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Supplementary Methods

A Model governing equations

The model used throughout this work is a simple box model, a diagram of which can be seen
in Supplementary Figure 1, and a summary of notation in Supplementary Table 6. There are
two main stages: First the planetary embryos form, and differentiate into a metal core and
a silicate mantle. It is assumed that the metal is in chemical equilibrium with the silicate as
the embryo differentiates. The second stage comprises the accretion of the Earth from the
planetary embryos. The mantle of the planetary embryos directly joins the mantle of the
accreting Earth. The core of the planetary embryos takes two different routes to the core of
the accreting Earth: A mass fraction k of the incoming core material equilibrates with the
Earth’s silicate mantle as it travels to the Earth’s core, whereas a mass fraction 1−k is added
directly to the Earth’s core without any equilibration.

A.1 Stable species

Consider first the case of stable species, such as a stable isotope or a trace element. The
concentrations of a stable species in the mantle and core of the embryo are given by the usual
equilibrium partitioning equations, namely

Fcce + (1− F )cme = cb,
cce

cme
= Dc (A.1)

or
cme =

cb

FDc + (1− F )
, cce =

Dccb

FDc + (1− F )
, (A.2)

where cme refers to the concentration in the mantle of the embryo, cce to the concentration
in the core of the embryo, and cb to the bulk concentration. F represents the mass fraction
of metal, which will be assumed to be the same as the Earth’s current core mass fraction,
F = 0.323. Dc is the metal/silicate partition coefficient for the element in question. In general
Dc is a function of the temperature, pressure, and oxygen fugacity conditions under which the
metal/silicate equilibration takes place. As a simplifying assumption it will be assumed that
all embryo material formed at the same temperature, pressure and oxygen fugacity conditions
and thus Dc takes a single value for all embryo material.

The Earth accreted over a period of time, which will be represented by a function M(t)
which determines the fraction of the Earth that has accreted at time t, where t = 0 represents
the beginning of accretion. Thus M(0) = 0, and M(t) = 1 when accretion has ceased. The
entire mass of each embryo is assumed to join the mass of the Earth: we do not model
“hit-and-run” collisions31,32, where only part of the embryo material joins the Earth.

Conservation of mass in the accreting Earth can be described by the following equations
for the Earth’s mantle and core reservoirs

d
dt

((1− F )Mcm) = [(1− F ) cme + kF (cce −Dccm)]
dM
dt

, (A.3)

d
dt

(FMcc) = [kFDccm + (1− k)Fcce]
dM
dt

, (A.4)
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where cm is the concentration of the chemical species in the Earth’s mantle, and cc is the
concentration in the Earth’s core. A mass fraction F of the Earth is core, and 1 − F is
mantle. Thus the quantities (1 − F )Mcm and FMcc represent the relative number of moles
of the chemical species in the two reservoirs. The two terms on the right hand side of (A.4)
represent the two paths that metal from the embryos takes to the Earth’s core: (1 − k)Fcce

represents the mass fraction 1−k which travels to directly to the core without reequilibration
and thus records the embryo concentration, whereas kFDccm represents the mass fraction
k which equilibrates with the mantle and thus has a composition in equilibrium with the
Earth’s mantle. The first term on the right hand side of (A.3), (1 − F )cme, represents the
mantle embryo material that is added directly to the Earth’s mantle, whereas kF (cce−Dccm)
represents the change in the Earth’s mantle composition due to reequilibration with some of
the incoming embryo core material. In general the partition coefficient Dc will be a function
of time, since the pressure, temperature, and oxygen fugacity conditions under which metal-
silicate equilibration occurred is expected to have changed as the Earth accreted. Note that
the bulk concentration of the two reservoirs combined, Fcc +(1−F )cm = cb remains constant
during the accretion, as can be seen by adding (A.3) and (A.4).

(A.3) and (A.4) can be rewritten as evolution equations for the concentrations cm and cc,

dcm

dt
=


cme +

kF

1− F
cce −


1 +

kDcF

1− F


cm


1
M

dM
dt

, (A.5)

dcc

dt
= [kDccm + (1− k)cce − cc]

1
M

dM
dt

. (A.6)

There is a singularity in the above equation at t = 0 as a result of the initial zero mass fraction
accreted, M(0) = 0. This singularity is removed by imposing the initial conditions cm = cm0

and cc = cc0 where

cm0 =
cme + kFcce/(1− F )
1 + kFDc(0)/(1− F )

, (A.7)

cc0 =
kDc(0)cme + ((1− k + kDc(0)F/(1− F )) cce

1 + kFDc(0)/(1− F )
, (A.8)

where Dc(0) is the metal/silicate partition coefficient at time 0. The terms in square brackets
in (A.5) and (A.6) are then initially zero and the singularity is removed. Starting from these
initial conditions, (A.5) and (A.6) may be integrated to obtain the concentrations in the
Earth’s mantle and core.

A.2 Parent isotope

Suppose a parent isotope p decays to a daughter isotope d with some decay constant λ. For
simplicity, we will assume the embryos form at time 0 in the model. The initial concentrations
of the parent isotope p in the embryos are given by equilibrium partitioning,

pme0 =
pb0

FDp + (1− F )
, pce0 =

Dppb0

FDp + (1− F )
, (A.9)

where pb0 is the initial bulk concentration. The subsequent evolution in time is given by the
usual radioactive decay law

pme = pme0e−λt, pce = pce0e−λt, pb = pb0e−λt. (A.10)
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The concentration of the parent isotope in the Earth’s mantle satisfies

dpm

dt
=


pme +

kF

1− F
pce −


1 +

kDpF

1− F


pm


1
M

dM
dt

− λpm, (A.11)

with initial condition
pm0 =

(1− F )pme0 + kFpce0

1− F + kFDp(0)
. (A.12)

Similar equations can be written for the Earth’s core.

