

could include a dependence of Γj on velocity field divergences. However, we will neglect such a de-

pendence here, and assume the interphase mass fluxes only depend on differences in chemical potential

(see Sramek et al. (2007) for further discussion).

Far from equilibrium, linear laws may be a poor description of the kinetics. Indeed, this is well

known in the context of chemical reactions, where the law of mass action (based on products of

activities) is generally a more useful phenomenological law far from equilibrium than linear laws

based on the affinities (differences in chemical potential). This motivates the exploration of laws for

interphase mass transfer that are non-linear in the chemical potential differences, but that must still

satisfy the constraints of non-equilibrium thermodynamics near equilibrium.

Here we propose a simple non-linear law for interphase mass transfer that can be thought of as

a generalisation of fractional melting. We introduce the law first, and then explain why it may be

reasonable. The law we propose is

Γj =
∑

k

EjkZk, (82)

Zk = νRk

(
1 −

(
Kk

Qk

)1/ν
)

= νRk

(
1 −

Kk
xxk

f

xk
s

)
(83)

which is very similar to (81). Again Ejk is a matrix of coefficients, which we will assume is symmet-

ric and positive semi-definite (see Appendix C for further discussion of the second law). Zk are the

thermodynamic forces which are now given by a non-linear law in terms of the equilibrium constants

Kk and activity ratios Qk. The dependence on the ratio Kk/Qk is found in many kinetic theories,

such as transition state theory (Anderson 2005; Lasaga 1998). Near equilibrium this non-linear phe-

nomenological law reduces to the linear law of (81), as Zk ≈ ∆µk/T near equilibrium.

To make the link with fractional melting, it is useful to express the fluxes in a different way, sep-

arating out the mass flux associated with phase change (Γ) from the fluxes of components that occur

without phase change (Baker & Cahn 1971; Caroli et al. 1986; Hillert 2006). Key to this alterna-

tive representation is the fact that the symmetric positive semi-definite matrix Ejk can be uniquely

decomposed as

Ejk = λΓcj
Γck

Γ + Gjk, (84)

where λΓ > 0, cj
Γ is a well-defined composition (i.e. it has unit sum and positive entries), and Gjk is

a positive semi-definite matrix with zero row and column sum. The subscripts Γ on λΓ and cj
Γ are to

emphasise their association with the phase change, which is clearer when the phenomenological laws
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(82) and (83) are rewritten using (84) as

Γj = Γcj
Γ + J j , (85)

Γ = λΓ

∑
k

ck
ΓZk, (86)

J j =
∑

k

GjkZk. (87)

(85) splits the mass flux of component j into two parts: a part that occurs due to phase change (Γcj
Γ),

and a part that occurs without phase change (J j). The flux due to phase change is controlled by the

coefficients λΓ (a rate constant for phase change) and cj
Γ, whereas the flux of components that occurs

without phase change is controlled by the coefficients Gjk. This decomposition into fluxes with and

without phase change is useful because the different mass fluxes may be controlled by quite different

physical mechanisms, and thus occur at different kinetic rates.

Whether written as (82) or (85-87), there remains a set of n(n+1)/2 coefficients to be prescribed,

either in the form of the n(n−1)/2 independent entries of the matrix Ejk or as λΓ, the n−1 indepen-

dent entries of cj
Γ, and the n(n − 1)/2 independent entries of Gjk. Either set can be specified and the

other set is then determined. In this work we will focus on two natural choices for the composition cj
Γ,

and will refer to the two laws as type I and type II melting. One of these laws generalises melting laws

which leave the solid composition unchanged (type I melting), and the other generalises fractional

melting (type II melting).

8.1 Fractional melting (Type II melting)

During fractional melting the solid remains on the solidus, and each infinitesimal increment of melt

produced is in equilibrium with the solid. Once the infinitesimal melt has formed it is chemically

isolated from the solid and no further chemical exchange occurs (although heat is still exchanged as

thermal equilibrium is assumed). We will refer to this style of fractional melting as thermally equili-

brated fractional melting (which differs from the incrementally isentropic fractional melting described

by Asimow et al. (1997) and Stolper & Asimow (2007), which does not involve thermal equilibration).

The laws for fractional melting can be written as (Spiegelman & Elliott 1993; Spiegelman 1996)∑
k

xk
s

Kk
x

= 1, (88)

Γj = Γcj
Γ, xj

Γ =
xj

s

Kj
x

, (89)

where (88) constrains the solid to lie on the solidus, and (89) states that the melt produced is in

equilibrium with the solid. xj
Γ represents the molar concentrations of the infinitesimal melt produced,
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and cj
Γ the corresponding mass concentrations (xj

Γ and cj
Γ are related by (58)). In (89) phase change

is the only form of mass transfer; comparison with (85) shows that the J j (the fluxes of components

without phase change) are all zero.

We would like to relate the laws given by (88-89) to those of (85-87). It is clear that to reproduce

fractional melting the coefficients Gjk should be zero, but is less clear how the coefficients λΓ and cj
Γ

should be chosen. (89) motivates choosing the composition associated with phase change as

xj
Γ =

{
xj

s

Kj
x

}
(90)

where {·} again refers to normalising to unit sum. Note that normalisation is required, since xj
s/Kj

x is

not guaranteed to be a valid composition (i.e. sum to 1) as the solid is not necessarily constrained to

the solidus for general disequilibrium phenomenological laws. The phenomenological law describing

phase change (86) and (83) becomes

Γ = λΓ

∑
k

ck
ΓνRk

(
1 −

Kk
xxk

f

xk
s

)
(91)

∝ λΓ

∑
k

xk
s

Kk
x

(
1 −

Kk
xxk

f

xk
s

)
(92)

∝ λΓ

([∑
k

xk
s

Kk
x

]
− 1

)
, (93)

and thus the constraint that the solid lies on the solidus is recovered as λΓ → ∞. Hence fractional

melting is recovered with the coefficient choice of λΓ → ∞, Gjk = 0, and xj
Γ =

{
xj

s/Kj
x

}
. Indeed,

the main reason for choosing the particular non-linear form in (83) is to exactly recover the solidus

constraint, which is only approximately recovered with the linear law. We will refer to any melting

law which has xj
Γ =

{
xj

s/Kj
x

}
as type II melting. A similar generalisation can be made for fractional

crystallisation and is discussed in Appendix D.

8.2 Solid invariant melting (Type I melting)

Another natural choice for the composition xj
Γ is the solid composition itself, xj

Γ = xj
s, which we will

refer to as type I melting. If the coefficients Gjk are zero, then this style of melting keeps the solid

composition fixed. If λΓ → ∞, this style of melting constrains the liquid to the liquidus.