A.3 Daughter isotope

The initial concentrations of the daughter isotope in the embryo are given by equilibrium
partitioning as

dme0 =
db0

FDd + (1− F )
, dce0 =

Dddb0

FDd + (1− F )
, (A.13)

with subsequent evolution due to radioactive decay given by

dme =dme0 + pme0(1− e−λt), (A.14)

dce =dce0 + pce0(1− e−λt), (A.15)

db =db0 + pb0(1− e−λt). (A.16)

The concentration of the daughter isotope in the Earth’s mantle satisfies

ddm

dt
=


dme +

kF

1− F
dce −


1 +

kDdF

1− F


dm


1
M

dM
dt

+ λpm, (A.17)

with initial condition
dm0 =

(1− F )dme0 + kFdce0

1− F + kFDd(0)
. (A.18)

B Analytical solutions for constant partition coefficients

When the partition coefficients vary in time due to changing temperature, pressure, and
oxygen fugacity conditions, the differential equations must be solved numerically. However, it
is useful to examine the case of constant partition coefficients, where some analytical solutions
are possible. Constant partitioning is assumed in Figures 2, 3, and 4. For the case of full
equilibration (k = 1), the analytical solutions have been reviewed in detail by Jacobsen1.
Here we generalise these solutions to the case of partial equilibration for some constant k,
0 < k < 1.

B.1 Stable species

We will assume the same constant partition coefficient for both metal/silicate partitioning in
the embryos and on Earth. It is convenient to introduce a new variable Rc = DcF/(1 − F ).
The embryo concentration in (A.2) can then be rewritten as

cme =
1

1 + Rc
· cb

1− F
, cce =

Rc

1 + Rc
· cb

F
, (B.1)

SI–3



4	 nature geoscience | www.nature.com/naturegeoscience

supplementary information doi: 10.1038/ngeo872

and the initial Earth’s mantle concentration from (A.7) is

cm0 =
1

1 + kRc


cme +

kF

1− F
cce


=

1
1 + Rc

· cb

1− F
= cme. (B.2)

The mantle evolution equation from (A.5) is

dcm

dt
= (1 + kRc) (cm0 − cm)

1
M

dM
dt

(B.3)

with initial condition cm = cm0. The solution of the above is simply that cm is constant,
cm = cm0 for all time. Thus the concentration is the same in the mantle of the embryos as
in the mantle of Earth, and remains constant, as one would expect for the assumed constant
partitioning behaviour.

B.2 Parent isotope

The concentrations of the parent isotope in the embryo are from (A.9) and (A.10)

pme =
1

1 + Rp
· pb0

1− F
e−λt, pce =

Rp

1 + Rp
· pb0

F
e−λt, (B.4)

and the initial mantle concentration from (A.12) is

pm0 =
1

1 + kRp


pme0 +

kF

1− F
pce0


=

1
1 + Rp

· pb0

1− F
= pme0. (B.5)

The mantle evolution from (A.11) is

dpm

dt
= (1 + kRp)


pm0e−λt − pm

 1
M

dM
dt

− λpm (B.6)

with initial condition pm = pm0. The solution of the above is simply pm = pm0e−λt.

B.3 Daughter isotope

The concentrations of the daughter isotope in the embryo are from (A.13), (A.14), and (A.15)

dme =
1

1 + Rd
· db0

1− F
+

1
1 + Rp

· pb0

1− F


1− e−λt


, (B.7)

dce =
Rd

1 + Rd
· db0

F
+

Rp

1 + Rp
· pb0

F


1− e−λt


. (B.8)

Now, noting that

dme +
kF

1− F
dce =

1 + kRd

1 + Rd

db0

1− F
+

1 + kRp

1 + Rp

pb0

1− F


1− e−λt



= (1 + kRd) dm0 + (1 + kRp) pm0


1− e−λt


, (B.9)
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the evolution of the daughter isotope in the mantle (A.17) may be written as

ddm

dt
=


(1 + kRd) (dm0 − dm) + (1 + kRp) pm0


1− e−λt

 1
M

dM
dt

+ pm0λe−λt (B.10)

with initial condition dm = dm0. The solution to the above can be expressed in integral form
as

dm = dm0 + pm0
1 + kRp

1 + kRd


1− e−λt


+

k (Rd −Rp)
1 + kRd

pm0

 t

0


M(s)
M(t)

1+kRd

λe−λs ds, (B.11)

which in turn can be rewritten as

dm =dm0 + pm0
1 + Rp

1 + Rd


1− e−λt



+
Rd −Rp

1 + Rd
pm0

 t

0


1− k

1 + kRd
+

k(1 + Rd)
1 + kRd


M(s)
M(t)

1+kRd

λe−λs ds. (B.12)

A convenient way of rewriting the integral in the above expression is in terms of an age
distribution (see section E for further discussion of age distributions). Let Td be a random
variable with cumulative distribution function (CDF)

P(Td ≤ s) =
1− k

1 + kRd
+

k(1 + Rd)
1 + kRd


M(s)
M(t)

1+kRd

, 0 < s < t (B.13)

with P(Td ≤ s) = 0 for s < 0 and P(Td ≤ s) = 1 for s > t. The corresponding probability
density function (PDF) is

ρ(s) =
1− k

1 + kRd
δ(s) + k(1 + Rd)


M(s)
M(t)

kRd Ṁ(s)
M(t)

, (B.14)

where δ(s) is the Dirac delta function. ρ(s) = 0 for s < 0 and s > t. The integral expression
on the right hand side of (B.12) is thus

 t

0
P(Td ≤ s)λe−λs ds =

 t

0−
ρ(s)


e−λt − e−λs


ds = E


e−λt − e−λTd


(B.15)

where E denotes expectation. Thus we can write (B.12) more compactly as

dm = dm0 + pm0
1 + Rp

1 + Rd


1− e−λt


+

Rp −Rd

1 + Rd
pm0E(e−λTd − e−λt). (B.16)

Consider now a stable reference isotope d, which is of the same element as d but neither
decays nor is a decay product. Thus dm = dm0. Since


d

d



m0

=


d

d



b0

,
 p

d


m0

=
1 + Rd

1 + Rp

 p

d


b0

, (B.17)
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on dividing (B.16) by dm we have


d

d



m

=


d

d



b0

+
 p

d


b0


1− e−λt


+

 p

d


m0
−

 p

d


b0


E(e−λTd − e−λt). (B.18)

Since the bulk evolution satisfies


d

d



b

=


d

d



b0

+
 p

d


b0


1− e−λt


, (B.19)

(B.18) can be rewritten as

(d/d)m − (d/d)b
(p/d)m0 − (p/d)b0

= E(e−λTd − e−λt) (B.20)

or
(d/d)m − (d/d)b
(p/d)m − (p/d)b

= E(eλ(t−Td) − 1). (B.21)