The two styles of melting we consider here (type I and type II) are not the only styles of melting

one could consider: they simply represent two natural choices for the composition associated with

melting based on the solid composition. There is plenty of scope for further exploration of these laws.
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9 ISOBARIC BINARY MELTING

As a concrete example in which to explore the behaviour of these phenomenological laws, we now

consider the problem of isobaric melting of olivine. Our model olivine is a complete solid solution

of two components, forsterite (Mg2SiO4) and fayalite (Fe2SiO4), with a simple binary loop phase

diagram. For a binary system the matrix Gjk has only one free parameter, and takes the form

Gjk = λJ

 1 −1

−1 1

 (94)

where λJ > 0. In full, the phenomenological laws for melting are thus

Q1
x =

xs

xf
, Q2

x =
1 − xs

1 − xf
, (95)

K1
x = exp

(
L1

νR1

(
1
T

− 1
T 1

m(P )

))
, (96)

K2
x = exp

(
L2

νR2

(
1
T

− 1
T 2

m(P )

))
, (97)

T 1
m(P ) = T 1

m0

(
1 +

P

a1

)1/b1

, T 2
m(P ) = T 2

m0

(
1 +

P

a2

)1/b2

, (98)

Z1 = νR1

(
1 − K1

x

Q1
x

)
, Z2 = νR2

(
1 − K2

x

Q2
x

)
, (99)

Γ = λΓ

(
cΓZ1 + (1 − cΓ)Z2

)
, (100)

J = λJ

(
Z2 − Z1

)
, (101)

Γ1 = cΓΓ − J, (102)

Γ2 = (1 − cΓ) Γ + J, (103)

where the composition variable x refers to the molar concentration of component 1 (forsterite). Numer-

ical values for model olivine parameters can be found in Table 1. Note that the kinetic rates λΓ, λJ > 0

in order to satisfy the second law. λΓ and λJ could depend on many variables such as temperature or

porosity, but for simplicity, here λΓ and λJ will be assumed constant.

For type I melting,

xΓ = xs, (104)

whereas for type II melting,

xΓ =
xs/K1

x

xs/K1
x + (1 − xs)/K2

x

. (105)

Consider heating a piece of olivine at fixed pressure such that its temperature rises at a constant

rate. Let F be the mass fraction of melt (initially zero). The evolution of F and composition cf are
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described by

dF

dT
=

Γ
ρ0(dT/dt)

, (106)

d(Fcf )
dT

=
Γ1

ρ0(dT/dt)
, (107)

where ρ0 is the initial density of the unmelted solid, and dT/dt is the constant rate at which tempera-

ture increases. The behaviour of this simple system is determined by two non-dimensional Damköhler

numbers,

DaΓ =
λΓνR1∆T

ρ0(dT/dt)
, DaJ =

λJνR1∆T

ρ0(dT/dt)
, (108)

where ∆T represents a temperature scale, taken here to be the difference between the melting points

of the two components ∆T = T 1
m − T 2

m. As DaΓ → ∞ and DaJ → ∞, equilibrium melting is

recovered. In non-dimensional form this simple system is described by

dF

dT
= Γ, (109)

d(Fcf )
dT

= Γ1, (110)

Z1 = 1 − K1
x

Q1
x

, Z2 = 1 − K2
x

Q2
x

, (111)

Γ = DaΓ

(
cΓZ1 + (1 − cΓ)Z2

)
, (112)

J = DaJ

(
Z2 − Z1

)
, (113)

Γ1 = cΓΓ − J. (114)

Figures 1 and 2 give examples of the different styles of disequilibrium melting that occur as the

two Damköhler numbers are varied. Perhaps the most instructive of these is Figure 2a which shows

type II melting with DaΓ = 105 and various values of DaJ . When DaJ is large, the melting paths

closely approximate the expected equilibrium melting paths, with the liquid very close to the liquidus

and the solid very close to the solidus. When DaJ = 0 the solid still remains very close to the solidus,

but the liquid path departs from the liquidus and lies very close to a fractional melting path (e.g.

Maaløe (1984)). For intermediate values of DaJ the melting paths are somewhere between the two

extremes. The corresponding melt production is shown in Figure 3, which can be determined from

Figure 2a using the lever rule (conservation of mass).

10 1D BINARY MELTING COLUMN

One of the simplest problems combining compaction and melting is the 1D steady state melting col-

umn. The problem was first addressed using the McKenzie (1984) equations by Ribe (1985a), and
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has since been studied by many other authors (Asimow & Stolper 1999; Spiegelman & Elliott 1993;

Sramek et al. 2007; Hewitt & Fowler 2008; Katz 2008). Here we investigate the effects of disequi-

librium on this problem. Again we consider melting of pure olivine, although it should be noted that

real mantle melting involves a multiphase assemblage of a number of minerals. Olivine is the most

abundant mantle mineral by mass, but it is not the mineral that melts most during real mantle melting.

Nevertheless it provides a simple binary test system for studying the behaviour of the equations.

In 1D, with no diffusion of heat or components, the conservation equations are

d
dz

(ϕρfvf ) = Γ, (115)

d
dz

((1 − ϕ) ρsvs) = −Γ, (116)

d
dz

(ϕρfvfcf ) = Γ1, (117)

d
dz

((1 − ϕ) ρsvscs) = −Γ1, (118)

dP

dz
= −ρg − dP̃

dz
, (119)

dP̃

dz
=

µ

kϕ
ϕ (vf − vs) − (1 − ϕ)∆ρg, (120)

dvs

dz
=

−P̃

ζϕ + 4
3ηϕ

, (121)

ρCv
dT

dz
= Tαv

dP

dz
− Γ1L1 − Γ2L2, (122)

where the viscous dissipation term Ψ has been neglected in the energy equation (122) (see Asimow

(2002) for justification). The quantity P̃ is a compaction pressure, defined by −σzz = P + P̃ . Consti-

tutive laws for viscosities and permeabilities are assumed to take the simplified forms

ζϕ +
4
3
ηϕ =

(
ζ0 +

4
3
η0

)
ϕ−m, (123)

kϕ = k0ϕ
n, (124)

where the typical choices of the exponents are m = 1 (Simpson et al. 2010a) and n = 3 (Kozeny-

Carman equation). The above equations (115-124) together with the phenomenological laws for melt-

ing (95-103) form a closed set of governing equations.

Most of the boundary conditions for this problem are at the onset of melting: the incoming material

there has zero porosity, density ρ0, upwelling velocity v0, and composition c0. T and P are chosen

such that the system is initially at the onset of melting (either T or P can be set, and the other is then

determined from the solidus). The final boundary condition concerns the momentum equations, and

we choose dP̃ /dz = 0 on the top boundary (a free flux condition (Spiegelman 1993a); see Sramek

et al. (2007) and Hewitt & Fowler (2008) for further discussion of possible boundary conditions).
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Conservation of mass places strong constraints on 1D steady state melting (Ribe 1985a; Spiegel-

man & Elliott 1993; Asimow & Stolper 1999). On summing (115) and (116) and integrating, we have

ϕρfvf + (1 − ϕ)ρsvs = ρ0v0. (125)

Similarly, from (117) and (118),

ϕρfcfvf + (1 − ϕ)ρscsvs = ρ0c0v0. (126)

The governing equations (115-124) can be simplified by introducing the degree of melting F , which

can defined as a ratio of melt flux to incoming mass flux,

F =
ϕρfvf

ρ0v0
, (127)

where F = 0 at the onset of melting, and F = 1 once melting is complete. It follows from (125-127)

that

Fcf + (1 − F )cs = c0. (128)

In the case of equilibrium melting, the conservation of energy equation implies that total entropy is

conserved along the column, and a similar equation to (128) can be written for entropy (i.e. Fsf +(1−

F )ss = s0, Asimow & Stolper (1999)). The isentropic nature of the equilibrium process simplifies the

analysis greatly (Asimow et al. 1997; Asimow & Stolper 1999; Stolper & Asimow 2007). However,

when there is disequilibrium between the two phases, there is the potential for entropy production and

we cannot make this simplification here.

In terms of F , the governing equations (115-124) are

dF

dz
=

Γ
ρ0v0

, (129)

dm

dz
=

Γ1

ρ0v0
, (130)

dP

dz
= −ρg − dP̃

dz
, (131)

dP̃

dz
=

µ

kϕ
q − (1 − ϕ)∆ρg, (132)

dvs

dz
=

−P̃

ζϕ + 4
3ηϕ

, (133)

(FCf + (1 − F )Cs)
dT

dz
= T

(
F

αf

ρf
+ (1 − F )

αs

ρs

)
dP

dz
− Γ1L1

ρ0v0
− Γ2L2

ρ0v0
, (134)

where m = Fcf is the mass of component 1 in the fluid phase. The notation q = ϕ (vf − vs) is used
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to signify the Darcy flux. Conservation of mass (125-128) implies

vs =
ρ0v0(1 − F )
ρs(1 − ϕ)

, q = F
ρ0v0

ρf
+ (1 − F )

ρ0v0

ρs
− vs, (135)

cf =
m

F
, cs =

c0 − m

1 − F
. (136)

Formally the densities ρs and ρf could vary as a function of temperature, pressure, and composition.

In practice, these variations are slight (i.e. much less than the difference in density between the two

phases) and can be neglected with the exception of the adiabatic term in the energy equation. Thus we

approximate ρs and ρf as constants in the equations to follow. Since we assume initial zero porosity,

ρ0 = ρs. We will assume that the specific heat capacities of solid and fluid are constant and equal, and

thus on the left hand side of (134), FCf + (1 − F )Cs = C.

10.1 Non-dimensionalisation

For numerical solution and further analysis it is helpful to non-dimensionalise the equations. If ∆z is

a typical length scale (e.g. the height of the melting column) and ∆T is a typical temperature scale

(e.g. the difference in melting temperatures (∆T = T 1
m − T 2

m), then we can non-dimensionalise as

z = z′∆z, T = T ′∆T , P = P ′ρsg∆z, P̃ = P̃ ′(ζ0 + 4
3η0)v0/∆z, Γ = Γ′ρsv0/∆z, V = V ′v0,

q = q′v0, etc. The following non-dimensional parameters control the behaviour of the system:

A =
αsg∆z

C
, B =

k0∆ρg

µv0
, C =

k0

(
ζ0 + 4

3η0

)
µ(∆z)2

, (137)

rα =
αf

αs
, rρ =

ρf

ρs
, (138)

R1 =
νR1

C
, R2 =

νR2

C
, (139)

St1 =
L1

C∆T
, St2 =

L2

C∆T
, (140)

DaΓ =
λΓνR1∆z

ρsv0
, DaJ =

λJνR1∆z

ρsv0
. (141)

A is an adiabatic parameter, which is the product of the adiabatic gradient and the column length

scale (sometimes termed the dissipation number). B is a buoyancy parameter, which is essentially

a ratio of percolation velocity to upwelling velocity, although the ϕ dependence is missing. C is a

compaction parameter, a ratio of compaction length squared to column length squared. The inverse

of C is sometimes referred to as a melt retention number (Tackley & Stevenson 1993). rα is a ratio

of expansivities, and rρ a ratio of densities. R1 and R2 are ratios of specific gas constants to specific

heat capacity. St1 and St2 are Stefan numbers, which are a ratio of latent heat to sensible heat for the

two components. Finally, DaΓ and DaJ are Damköhler numbers, which are a ratio of reaction rates to

upwelling rates.
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The non-dimensional parameters A, B and C are related to the natural length scales

δa =
C

αg
= A−1∆z, (142)

δc =

√
kϕ(ζϕ + 4

3ηϕ)
µ

= ϕ(n−m)/2C1/2∆z, (143)

δr =

√
v0(ζϕ + 4

3ηϕ)
∆ρg

= ϕ−m/2

(
C
B

)1/2

∆z, (144)

where δa is the adiabatic length, δc is the compaction length (McKenzie 1984), and δr is the reduced

compaction length (Ribe 1985b).

In non-dimensional form, the governing equations are

dF

dz
= Γ, (145)

dm

dz
= Γ1, (146)

dP

dz
= −1 + (1 − rρ)ϕ − (1 − rρ)

C
B

dP̃

dz
, (147)

dP̃

dz
=

ϕ−nq

C
− B

C
(1 − ϕ) , (148)

dvs

dz
= −ϕmP̃ , (149)

dT

dz
= A

(
rα

rρ
F + 1 − F

)
T

dP

dz
− Γ1St1 − Γ2St2, (150)

with

vs =
1 − F

1 − ϕ
, q =

F

rρ
+ 1 − F − vs, cf =

m

F
, cs =

c0 − m

1 − F
. (151)

At the onset of melting (say z = 0) we have F = 0, m = 0, vs = 1, and T and P at some given

values on the solidus with composition c0. At the surface (z = 1) we have dP̃ /dz = 0. This is a

two point boundary value problem. The governing equations are completed by the non-dimensional
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phenomenological laws for melting from (95-103),

Q1
x =

xs

xf
, Q2

x =
1 − xs

1 − xf
, (152)

K1
x = exp

(
St1

R1

(
1
T

− 1
T 1

m(P )

))
, (153)

K2
x = exp

(
St2

R2

(
1
T

− 1
T 2

m(P )

))
, (154)

T 1
m(P ) = T 1

m0

(
1 +

P

a1

)1/b1

, T 2
m(P ) = T 2

m0

(
1 +

P

a2

)1/b2

, (155)

Z1 = 1 − K1
x

Q1
x

, Z2 = 1 − K2
x

Q2
x

, (156)

Γ = DaΓ

(
cΓZ1 + (1 − cΓ)Z2

)
, (157)

J = DaJ

(
Z2 − Z1

)
, (158)

Γ1 = cΓΓ − J, (159)

Γ2 = (1 − cΓ) Γ + J, (160)

xΓ =
xs/K1

x

xs/K1
x + (1 − xs)/K2

x

. (161)

Here T 1
m0 and T 2

m0 are the non-dimensional melting temperatures, and the Simon’s law coefficients a1

and a2 are non-dimensionalised on the appropriate pressure scale.