(B.20) is the more useful form for extinct isotope systems such as Hf-W, since the present
day concentrations of the parent isotope are negligible. Given a reference isotope p for the
parent, (B.20) may be rewritten as

(d/d)m − (d/d)b
(p/p)b0 [(p/d)m − (p/d)b]

= E(e−λTd − e−λt), (B.22)

which is similar to the usual form in which Hf-W model ages are expressed. For extinct
systems like Hf-W, e−λt is essentially zero at the present day. (B.20), (B.21), and (B.22) are
very similar to the usual expressions for a two stage model age. Indeed, the aim of introducing
the random variable Td is to make this similarity clear. The usual expressions for a two stage
age with full equilibration drop the expectations and have Td replaced by the equilibrium two
stage age t2,eq. Thus

E(e−λTd) = e−λt2,eq . (B.23)

C Relationships between model ages

(B.23) is the fundamental equation for comparing different model ages. The equilibrium
two stage age on the right hand side can be estimated from the current mantle and bulk
compositions. The left hand side depends on the accretion rate through M(t), the amount
of equilibration through k, and the enrichment of the daughter isotope in the metal during
partitioning through Rd. Different models assume different forms for M(t), and different
amounts of equilibration k. To compare the different models, we must study the behaviour of
E(e−λTd). Different models should give equal values for this quantity in order to fit the same
observations. Note that for long lived isotope systems such as U-Pb, E(e−λTd) ≈ 1− λE(Td),
and thus for such systems E(Td) takes the same value between different models. It is convenient
to introduce a new random variable Sd with cumulative distribution function

P(Sd ≤ s) = (M(s))1+kRd , s > 0 (C.1)
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which is related to Td by (B.13)

P(Td ≤ s) =
1− k

1 + kRd
+

k(1 + Rd)
1 + kRd

P(Sd ≤ s), s > 0. (C.2)

In the above it has been assumed that we are considering the present day, where accretion is
complete (M(t) = 1). It follows that

E(1− e−λTd) =
k(1 + Rd)
1 + kRd

E(1− e−λSd), (C.3)

E(Td) =
k(1 + Rd)
1 + kRd

E(Sd). (C.4)

From (C.3) it follows that if we know E(e−λTd), we know E(e−λSd). Models that differ only
in the form of M(t) must share the same value of E(e−λSd) in order to be compatible with
the same observations. However, models that differ in the degree of equilibration k will have
different values of E(e−λSd), but will still have the same values of E(e−λTd).

C.1 Two stage ages

The simplest model is a two stage model, where there is no accretion until a certain time, and
then all the accretion occurs at once. The function M(t) is then a step function,

M(t) =


0, 0 < t < t2,
1, t > t2,

(C.5)

where t2 is the corresponding two stage age. For the above choice of M(t) we have

E(e−λSd) = e−λt2 , (C.6)
E(Sd) = t2. (C.7)

Thus we can relate the two stage age t2,eq that occurs with full equilibration (k = 1) with a
two stage age t2 that occurs with partial equilibration (0 < k < 1) using (B.23), (C.3), and
(C.6)

1− e−λt2,eq =
k (1 + Rd)
1 + kRd


1− e−λt2


. (C.8)

This relationship is plotted in Figure 3b. It can be approximated for long-lived systems as

t2,eq ≈
k (1 + Rd)
1 + kRd

t2. (C.9)

For general λ, Jensen’s inequality on (B.23) combined with (C.4) and (C.7) implies

t2,eq ≤ E(Td) =
k (1 + Rd)
1 + kRd

t2 ≤ t2, (C.10)

and hence disequilibrium always increases the two stage age. From (C.8), the following in-
equality holds for k,

1− e−λt2,eq

1 + Rde−λt2,eq
≤ k ≤ 1, (C.11)

and hence there is a lower bound on the amount of disequilibrium. These inequalities become
equalities as λt2 →∞, and t2 → t2,eq respectively.
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C.2 Exponential accretion

One of the simplest continuous models of accretion is to assume an exponential accretion with
a mean age τa, namely

M(t) = 1− e−t/τa . (C.12)

The relevant moments are

E(e−λSd) =
Γ(2 + kRd)Γ(1 + λτa)

Γ(2 + kRd + λτa)
, (C.13)

where Γ(x) is the gamma function, and

E(Sd) = τaH1+kRd
, (C.14)

where Hx is the xth harmonic number, which can be expressed for general x as Hx = γ +
Ψ(1 + x), where γ is the Euler-Maschoroni constant, and Ψ is the digamma function.

Comparing the expressions for E(e−λSd) in (C.6) and (C.13), we see there is the following
relationship between the two stage age t2 and the exponential mean age of accretion τa,

e−λt2 =
Γ(2 + kRd)Γ(1 + λτa)

Γ(2 + kRd + λτa)
, (C.15)

and this used in plotting Figure 3a. It can be approximated for long lived systems using (C.7)
and (C.14) as

t2 ≈ τaH1+kRd
. (C.16)

For long-lived systems, the two stage age is thus always greater than the exponential mean
age of accretion, t2 ≥ τa. However, in general, the two stage age can be less than or greater
than the mean age of accretion depending on kRd and λ. Independent of λ, the ages satisfy
t2 ≤ τaH1+kRd

, by Jensen’s inequality on (C.6). Typical values are RW ∼ 16 and RPb ∼ 7
which give H1+RW

∼ 3.4 and H1+RPb
∼ 2.7. Thus with full equilibration (k = 1) the two

stage model ages for Hf-W and U-Pb are around 3 times larger than the exponential model
ages, i.e. the two stage model ages relate to the point of ∼ 95% accretion in the exponential
models (1− e−3 = 0.95).

For integer values of kRd, (C.15) can be expanded as (exploiting the fact that Γ(x) =
(x− 1)! for integer x)

e−λt2 =
1+kRd

r=1


1 +

λτa

r

−1

(C.17)

and rewritten as

t2 =
1
λ

1+kRd
r=1

log


1 +
λτa

r


(C.18)

which agrees with the relationship quoted by Jacobsen1 (his equation (77)) in the case of full
equilibration. (C.15) is more general as it encompasses partial equilibration, and holds for
non-integer values of the parameters.
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C.3 Weibull accretion

A useful two parameter accretion model is

M(t) = 1− e−(t/α)β , (C.19)

which is known as the Weibull distribution with time scale parameter α and shape parameter
β. The corresponding mean age of accretion is αΓ(1 + 1/β). The Weibull distribution en-
compasses both the models described above for appropriate choices of the shape parameter:
β = 1 is the exponential model, and as β →∞ the step function is recovered. For the Weibull
model there are no simple closed form expressions for the moments E(e−λSd) and E(Sd), and
the integrals need to be evaluated numerically (Figure 2).

Weibull models with β ≤ 1 have their maximum rates of accretion (dM/dt) at time t = 0,
while Weibull models with β > 1 have their maximum rates of accretion at later times t > 0.
To get a match between Hf-W and U-Pb with a Weibull model, β < 1 is required (Figure 2),
but this does not imply that Earth’s accretion was actually at its most rapid at time 0 (the time
of CAI formation). Physical models suggest there may have been a very early stage of slow
accretion, followed by rapid accretion and finally a very slow and protracted late accretion27.
If the duration of the very early stage of slow accretion was significantly shorter than the half
life of 182Hf then it would have had little influence on the subsequent isotopic evolution. A
very early stage of slow accretion could be added to the model without influencing the main
result: namely that a stage of rapid early accretion followed by a stage of protracted late
accretion is required.

D Bounds on accretion

D.1 Analytical bounds

There are some general bounds that can be placed on the accretion curve M(t) without
assuming any particular parametric form. Markov’s inequality applied to e−λSd is

P(e−λSd ≥ e−λt) ≤ E(e−λSd)
e−λt

(D.1)

which implies
P(Sd ≤ t) ≤ eλtE(e−λSd) = eλ(t−t2), (D.2)

and thus the following bound can be placed on M(t) using (C.1),

M(t) ≤ eλ(t−t2)/(1+kRd), (D.3)

which bounds the early accretion (t ≤ t2, Figure 4). Notably, the accretion cannot finish until
t ≥ t2. This bound is achieved by step function accretion curves of the form

M(t) =


0, 0 < t < tc,

eλ(tc−t2)/(1+kRd), tc < t <∞,
(D.4)

for tc ≤ t2.
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Applying Markov’s inequality to 1− e−λSd gives

P(1− e−λSd ≥ 1− e−λt) ≤ E(1− e−λSd)
1− e−λt

(D.5)

which implies

P(Sd ≤ t) ≥ E(e−λSd)− e−λt

1− e−λt
=

e−λt2 − e−λt

1− e−λt
, (D.6)

and thus the following bound can be placed on M(t),

M(t) ≥


e−λt2 − e−λt

1− e−λt

1/(1+kRd)

, (D.7)

which bounds the late accretion (t ≥ t2, Figure 4). This bound is achieved by step function
accretion curves of the form

M(t) =





e−λt2 − e−λt

1− e−λt

1/(1+kRd)

, 0 < t < tc,

1, t > tc,

(D.8)

for tc ≥ t2.
Bounds can also be placed on the mean age of accretion. Let Tacc be a random variable

with CDF M(t). Then, from the inequality,

1− (M(t))n ≤ n (1−M(t)) , n ≥ 1 (D.9)

it follows that
E(Sd) ≤ (1 + kRd)E(Tacc), (D.10)

where E(Tacc) is the mean age of accretion. Similarly, from the inequality

1− (M(t))n ≥ 1−M(t), n ≥ 1 (D.11)

it follows that
E(Sd) ≥ E(Tacc). (D.12)

Jensen’s inequality implies that

E(e−λSd) ≥ e−λE(Sd). (D.13)

Since E(e−λSd) = e−λt2 , it follows that

t2 ≤ E(Sd). (D.14)

Thus the mean age of accretion can be bounded by

t2
1 + kRd

≤ E(Sd)
1 + kRd

≤ E(Tacc) ≤ E(Sd). (D.15)

For long-lived systems E(Sd) ≈ t2, and the two stage age t2 is then an approximate upper
bound on the mean age of accretion.
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D.2 Numerical bounds

Bounds on the accretion curve M(t) can also be calculated numerically. Suppose M(t) is
discretised as a sequence of steps, with M(t) = Mi for ti−1 < t < ti, where t1 ≤ t2 · · · ≤ tn
are the given times of the steps. Bounding M(t) is then a matter of solving a nonlinear
optimisation problem: Minimising or maximising Mj for a given j subject to the constraints

0 ≤M1 ≤M2 ≤ · · ·Mn ≤ 1, (D.16)

1− e−λt2 =
n

i=1


e−λti−1 − e−λti

 
1−M1+kRd

i


. (D.17)

(D.16) ensures the accretion curve is valid, and (D.17) ensures the isotopic observations are
matched. The above problem can be solved using standard optimisation algorithms. The
advantage of a numerical solution is that multiple constraints can be included, and thus bounds
that include both Hf-W and U-Pb constraints can be calculated (yellow region, Figure 4). A
similar method can be used to numerically calculate bounds on the mean age of accretion
using the objective function

n
i=1

(ti − ti−1) (1−Mi) (D.18)

and the same constraints.

E Interpretation of age distributions

Age distributions were introduced in section B in order to represent various integral expres-
sions in a more compact form. However, it should be noted that these age distributions arise
naturally from residence time theory, which treats transitions between reservoirs as a Poisson
process33,34. This can be best illustrated for the equilibrium case (k = 1). Conservation of
mass for a stable species in the mantle reservoir (A.3) can be written as

dnm

dt
= cb

dM
dt

− Rc

M

dM
dt

nm (E.1)

where nm = (1 − F )Mcm, the relative number of moles in the mantle reservoir. In terms of
residence time theory, we can identify

P(m → c) =
Rc

M

dM
dt

δt (E.2)

as the probability that an atom in Earth’s mantle reservoir will transition to Earth’s core
reservoir in a time interval δt. This probability varies in time, and is zero once accretion has
ceased. By integration, we find that the probability that an atom which was in the Earth’s
mantle reservoir at time t is still in the Earth’s mantle by the end of accretion is

P(atom in m at present|atom in m at time t) = (M(t))Rc . (E.3)

At time t, the number of atoms which arrive in Earth’s mantle reservoir in a time interval δt
is

cb
dM
dt

δt (E.4)
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of which
cb

dM
dt

(M(t))Rc δt (E.5)

will remain in Earth’s mantle at the end of accretion. Hence

ρ(t) = (1 + Rc)
dM
dt

(M(t))Rc (E.6)

is a probability density function which gives the probability that an atom in Earth’s mantle
at present arrived there at time t. The corresponding cumulative distribution function is

P(Tc ≤ t) = (M(t))1+Rc . (E.7)

Alternatively, t− Tc is a random variable which gives the amount of time an atom has spent
in the mantle reservoir, i.e. it is a random variable giving the distribution of residence times
in the mantle reservoir. It is this residence time information for the daughter element which
gets encoded in the isotopic observations.