10.2 Zero compaction length approximation

Perhaps the most important simplification to these equations that can be made is to assume C = 0,

i.e. zero compaction length (Ribe 1985a; Spiegelman 1993a,b) (termed the Darcy approximation by

Sramek et al. (2007)). Formally, this is a singular perturbation of these equations, and by setting C = 0

the compaction boundary layers are neglected. However, the problem is then a more straightforward

initial value problem, with boundary conditions only specified at the onset of melting. Essentially,

(147), (148) and (149) are replaced by

dP

dz
= −1 + (1 − rρ)ϕ, (162)

0 = ϕ−nq − B (1 − ϕ) . (163)

Combining (163) with (151) leads to an algebraic equation for the porosity ϕ (Ribe 1985a; Spiegelman

& Elliott 1993)

Bϕn (1 − ϕ)2 + (1 − F )ϕ − F

rρ
(1 − ϕ) = 0. (164)
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The zero compaction length approximation is the leading order outer solution for the full problem,

and is a good approximation for B sufficiently small and at points far away from the boundaries. This

is essentially the approximation used in the original study of Ahern & Turcotte (1979).

The matrix is usually assumed sufficiently permeable that the porosity ϕ remains small throughout

the melting column (ϕ ≪ 1). With small porosities, (162) can be approximated by

dP

dz
= −1. (165)

i.e. the fluid pressure is approximately lithostatic. The 1D melting column problem then simply con-

sists of solving for T , F , and m as a function of pressure P . For large values of the Damköhler number

the problem becomes stiff, and a stiff ODE solver was used to calculate numerical solutions. Exam-

ples of such solutions are shown in Figure 4. In the limit of infinite Damköhler number (equilibrium),

the equations become differential-algebraic in nature, but are still amenable to solution by stiff ODE

solvers.

Figure 4 provides examples of near-equilibrium (DaΓ = 104, DaJ = 104) and near-fractional

(DaΓ = 104, DaJ = 0) melting (dotted lines). There is very little difference between the two cases,

with near-fractional melting showing a slightly lower melt productivity (-dF/dP ) and lower tem-

perature drop (dT/dP ) than near-equilibrium melting. In both cases, melt productivity increases with

decreasing pressure, which is expected. The increase in melt productivity with decreasing pressure has

been discussed in some detail by Asimow et al. (1997), although it should be noted that here the latent

heats (enthalpies of fusion) are assumed constant rather than the entropies of fusion which reduces the

‘1/T effect’.

The difference between fractional and equilibrium melting is much less pronounced here than

seen in other studies, such as those which consider incrementally isentropic fractional fusion (Asimow

et al. 1997; Stolper & Asimow 2007). The thermally equilibrated fractional melting considered here is

fundamentally different from incrementally isentropic fractional fusion because here the two phases

are always assumed to be in thermal equilibrium and thus at the same temperature. In incrementally

isentropic fractional fusion each increment of melt is produced in an isentropic step and then removed

from the system. However, if each increment of melt were brought to surface pressures isentropically

then each increment would be at a different temperature, and thus not in thermal equilibrium with the

other increments.

There is a small entropy production associated with the thermally equilibrated fractional melting

considered here. Recall that the part of the entropy production due to interphase transfer is

σ =
∑

j

Γj ∆µj

T
. (166)
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For fractional melting,

Γj = Γcj
Γ,

∑
j

cj
Γ

(
1 − exp

(
− ∆µj

νRjT

))
= 0 (167)

Expanding the sum for small values of ∆µj/νRjT , we have∑
j

cj
Γ

(
∆µj

T
− (∆µj)2

νRjT 2
+ · · ·

)
= 0, (168)

and thus

σ = Γ
∑

j

cj
Γ

∆µj

T
≈ Γ

∑
j

cj
Γ(∆µj)2

νRjT 2
≈ Γ

∑
j

νRjcj
Γ

(
Qx

Kx
− 1
)2

> 0. (169)

Since the two phases are not in chemical equilibrium for fractional melting, there is a chemical poten-

tial difference between the two phases, and thus a positive entropy production according to the above

expression. However, in practice this entropy production is very slight, and the sum in the above is

usually much less than the latent heat.

It should also be noted that in the case of a single component, incrementally isentropic fractional

fusion differs from equilibrium melting, but thermally equilibrated fractional melting is identical to

equilibrium melting. For a single component, if the two phases have the same thermodynamic pressure

and the same temperature then they must be in thermodynamic equilibrium with one another. For

two or more components the two phases can differ in chemical composition whilst having the same

temperature and pressure and thus are not necessarily in equilibrium.

As the Damköhler numbers are reduced, the kinetics of melting becomes slower, and the reactive

boundary layers, which occur on the onset of melting, grow. An example of these boundary layers

can be seen in Figure 4 (solid lines). The structure of these boundary layers is fairly intuitive: The

temperature gradient initially follows the solid adiabatic gradient and there is initially no melting. As

the degree of disequilibrium grows and the kinetics get faster the temperature gradient transitions to

that of equilibrium melting, and the productivity transitions to the equilibrium melt productivity.

For the single component case, the reactive boundary layers can be treated analytically, and this is

done in Appendix E. The boundary layer thickness for a single component is given by

lΓ =
ρsv0CsT

2
0

λΓL2
=

νRCsT
2
0 ∆z

L2DaΓ
, (170)

where T0 is the temperature at the onset of melting. The non-dimensional quantity νRCsT
2
0 /L2 is

similar for both pure forsterite (0.95) and pure fayalite (0.87) (Table 1) and is close to 1. Thus for the

binary case, an approximate boundary layer thickness of lΓ ≈ ∆z/DaΓ is expected, and indeed this

is what is seen in Figure 4 where DaΓ = 10: The pressure drop across the boundary layer is on the

order of 1 GPa, which is a tenth of the total pressure drop over the column. It should be noted that the
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value of DaΓ = 10 in Figure 4 is chosen simply to demonstrate the boundary layer structure; realistic

Damköhler numbers are likely to be much larger.

10.3 Full numerical solution

Figure 5 shows a full numerical solution of a 1D column without the approximations of the previous

section. To avoid the singularities at the onset of melting associated with zero porosities, initial con-

ditions are chosen with a small initial degree of melting F0 = 5 × 10−5 with initial porosity ϕ0 and

initial upwelling rate v0 such that there is initially no separation of melt from residue i.e. zero initial

Darcy flux q0 = 0. This is somewhat unphysical (Sramek et al. 2007), but is a simple way to remove

the initial singularity. The zero compaction length solution is also shown on the figure (dotted line),

and was used as an initial guess for the full numerical solver, which is a standard two point boundary

value problem solver.