Interpreting the age distributions in the general non-equilibrium (k < 1) case (i.e. (B.13))
is less straightforward, but essentially represents a mixture of unequilibrated zero age material
and equilibrated material with a distribution of ages similar to the above.

F Isotopic parameters and calculated model ages

The Hf-W isotopic system consists of parent p = 182Hf, daughter d = 182W, and reference
isotopes p = 180Hf and d = 184W. Numerical values for the parameters describing the Hf-W
isotopic system are given in Supplementary Table 1. These values yield an equilibrium two
stage age t2,eq = 31.0± 4.4 Myr and equilibrium exponential accretion time τa,eq = 10.6± 0.5
Myr, assuming constant partition coefficients. The predominant uncertainty is in the Hf/W
value of the mantle relative to that of the bulk, which leads to an uncertainty in the assumed
constant partition coefficient, DW = 32.5±11.0. Hf is thought not to enter the core, and thus
DHf = 0.

The U-Pb isotopic system consists of two parent isotopes p = 238U, 235U, with respective
daughter isotopes d = 206Pb, 207Pb and common reference isotope d = 204Pb. Numerical
values for the parameters describing the U-Pb isotopic system are given in Supplementary
Table 2. The mantle

�
206Pb/204Pb


m

and
�

207Pb/204Pb


m
isotopic ratios are not well con-

strained, as U/Pb fractionation has been ongoing in the Earth due to crust/mantle differ-
entiation. Different literature estimates for the bulk silicate Earth lead isotopic composition
are given in Supplementary Table 3 (after Halliday15). As was pointed out by Kamber and
Kramers20, using some of the estimates in Supplementary Table 3 to calculate a two stage age
is circular, as some of the authors assumed a particular two stage age from the outset when
constructing their estimates35,36. However, not all of the estimates are circular, and they still
provide a reasonable guide to the uncertainties involved37.

Unfortunately, the
�

238U/204Pb


b
≡ µb isotopic ratio of the bulk Earth is not well con-

strained either, due to the volatility of lead. Estimates of µb range from 0.717-1.438. The
mantle value is better constrained, with µm = 7 − 9 being a typical estimate17. These es-
timates imply a range for the lead partition coefficient, DPb = 8 − 25. Wood et al.28 have
suggested a value of DPb ∼ 13 based on experimental partitioning studies, and this is the
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value adopted here (and used in the calculations for Figures 2, 3, and 4). It is assumed that
U does not enter the core to any great extent, so DU = 0.

Given the partition coefficient estimate DPb = 13, the estimates of
�

206Pb/204Pb


m
and�

207Pb/204Pb


m
can be combined with the parameters in Supplementary Table 2 to infer the

model ages t2,eq and τa,eq, along with µb and µm. This is done in Supplementary Table 3. The
values estimated for µb and µm are broadly consistent with the estimates above. There is a
wide range in the estimated model ages, t2,eq = 55.9− 130.5 Myr and τa,eq = 21.6− 51.0 Myr
(using all but the two most extreme estimates from Supplementary Table 3), but nevertheless
the ages are notably different from those obtained for Hf-W. The bounds of Figure 4 are
calculated using a U-Pb two stage age of t2,eq = 65.0 Myr, but it should be noted that this
is simply chosen as a reasonably reasonably representative value, to illustrate the kind of
constraints that Pb isotopes provide, and is not a definitive value.

G Parametrisation of metal/silicate partition coefficients

Metal/silicate partition coefficients depend on temperature, pressure, and oxygen fugacity
conditions. Here we have used the metal/silicate partition coefficient parametrisation of Wade
and Wood6,7,28,29, which is outlined below. For a fuller description the reader is referred to
the original papers.

Oxygen fugacity is defined relative the iron-wüstite (IW) buffer as

∆IW = 2 log10


γsil

FeO/γmet
Fe


+ 2 log10


xsil

FeO/xmet
Fe


, (G.1)

where ∆IW is the oxygen fugacity relative to the IW buffer in log10 units. γmet
Fe and γsil

FeO

are the activity coefficients of Fe and FeO in the metal and silicate respectively, and xmet
Fe and

xsil
FeO are the corresponding molar concentrations. The activity coefficients of elements in the

metal phase are assumed to depend on temperature as

γmet
M (T ) =

�
γmet

M (T0)
T0/T (G.2)

where γmet
M (T0) is the activity at a reference temperature of T0 = 1873 K. Formally, the

activity coefficients should also depend on pressure and composition, but for simplicity this
dependence is neglected here, and γmet

M (T0) is assumed constant. The activities γmet
M (T0) at

the reference temperature were calculated by an interaction parameter approach39, with an
assumed metal composition, and are given in Supplementary Table 4. The activity of FeO in
the silicate is assumed to be independent of temperature, with γsil

FeO = 3. Different choices for
γsil

FeO affect the absolute values of the oxygen fugacity, but the relative results will remain the
same.

Using (G.1) and (G.2), the molar Fe metal/silicate partition coefficient can be written as
a function of oxygen fugacity as

log10 D

Fe ≡ log10


xmet

Fe /xsil
FeO


= −1

2
∆IW − T0

T
log10 γ

met
Fe (T0) + log10 γ

sil
FeO. (G.3)

The partitioning of the other elements is parametrised relative to the iron partitioning as

log10 D

M = a+ b

1
T

+ c
P

T
+ dN +

v

2
log10 D


Fe +

T0

T

v
2

log10 γ
met
Fe (T0)− log10 γ

met
M (T0)


(G.4)
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which can be rewritten as

log10 D

M = a + b

1
T

+ c
P

T
+ dN − v

4
∆IW − T0

T
log10 γ

met
M (T0) +

v

2
log10 γ

sil
FeO. (G.5)

a, b, c, and d are coefficients obtained by regression of experimental data, given in Supple-
mentary Table 4. v is the assumed valence (which for W is also found by regression as it has
mixed valence states30). T is the temperature (in K), P is the pressure (in GPa), and N is
the molar ratio of non-bridging oxygens to tetrahedral cations in the silicate melt (assumed
constant at 2.7). (G.3), (G.4), and (G.5) parametrise the molar partition coefficients D

M, but
what is of usual interest is the partition coefficients by mass, namely

DM = cmet
M /csil

M, (G.6)

where c refers to concentration by mass. However, to a good approximation it is found that
DM ≈ D

M, and we will use molar and mass partition coefficients interchangeably.
Target values for the partition coefficients can be obtained from estimates of the present

day mantle cm and core cc abundances, namely

Dobs = cc/cm. (G.7)

Estimated values are given in Supplementary Table 5. Note that these target values should
be compared to integrated values of the true partition coefficients over the different pressure,
temperature, and oxygen fugacity conditions that have been experienced during metal silicate-
equilibration over the course of the Earth’s accretion.

H Pressure, temperature, and oxygen fugacity evolution

To complete the model, the pressure, temperature and oxygen fugacity conditions under
which metal silicate equilibration takes place must be specified. The approach taken here
is based on that of Wade and Wood6, where it postulated that the point of last metal-
silicate equilibration takes place at the base of a deep magma ocean. This final metal-silicate
equilibration is assumed to take place on the peridotite liquidus, which we approximate by

T = 1973 + 28.57P, (H.1)

where T is in K and P is in GPa. The pressure of equilibration is assumed to evolve as

P (t) = P0(M(t))2/3, (H.2)

for some constant P0 to be determined. The assumed scaling of (M(t))2/3 reflects the increase
in pressure with planet size, which scales as the square of the planet radius. The pressure P0

can be associated with an average depth of magma ocean equilibration through h0/hcmb =
P0/Pcmb, where Pcmb and hcmb are the present day core-mantle boundary pressure and depth
(Pcmb = 135 GPa, hcmb = 2886 km).

Finally, the oxygen fugacity state is allowed to evolve as the planet accretes. We assume
the following simple form, based on that of Corgne et al7,

∆IW =




∆IW1, 0 < M(t) < 0.1,

∆IW1 + (∆IW2 −∆IW1)
M(t)− 0.1

0.9
, 0.1 < M(t) < 1,

(H.3)
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for initial oxygen fugacity ∆IW1 and final oxygen fugacity ∆IW2. The oxygen fugacity re-
mains constant for the first 10% of the accretion, and then increases linearly for the remainder
of the accretion.

I Trace element inversion

Values of the parameters P0, ∆IW1 and ∆IW2 that best fit the observations are obtained by
inversion, using a penalty function approach (Figure 1). Having these three free parameters
seems to be the minimum needed to get a good match to the observations. The chosen penalty
function to minimise is

g(P0,∆IW1,∆IW2) =
n

i=1


log10 D

model
i − log10 D

obs
i

σi

2

(I.1)

where Dmodel
i is the overall partition coefficient that is obtained from integrating the model,

namely Dmodel = cc/cm. i = 1, 2, . . . , n refer to the n trace elements that are used for inversion.
Only a subset of the available trace elements are used in the inversion (Fe, Ni, Co, V, W,
Si, Nb, Ta), since these elements are the most refractory and their bulk Earth abundances
are thus best constrained. The uncertainties σ2

i arise from two sources: uncertainties in the
experimentally derived partition coefficients D∗

i , which lead to uncertainties in Dmodel
i on

integrating the model (shown as red error bars in Figure 1), and uncertainties in the present
day elemental abundances, which lead to uncertainties in Dobs

i (shown as blue error bars in
Figure 1). The total uncertainty is given by

σ2
i = σ2

log10 Dmodel
i

+ σ2
log10 Dobs

i
, (I.2)

which is used to weight the different terms in (I.1). The lower the uncertainty, the greater
weight that is placed on that term in the penalty function. Thus certain elements influence
the penalty function more strongly than others, as some elements have better constrained
abundances and partitioning behaviours. The 1σ uncertainties on log10 D

obs are given in
Supplementary Table 5, and the 1σ uncertainties on the experimental regression coefficients for
D∗ are given in Supplementary Table 4. The error propagation to determine the uncertainty
on Dmodel proceeds under the assumption of independent errors, namely

σ2
log10 D = σ2

a + σ2
b

1
T 2

+ σ2
c

P 2

T 2
+ σ2

dN
2 +

σ2
v

16
∆IW 2. (I.3)

Different studies report errors in different ways, which makes comparing errors between studies
difficult. For the studies considered here, the most noticeable difference is that Cottrell et
al.30 report errors on all regression coefficients (v, a, b, c, d) whereas the other studies6,7,28,29

only report errors on the coefficients c and d (and also b for the case of Cr in 7 ). To make a fair
comparison between the W partition coefficients of Cottrell et al.30 and the other studies we
have used a regression through the Cottrell et al.30 data set which has b set to the value given
in thermodynamic tables (as done in the other studies6), and have not put any errors on the
coefficients a and b. We have kept the error on the valence v as W, unlike the other elements,
has a mixed valence state (between 4 and 6), which requires v to be a fitted parameter.

Different elements are sensitive to different model parameters because their partitioning
depends in different ways on temperature, pressure, and oxygen fugacity. The inversion
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technique is particularly sensitive to the more siderophile elements and to those elements
whose uncertainties are smallest, such as Fe, Ni, Co and V. The Fe abundance is best known,
and sets the integrated oxygen fugacity. High pressures and an increase in oxygen fugacity
are required to simultaneously match the slightly siderophile elements such as V and the
more siderophile Ni and Co6,29. Increasing oxygen fugacity also seems to be required to
get the correct mantle Nb/Ta ratio7. In Figure 1, good fits are seen for all elements, with
the exception of Ga. The reason for gallium’s misfit is unclear, but may be due to a poor
assessment of the bulk Earth value as it is volatile7.