Similar to Figure 4, Figure 5 shows near-equilibrium (DaΓ = 50, DaJ = 50) and near-fractional

(DaΓ = 50, DaJ = 0) scenarios. As in the earlier calculations, the differences between the two

cases is slight. The most noticeable difference is in the fluid composition cf , as would be expected.

Also as expected, the zero compaction length approximation is a good approximation for most of the

melting column, with the exception of the bottom boundary. At the top of the melting column, the zero

compaction length solution is exact, as a result of the free flux boundary condition applied there.

There is a reactive boundary layer at the onset of melting and this is visible in Figure 5 in the build

up of compaction pressure at the base of the column. From the Damköhler number, the expected reac-

tive boundary layer thickness is around 1.2 km. The structure of the boundary layer can be seen more

clearly in Figure 6 which shows a zoomed in view of the first 5 km of the column. The zero compaction

length approximation provides a reasonable estimate of the structure of the reactive boundary layer,

but there are differences. The most noticeable difference is in the first 0.5 km, where there is a further

inner boundary layer. The structure of this inner boundary layer is a result of the finite porosity, zero

Darcy flux initial conditions used to avoid the initial singularity, and is unphysical. Further asymptotic

analysis is needed to explore the singularity at the onset of melting for finite kinetic rate, as was done

for infinite kinetic rate by Sramek et al. (2007) and Hewitt & Fowler (2008), but we do not attempt

this here.

The boundary layer structure for dT/dz and dF/dz is largely similar to that of dT/dP and

dF/dP in Figure 4: the temperature gradient transitions from the solid adiabat value to equilibrium

melting value, and the melting rate starts off at zero and increases to the equilibrium melt productivity.

The porosity gradient dϕ/dz initially increases in a similar manner to dF/dz, but then decreases: Ini-

tially, there is no separation of melt from matrix, but as the porosity increases, permeability increases.
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Melt then separates from the matrix and porosity increases at a lower rate. A similar effect occurs

in the compaction pressure profile: P̃ changes sign as we go from a situation where melt is initially

locked to the matrix (so the matrix must dilate as a result of melting, P̃ < 0) to one where melt can

flow freely and the matrix can compact (P̃ > 0). The compaction pressure is directly related to the

rate of melting, and the build up in compaction pressure reflects the increase in the rate of melting.

It should be noted that the Damköhler numbers used in the above calculations are demonstra-

tive rather than realistic. The reactive length scale for mantle melting is thought to be less than 10 m

(Aharonov et al. 1995), and so in practice the reactive boundary layers at the onset of melting are neg-

ligible in extent. Nevertheless, reactive boundary layers are an important feature of the disequilibrium

equations.

11 CONCLUSIONS

The main outcome of this work is a framework for studying disequilibrium two phase multicompo-

nent flow that generalises the familiar batch and fractional models of melting. Two simple melting

problems have been addressed which give a flavour of the behaviour of the equations, but the more

interesting problems that need to be tackled next are time-dependent, two or three dimensional, with

two or more components, and require a more detailed numerical study. Existing geodynamic codes al-

ready model equilibrium two phase multicomponent flow (e.g. Katz (2008)), and hopefully only small

modifications of these codes will be needed to address disequilibrium.

Perhaps the most important problem to revisit is the reaction infiltration instability (Aharonov et al.

1995; Spiegelman et al. 2001). This channelling instability relies on having at least two components

and two dimensions. Current models of the instability have used somewhat ad hoc laws for interphase

mass transfer: With the framework presented here connections could be made to real phase diagrams,

and melting can occur in a self-consistent energy conserving manner rather than as an ad hoc imposed

function of depth. Some further analytical work on reaction infiltration may be possible, such as a

linear stability analysis of the two component equations, but most future work will need detailed

numerics.
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APPENDIX A: THE RELATIONSHIPS BETWEEN PRESSURES

A detailed description of the relationships between interface pressure, fluid pressure, and solid pressure

was given by Bercovici & Ricard (2003), and is reiterated in outline below. Bercovici & Ricard (2003)

assumed the interface pressure to be a linear combination of the fluid and solid pressures,

P = (1 − ω)pf + ωps, (A.1)

where ω quantifies the partitioning of surface energy. ω = 0 corresponds to the case described by

McKenzie (1984). In terms of pressure differences, (A.1) can be written as

P − pf = ω∆p, (A.2)

P − ps = −(1 − ω)∆p, (A.3)

where ∆p ≡ ps − pf is the mechanical pressure difference between solid and fluid. The viscous

dissipation (33) then becomes

Ψ = d (vf − vs)
2+∆p (ϕω∇ · vf − (1 − ϕ)(1 − ω)∇ · vs)+ϕτ f : ∇vf +(1−ϕ)τ s : ∇vs. (A.4)

The above form of the viscous dissipation suggests a linear phenomenological law of the form

∆p = B (ϕω∇ · vf − (1 − ϕ)(1 − ω)∇ · vs) , (A.5)

provided there is no coupling with the other scalar thermodynamic fluxes (Sramek et al. 2007). The

form of the phenomenological coefficient B is unknown, and will depend on parameters such as

porosity. If we write the coefficient B = ζϕ/(1 − ω − ϕ)2 such that the phenomenological law is

written as

∆p = ζϕ
(ϕω∇ · vf − (1 − ϕ)(1 − ω)∇ · vs)

(1 − ω − ϕ)2
, (A.6)

then ζϕ can be identified with the effective bulk viscosity used by McKenzie (1984). When ω = 0,

equations (A.2) and (A.3) with (A.6) are identical to (25) and (26). The advantage of (A.2), (A.3), and

(A.6) is that they are clearly symmetric: they are invariant under the change ϕ ↔ 1 − ϕ, ω ↔ 1 − ω,

pf ↔ ps, vf ↔ vs (assuming the effective bulk viscosity ζϕ obeys this same symmetry).

In Bercovici et al. (2001) the symmetric form

B =
K0 (µf + µs)

ϕ(1 − ϕ)
(A.7)

is suggested for the phenomenological coefficient B, where K0 is a constant, and µf and µs are the

true (rather than effective) viscosities of fluid and solid. The corresponding deviatoric stress tensors
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are given by

τ f = µf

(
∇vf + ∇vT

f − 2
3

(∇ · vf ) I
)

, (A.8)

τ s = µs

(
∇vs + ∇vT

s − 2
3

(∇ · vs) I
)

. (A.9)

When the fluid is much less viscous than the solid, µf ≪ µs, these reduce to (27) and (28), provided

ηϕ → µs(1 − ϕ) in this limit.

Another way of writing the phenomenological laws is in terms of an effective pressure pe, which

can be defined as the difference between mean mechanical pressure p and interface pressure P (c.f.

Connolly & Podladchikov (1998)). The effective pressure pe is linearly related to the pressure differ-

ence ∆p by

pe ≡ p − P = (1 − ω − ϕ)∆p. (A.10)

Thus a phenomenological law for effective pressure is

pe = ζϕ
(ϕω∇ · vf − (1 − ϕ)(1 − ω)∇ · vs)

(1 − ω − ϕ)
. (A.11)

When ω = 0, pe = −ζϕ∇ · vs, and when ω = 1, pe = −ζϕ∇ · vf . Further discussion of the pressure

relationships can be found in Simpson et al. (2010a).

APPENDIX B: VECTOR PHENOMENOLOGICAL LAWS

The derivation of intraphase phenomenological laws for fluxes of heat and mass follows directly from

the derivation for single phase fluids which is described in detail by de Groot & Mazur (1984), and a

brief summary is given here. It is useful to use the alternative definition of heat flux given in (52). The

entropy flux (41) can then be written as

j =
q′

T
+
∑

j

Jj
fsj

f + Jj
ss

j
s, (B.1)

where sj
f and sj

s are the specific entropies per components. The corresponding entropy production (42)

can be written as

Tσ = Q + Ψ − q′

T
· ∇T +

∑
j

Γj∆µj − Jj
f · ∇T µj

f − Jj
s · ∇T µj

s (B.2)

since

T∇

(
µj

f

T

)
= ∇T µj

f −
hj

f

T
∇T = ∇µj

f −
µj

f

T
∇T (B.3)

and µj
f = hj

f − Tsj
f . ∇T refers to gradients at fixed temperature.
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The entropy production due to vector fluxes is given from (B.2) as

σ = − q′

T 2
· ∇T −

∑
j

Jj
f ·

∇T µj
f

T
−
∑

j

Jj
s ·

∇T µj
s

T
. (B.4)

This suggests linear phenomenological laws of the form

q′ = −A
∇T

T 2
−
∑

k

Bk
f∇T µk

f

T
−
∑

k

Bk
s∇T µk

s

T
, (B.5)

Jj
f = −Cj

f

∇T

T 2
−
∑

k

Ljk
ff∇T µk

f

T
−
∑

k

Ljk
fs∇T µk

s

T
, (B.6)

Jj
s = −Cj

s

∇T

T 2
−
∑

k

Ljk
sf∇T µk

f

T
−
∑

k

Ljk
ss∇T µk

s

T
. (B.7)

However, the forces and fluxes here are not independent, as there are linear relations between them.

The diffusive mass fluxes of components are constrained by conservation of mass through (12)

∑
j

Jj
f =

∑
j

Jj
s = 0, (B.8)

and the forces are constrained by Gibbs-Duhem equations for the two phases,

∑
j

cj
f∇µj

f = −sf∇T +
1
ρf

∇P, (B.9)

∑
j

cj
s∇µj

s = −ss∇T +
1
ρs

∇P, (B.10)

which can be rewritten using (B.3) as

∑
j

ρfcj
f∇T µj

f = ∇P, (B.11)

∑
j

ρsc
j
s∇T µj

s = ∇P. (B.12)

The right hand side in the above is often neglected (see de Groot & Mazur (1984), Chapter 11), but

this assumes mechanical equilibrium.

When there exist linear relationships between the forces and fluxes there are two ways to proceed.

Either one can use the linear relationships to define a new set of independent fluxes and forces, or one

can keep the existing fluxes and forces and acknowledge that there are constraints on the coefficients.

Without independent fluxes and forces, the phenomenological coefficients are not unique, however

they can always be chosen such that the Onsager reciprocal relations hold (see de Groot & Mazur
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(1984), chapter 6). In this case, the Onsager reciprocal relations are

Bj
f = Cj

f , Bj
s = Cj

s , (B.13)

Ljk
ff = Lkj

ff , Ljk
fs = Lkj

sf , Ljk
ss = Lkj

ss . (B.14)

For the sake of simplicity, it is helpful to assume that a lot of these cross couplings are negligible, and

reduce the above to simplified phenomenological laws, e.g.

q′ = −kT∇T (B.15)

Jj
f = −ϕρf

n−1∑
k=1

Djk
f ∇ck

f , j = 1, 2, . . . , n − 1 (B.16)

Jj
s = −(1 − ϕ)ρs

n−1∑
k=1

Djk
s ∇ck

s , j = 1, 2, . . . , n − 1 (B.17)

Jn
f = −

n−1∑
k=1

Jj
f (B.18)

Jn
s = −

n−1∑
k=1

Jj
s (B.19)

where kT is the effective thermal conductivity of the mixture, and Djk
f and Djk

s are intra-phase effec-

tive diffusion coefficients for the melt and the matrix. Equation (B.15) is Fourier’s law of heat flow, and

(B.16) and (B.17) are the appropriate generalisations of Fick’s law of diffusion. The word “effective”

should be emphasised here - the diffusion coefficients are not necessarily the same as for a single phase

fluid, and can be controlled by phenomena such Taylor dispersion. Moreover, the diffusion might not

be isotropic as is assumed in the laws above, and a more general treatment would have second rank

diffusivity tensors. It should also be noted that due to Onsager’s reciprocal relations, there are only

n(n−1)/2 independent coefficients in each of Djk
f and Djk

s . In particular, note that it is not possible to

choose Djk
f and Djk

s as diagonal matrices, unless the diffusivities are all the same. For a more detailed

exposition of the constraints on diffusion coefficients, and the coupling between heat flow and mass

transport (the Soret and Dufour effects), the reader is encouraged to consult the textbooks (see Lasaga

(1998), de Groot & Mazur (1984)). Onsager’s reciprocal relationships were verified experimentally

for molten silicates by Spera & Trial (1993).

APPENDIX C: THE POSITIVITY OF ENTROPY PRODUCTION

With non-linear phenomenological laws it is not immediately clear whether the corresponding entropy

production is positive, and it is something that must be checked. For the melting laws given by (82)
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and (83), the entropy production (80) can be written in terms of chemical potentials as

σ =
∑

j

∑
k

EjkνRk

(
1 − exp

(
− ∆µj

νRkT

))
∆µj

T
, (C.1)

or more simply as

σ =
∑

j

∑
k

E∗jk
(
1 − e−dk

)
dj , (C.2)

where dj = ∆µj/νRjT and E∗jk = ν2RjRkEjk. If (C.2) could be linearised 1 − e−dk ≈ dk, then

the entropy production is assured to be positive if E∗jk is a positive semi-definite matrix. But for

the general non-linear law, having E∗jk be a positive semi-definite matrix is not enough to guarantee

positive entropy production.

There are certain simple forms for E∗jk that will guarantee a positive entropy production for the

non-linear law. For example, if E∗jk is diagonal, with positive entries on the diagonal, then the entropy

production is positive because the function f(x) = x(1 − e−x) is always positive. If E∗jk = λcjck

for some composition cj and constant λ > 0, then the entropy production will be positive provided

all the dj have the same sign, since the two quantities
∑

j cjdj and
∑

k ck(1 − e−dk
) are then either

both positive or both negative. Having all the dj the same sign is a common occurrence, and is true for

the example calculations throughout this work. For a binary system the entropy production is always

positive for arbitrary positive semi-definite matrices E∗jk when the dj have the same sign, because

matrices of the form in (94) also always give a positive entropy production (recall the decomposition

in (84)). For more general cases, the positivity of the entropy production with this non-linear law can

not be taken for granted and must be checked. If the dj differ in sign the entropy production may go

negative with the present non-linear law: this implies other non-linear laws are needed to describe such

circumstances and must be developed.

APPENDIX D: CRYSTALLISATION

Although our main focus in this work is on generalisations of fractional melting, it should be noted

that fractional crystallisation can be described in a similar way. The phenomenological laws (82-83)

have to be adjusted slightly to read

Γj =
∑

k

EjkZk, (D.1)

Zk = νRk

((
Qk

Kk

)1/ν

− 1

)
= νRk

(
xk

s

Kk
xxk

f

− 1

)
. (D.2)

Type I crystallising has xj
Γ = xj

f and type II crystallising has xj
Γ =

{
Kj

xxj
s

}
. It should be noted that

related phenomenological laws for interphase mass transfer were proposed by Liang (2003) based on
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averaging a grain scale model. Two regimes were identified, and the terminology used here is based

on Liang (2003). Regime I of Liang (2003) (diffusion-in-melt-limited dissolution) is essentially type

I melting and regime II (diffusion-in-solid-limited precipitation) is essentially type II crystallising.

APPENDIX E: SINGLE COMPONENT MELTING

A number of simple analytical expression exist for the single component 1D melting column. In this

section we will make the zero compaction length approximation, assume pressure can be treated as

approximately lithostatic (dP/dz = −ρsg), and assume constant densities except for the adiabatic

gradient term. The phenomenological law for melting is

Γ = λΓνR

(
1 − exp

(
L

νR

(
1
T

− 1
Tm(P )

)))
. (E.1)

For small deviations in temperature from equilibrium (i.e. rapid kinetics), the above law can be lin-

earised as

Γ =
λΓL

T 2
0

(T − Tm(P )) , (E.2)

where T0 is the temperature at the onset of melting. A natural scale for temperature differences during

melting is L/C, and we may write

T = T0 +
L

C
Θ, (E.3)

Tm = T0 +
dTm

dP

∣∣∣∣
T0

(P − P0) = T0 − ρsg
dTm

dP

∣∣∣∣
T0

z = T0 −
L

C

z

lm
, (E.4)

assuming an approximately linear Clapeyron slope. lm is a natural length scale for temperature changes

during melting, given by

lm =
L

ρsgC dTm/dP |T0

. (E.5)

The phenomenological law for melting can then be written as

Γ =
λΓL2

CT 2
0

(
Θ +

z

lm

)
=

ρsv0

lΓ

(
Θ +

z

lm

)
(E.6)

where lΓ is a reactive length scale,

lΓ =
ρsv0CT 2

0

λΓL2
. (E.7)

The ratio of the two length scales lm and lΓ defines a Damköhler number,

Da∗Γ =
lm
lΓ

=
λΓL3

ρ2
sv0C2T 2

0 dTm/dP |T0

. (E.8)

Note that this differs from the Damköhler numbers defined in the main text which are based on scaling

by the column height.
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The steady state 1D column equations can be non-dimensionalised using z = z′lm, Γ = Γ′ρsv0/lm.

The non-dimensional governing equations are, using (129), (134), and (E.6),

dF

dz
= Γ, (E.9)

dΘ
dz

= −A∗ (1 + St∗Θ) − Γ, (E.10)

Γ = Da∗Γ (Θ + z) , (E.11)

where

A∗ =
αsT0

ρsC dTm/dP |T0

, St∗ =
L

CT0
. (E.12)

A∗ is the adiabatic parameter and St∗ is a Stefan number. At the onset of melting F = 0 and Θ = 0.

The boundary layer structure is apparent when the equations are rescaled using ϵ = (Da∗Γ)−1 (a small

parameter for rapid kinetics) with z = ϵy, F = ϵf , Θ = ϵθ. To leading order in ϵ,

df

dy
= Γ, (E.13)

dθ

dy
= −A∗ − Γ, (E.14)

Γ = θ + y, (E.15)

with f(0) = 0 and θ(0) = 0. These integrate to give

θ(y) = −y + (1 −A∗) (1 − e−y), (E.16)

f(y) = (1 −A∗)
(
y − 1 + e−y

)
, (E.17)

with derivatives

dθ

dy
= −1 − (1 −A∗) (1 − e−y), (E.18)

df

dy
= (1 −A∗)

(
1 − e−y

)
. (E.19)

In dimensional form, the above can be written as

dT

dz
= −αsgT0

C
−

(
ρsg

dTm

dP

∣∣∣∣
T0

− αsgT0

C

)(
1 − e−z/lΓ

)
, (E.20)

dF

dz
=

C

L

(
ρsg

dTm

dP

∣∣∣∣
T0

− αsgT0

C

)(
1 − e−z/lΓ

)
, (E.21)

Equations (E.20) and (E.21) are fairly intuitive: The gradient in temperature starts off at the solid

adiabatic gradient and ends up at the Clapeyron slope, and the melt productivity starts off at zero and

ends up at the same productivity as for equilibrium batch melting (Asimow et al. 1997). The boundary
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layer thickness is controlled by the reactive length lΓ which shrinks as the reaction rate increases or

the upwelling rate slows.

The dimensional temperature and degree of melting profiles are

T = T0 − ρsg
dTm

dP

∣∣∣∣
T0

z +

(
ρsg

dTm

dP

∣∣∣∣
T0

− αsgT0

C

)
lΓ

(
1 − e−z/lΓ

)
, (E.22)

F =
C

L

(
ρsg

dTm

dP

∣∣∣∣
T0

− αsgT0

C

)(
z − lΓ

(
1 − e−z/lΓ

))
. (E.23)

Outside the boundary layer (z ≫ lΓ), these can be written as

T = Tm(z) +
L

C

dFm

dz

∣∣∣∣
T0

lΓ, (E.24)

F = Fm(z) − dFm

dz

∣∣∣∣
T0

lΓ, (E.25)

where Fm is defined to be the degree of melting for equilibrium melting (Da∗Γ → ∞). Thus there is

small degree of superheating (T > Tm) and a slightly lower degree of melting (F < Fm) that exists

throughout the column as a result of the finite kinetics.

The boundary layer structure outlined above is very similar to that found in the reaction infiltra-

tion instability problem described by Aharonov et al. (1995). However, there is an important difference

between the Aharonov et al. (1995) problem and the single component melting described above: For

reaction infiltration, differences in concentration cause interphase mass transfer, whereas here inter-

phase mass transfer is caused by differences in temperature. Concentration perturbations are advected

with the fluid velocity in the Aharonov et al. (1995) problem, whereas temperature perturbations here

travel more slowly, at the mean upwelling velocity (v). As a result, the single component melting

equations are stable and do not have a reaction infiltration instability.

The stability can be demonstrated as follows. In 1D, total conservation of mass is

∂ρ

∂t
+

∂

∂z
(ρv) = 0. (E.26)

Porosities are typically small (ϕ ≪ 1), and thus ρ ≈ ρs and ρv ≈ ρsv0. Neglecting the adiabat,

conservation of energy is then

ρsC
∂T

∂t
+ ρsv0C

∂T

∂z
= −ΓL, (E.27)

which in non-dimensional variables is

∂Θ
∂t

+
∂Θ
∂z

= −DaΓ (Θ + z) . (E.28)

where an appropriate time scale for non-dimensionalising is t0 = lm/v0. Solutions to this equation

can be sought in terms of perturbations about the steady state, Θ = Θ(z) + εeimz+σt. Neglecting
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boundary layers, a suitable steady state is

Θ(z) = −z +
1

DaΓ
, (E.29)

and the growth rate of perturbations is

σ = −DaΓ − im. (E.30)

Hence any perturbations in temperature will simply decay away.
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Table 1. Approximate parameters for the forsterite-fayalite binary system, (Mg,Fe)2SiO4. There are two atoms

of (Mg,Fe) per formula unit, and thus ν = 2. The latent heats are chosen to match the phase diagram using the

parametrisation of Bradley (1962), although here the specific heat capacities are assumed identical for solid and

liquid. The melting temperature as a function of temperature has been parametrised by Simon’s law. Thermal

expansion coefficients are assumed identical for the two components.

j = 1: Forsterite j = 2: Fayalite Notes

Formula Mg2SiO4 Fe2SiO4

Latent heat of fusion Lj 8.71 × 105 J kg−1 5.17 × 105 J kg−1 Bradley (1962)

Melting temperature T j
m0 2163 K 1478 K at 0.1 MPa, Bradley (1962)

Simon’s law coefficient aj 10.83 GPa 15.78 GPa Bottinga (1985); Poirier (2000)

Simon’s law coefficient bj 3.70 1.59 Bottinga (1985); Poirier (2000)

Molar mass Mj 0.1406934 kg mol−1 0.2037736 kg mol−1

Specific gas constant Rj 59.096 J K−1 kg−1 40.803 J K−1 kg−1

Solid density ρj
s 3222 kg m−3 4392 kg m−3 Deer et al. (1992)

Melt density ρj
f 3053 kg m−3 4026 kg m−3 Calculated from Clapeyron relation

Solid thermal expansion coefficient αj
s 2.6 × 10−5 K−1 2.6 × 10−5 K−1 Fa at 298-1123 K, Ahrens (1995)

Melt thermal expansion coefficient αj
f 4.8 × 10−5 K−1 4.8 × 10−5 K−1 Fa at 1573-1873 K, Agee (1992)

Specific heat capacity Cj 1.3 × 103 J K−1 kg−1 1.3 × 103 J K−1 kg−1 Fo at 1500 K, Ahrens (1995)
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Table 2. Parameters used in the 1D melting column calculations.

Acceleration due to gravity g 9.8 m s−2

Permeability coefficient k0 10−7 m2

Permeability exponent n 3

Fluid viscosity µ 1 Pa s

Bulk viscosity coefficient ζ0 + 4
3η0 1019 Pa s

Bulk viscosity exponent m 1

Upwelling velocity v0 50 mm yr−1

Bulk composition c0 0.9
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Figure 1. Examples of type I isobaric melting in temperature versus composition plots. The dashed lines show

the equilibrium solidus and liquidus (the binary phase loop). Blue curves are liquid paths, red curves are solid

paths. The bulk composition is shown as a dotted line and remains constant. There is a small initial melt fraction

F = 10−9 at the onset of melting to avoid the initial singularity. a) DaΓ = 105 and DaJ varies from 0 to 10. b)

DaJ = 105 and DaΓ varies from 0 to 100. c) DaΓ = 0 (no melting) and DaJ varies from 0 to 1. d) DaJ = 0 and

DaΓ varies from 0 to 100.
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Figure 2. Examples of type II isobaric melting, similar to Figure 1. a) DaΓ = 105 and DaJ varies from 0 to 10.

This exemplifies the transition from fractional to equilibrium melting. b) DaJ = 105 and DaΓ varies from 0 to

100. c) DaΓ = 0 (no melting) and DaJ varies from 0 to 1. d) DaJ = 0 and DaΓ varies from 0 to 100.
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Figure 3. a) Mass fraction of melt F as a function of temperature T for type II isobaric melting with DaΓ = 105

and varying DaJ (see Figure 2a, and also Figure 5 of Asimow et al. (1997)). b) Corresponding isobaric melt

productivity dF/dT .
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Figure 4. Type II decompression melting for DaΓ = 10, DaJ = 10 (solid blue line), and DaΓ = 10, DaJ = 0

(solid red line). Melting starts at 10 GPa (higher than for real mantle melting - chosen for emphasis of the

differences) with a bulk composition of 0.9. There is a noticeable reactive boundary layer at the onset of melting.

Dotted lines show near-equilibrium (blue, DaΓ = 104, DaJ = 104) and near-fractional (red, DaΓ = 104,

DaJ = 0) paths for comparison. a) Temperature versus pressure. Dashed line shows the solid adiabat. b)

Degree of melting versus pressure. c) dT/dP versus pressure. Dashed line shows the solid adiabatic gradient.

d) Melt productivity (−dF/dP ) versus pressure. Near-equilibrium melting has a slightly higher productivity

than near-fractional melting.
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Figure 5. 1D binary melting column calculations. Blue line is near-equilibrium (DaΓ = 50, DaJ = 50) and

red line is near-fractional (DaΓ = 50, DaJ = 0). Dotted line shows the zero compaction length approximation

for the near equilibrium case. From left to right: temperature T , fluid pressure P , degree of melting F , solid

composition cs, fluid composition cf , porosity ϕ, solid velocity V , fluid velocity v, compaction pressure P̃ . The

difference between near-equilibrium and near-fractional is most noticeable in the fluid composition cf , whereas

in the other variables there is little difference.
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Figure 6. A zoomed-in view of the reactive boundary layer of Figure 5. The boundary layer structure is clearest

in the derivatives: dT/dz, dP/dz, dF/dz, and dϕ/dz are shown here, along with the compaction pressure P̃ .
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