When disequilibrium models are considered (as in Figure 1b) the conditions of differen-
tiation in the embryos are important and must be specified. There is a trade-off between
conditions in the embryos and the inferred conditions during accretion. An example is shown
in Supplementary Figure 2 where the oxygen fugacity conditions on Earth are plotted as a
function of the oxygen fugacity of differentiation in the embryos. If the conditions in the
embryos are sufficiently reducing (in this case ∆IW = −2.7), there is no need for an in-
crease in oxygen fugacity during accretion. It should be noted that the misfit (given by (I.1))
also varies as a function of embryo oxygen fugacity, with a value around -0.5 being the best
fitting (lowest misfit), and increasing for values lower than this. However, all the embryo
values shown in Supplementary Figure 2 still provide goods fits to the observations to within
the uncertainties. It should be noted that Figure 1 and Supplementary Figure 2 assume all
embryos differentiate under the same pressure, temperature, and oxygen fugacity conditions.
However, it is likely that this is not the case, and one alternative to having an increase in
oxygen fugacity during Earth’s accretion is to have more oxidised material accreting later24.

J Remarks on partially equilibrative plumbing

The k = 1 case of the model presented here is exactly the “fully equilibrative plumbing”
model first introduced by Harper and Jacobsen40. However, the k < 1 and k = 0 cases
are different from the “partially equilibrative plumbing” and “non-equilibrative plumbing”
models of Harper and Jacobsen40. Partial and non-equilibrative plumbing have metal-silicate
equilibration in the embryos occurring at the time of accretion rather than at time 0 as
happens here. This can be investigated in the same way, by changing the concentrations in
the incoming material from those given in (B.8) to

dme =
1

1 + Rd
· db0 + pb0(1− e−λt)

1− F
, (J.1)

dce =
Rd

1 + Rd
· db0 + pb0(1− e−λt)

F
. (J.2)

Following through the same calculations as before, the cumulative distribution function asso-
ciated with the partially equilibrative plumbing model is simply

P(Td ≤ t) = (M(t))1+kRd , (J.3)

which is exactly the same as the distribution of Sd encountered earlier. Hence all the rela-
tionships derived for Sd can be applied directly to the partially equilibrative plumbing model.
It should be noted that the two stage age t2 is independent of the degree of equilibration k
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for the partially equilibrative plumbing model, t2 = t2,eq. However, the exponential mean age
certainly does depend on k, through

e−λt2,eq = e−λt2 =
Γ(2 + kRd)Γ(1 + λτa)

Γ(2 + kRd + λτa)
. (J.4)

For the end-member case of non-equilibrative plumbing (k = 0), the above simplifies to

t2,eq =
1
λ

log (1 + λτa) , (J.5)

which is the relationship quoted by Jacobsen and Harper41 (equation (61)) and Harper and
Jacobsen40 (equation (11)).

K Remarks on the relationship between two stage model ages

The relationship between two stages ages with and without equilibration has also been dis-
cussed by Allègre et al.17, in which it was found that two stage ages t2 = 110− 190 Myr and
degrees of equilibration from 0.86 to 0.94 were needed to obtain overlap between Hf-W and
U-Pb. While the inferred ages are broadly in line with those estimated here, the degrees of
equilibration are not. The relationship between the two stages ages given by Allègre et al.17

is
1− e−λt2,eq = fd


1− e−λt2


, (K.1)

where symbols have been changed to be compatible with the notation of this manuscript. In
Allègre et al.17, t2,eq is referred to as the apparent age, and t2 as the true age, but it should
be noted that both ages are examples of model ages. fd is referred to as the fraction of silicate
exchanged. (K.1) should be compared with (C.8), which implies that fd is related to k by

fd =
k (1 + Rd)
1 + kRd

. (K.2)

The amount of equilibration quoted by Allègre et al.17 is in terms of fd rather than the mass
fraction k, with 0.86 to 0.94 being values of fd thought to be consistent with the observations.
Allègre et al.17 assume that fd is the same for both W and Pb, but as can be seen in (K.2), fd

depends on Rd and thus on the partitioning behaviour of the daughter; likely to be different
for W and Pb. The error in Allègre et al.17 arises from a mistake in using the mixing equation
for isotopic ratios in the form (d/d) = fd(d/d)1 + (1 − fd)(d/d)2. The quantity fd in this
equation is not the proportion by mass in which the two quantities mix, but depends on the
concentrations of the two substances. The values of fd quoted by Allègre et al.17 can be
converted to k using (K.2). With a typical value for RW = 15 (DW = 33), the quoted fd

values imply a reequilibration mass fraction k of around 0.28 to 0.49. RPb is much less well
known, but using a value of 6 (DPb = 13 as used above) implies a reequilibration fraction k
of around 0.46 to 0.69. The values of k consistent with both Hf-W and U-Pb estimated here
(k = 0.37−0.41) lie somewhere in the middle of the values one can infer from Allègre et al.17.
Conversely, using the k values here, consistency requires fW ≈ 0.91 and fPb ≈ 0.81.
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Supplementary Figure 1: A sketch of the box model used throughout this work. Embryo
material differentiates into metal and silicate in equilibrium with one another at time 0. Over
the course of the accretion, embryo material is added to the Earth. Embryo mantle material
is added directly to the Earth’s mantle, whereas embryo core material take two routes: a mass
fraction k chemically equilibrates with the Earth’s mantle as it travels to the core, and the
remaining 1− k is added directly to the Earth’s core without reequilibration.
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Supplementary Figure 2: An example of the trade-off between conditions in the embryos
and conditions on Earth in a disequilibrium model (k = 0.42). The embryos are assumed to
differentiate at pressure Pembryo = 9 GPa, temperature Tembryo = 2700 K, and oxygen fugacity
∆IWembryo as shown on the horizontal axis. The three Earth parameters P0 (black line),
∆IW1 (red line), and ∆IW2 (blue line) which best fit the siderophile element abundances
are plotted as a function of ∆IWembryo. In disequilibrium models, the inferred change in
oxygen fugacity is very sensitive to the oxygen fugacity conditions under which the embryos
differentiate. In fact, the siderophile element abundances can be explained without an increase
in oxygen fugacity over Earth’s accretion provided conditions of differentiation in the embryos
are sufficiently more reducing than on Earth. In this particular example, ∆IWembryo = −2.8
and ∆IWEarth = −1.1 are appropriate values for which an increase in oxygen fugacity during
accretion is not required (intersection of the ∆IW1 and ∆IW2 curves).
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Supplementary Table 1: Input parameters for the Hf-W system12. These parameters imply an equilibrium two stage model age
t2eq = 31.0±4.4 Myr and equilibrium mean accretion time τa,eq = 10.6±0.5 Myr. The uncertainty is dominated by the uncertainty
in mantle 180Hf/184W.
Parameter Value Remarks
λ (7.78 ± 0.02) × 10−8 yr−1 Decay constant of 182Hf.�

182Hf/180Hf


b0
(9.72 ± 0.44) × 10−5 Initial bulk Earth value. Derived from internal isochron for CAIs.�

180Hf/184W


b
1.23 ± 0.15 Bulk Earth value, based on CAIs and carbonaceous chondrites.�

180Hf/184W


m
20.06 ± 5.90 Present day bulk silicate Earth value.�

182W/184W


b
0.864699 ± 0.000012∗ Present day bulk Earth value (carbonaceous chondrite value).�

182W/184W


m
0.864863 ± 0.000018∗ Present day bulk silicate Earth value (terrestrial standard value).

∗ Note that the relative difference for 182W/184W between bulk silicate Earth and chondrites is better known that the absolute
values of 182W/184W (the difference is 1.9 ± 0.1 in εW units).
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Supplementary Table 2: Input parameters for the U-Pb system.
Parameter Value Remarks
λ238 1.551 × 10−10 yr−1 Decay constant of 238U.
λ235 9.849 × 10−10 yr−1 Decay constant of 235U.�

235U/238U


b
1/137.88 Present day value.�

206Pb/204Pb


b0
9.307 Initial bulk Earth value (Canyon Diablo).�

207Pb/204Pb


b0
10.294 Initial bulk Earth value (Canyon Diablo).

SI–23



nature geoscience | www.nature.com/naturegeoscience	 23

supplementary informationdoi: 10.1038/ngeo872

Supplementary Table 3: Estimates of bulk silicate Earth lead isotopic composition with calculated µ and model ages (based on
Table 1 of Halliday 200415, but with slightly different model assumptions). µ is the present day 238U/204Pb value. Calculated values
assume a constant partition coefficient DPb = 1328 and an initial time of 4567 Myr before present. The model ages are not well
constrained, ranging from t2,eq = 53.5− 171.0 Myr and τa,eq = 20.7− 67.3 Myr with this assumed value of the partition coefficient.

Reference
�

206Pb/204Pb


m

�
207Pb/204Pb


m

µb µm t2,eq (Myr) τa,eq (Myr)
Kramers and Tolstikhin 199735 17.440 15.160 1.13 8.05 74.7 29.0
Kwon et al. 198942 17.822 15.445 1.18 8.38 55.9 21.6
Davies 198443 17.830 15.457 1.18 8.39 53.5 20.7
Liew et al. 199144 17.920 15.470 1.20 8.51 67.2 26.0
Murphy et al. 200336 18.070 15.540 1.22 8.67 73.7 28.6
Galer and Goldstein 199145 18.110 15.617 1.22 8.67 56.6 21.9
Doe and Zartman 197946 18.252 15.476 1.26 8.98 130.5 51.0
Kamber and Collerson 199947 18.270 15.600 1.25 8.91 93.0 36.2
Allègre and Lewin 198948 18.340 15.551 1.27 9.05 122.5 47.9
Allègre et al. 198849 18.400 15.580 1.28 9.12 124.4 48.6
Zartman and Haines 198850 18.619 15.565 1.33 9.45 171.0 67.3
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Supplementary Table 4: Coefficients used in the partition coefficient parametrisation (G.4). Values in brackets are the 1 standard
deviation error on the regression coefficients. γmet

M (T0) are the C-unsaturated activity coefficients calculated at a reference temper-
ature of T0 = 1873 K using an interaction parameter approach7 (not used for Ti, Zn, or Pb). P coefficients from6 are based on
unpublished data by M. Walter. Uncertainties on the regression coefficients are not available for P or Pb.

v a b (K) c (KGPa−1) d γmet
M (T0) reference

Mn 2 -0.02 -5600 38 (6) 0.036 (0.010) 0.6473 Corgne et al. 20087

Ni 2 0.50 3100 -78 (5) -0.073 (0.015) 0.6819 Corgne et al. 20087

Cr 2 0.09 -2845 (461) -20 (10) 0.000 (0.013) 0.7705 Corgne et al. 20087

Ga 3 3.50 -4800 -126 (36) -0.97 (0.15) 0.8762 Corgne et al. 20087

Si 4 2.97 -21800 -11 (33) -0.24 (0.11) 0.0077 Corgne et al. 20087

Nb 5 4.09 -15500 -166 (31) -0.75 (0.16) 0.1107 Corgne et al. 20087

Ta 5 7.74 -20000 -264 (81) -1.69 (0.53) 0.1029 Corgne et al. 20087

Ti 4 3.46 -19000 -42 (52) -0.11 (0.16) 1.0000 Corgne et al. 20087

Cu 1 0.30 2300 -37 (45) 0.14 (0.17) 10.9980 Corgne et al. 20087

Zn 2 -1.11 600 -23 (102) -0.21 (0.24) 1.0000 Corgne et al. 20087

V 3 0.855 -8548 -62 (19) -0.101 (0.029) 0.1076 Wood et al. 200829

Co 2 0.01 2511 -45 (11) 0 0.4790 Wade and Wood 20056

P 5 0.64 -1593 -74.95 0 4.2805 Wade and Wood 20056

W 4.52 (0.52) 3.2 -1605 -115 (15) -0.85 (0.07) 0.9411 Cottrell et al 200930,51

Pb 2 0.788 -2436 0 0 1.0000 Wood et al. 200828

Fe 2 0 0 0 0 0.8762
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Supplementary Table 5: Effective partition coefficients inferred from present day core/mantle
concentrations, Dobs = cobs

c /cobs
m . First column shows log10 Dobs with a 1 standard deviation

error in brackets. The 2σ range for Dobs that results is shown in the second column. Asterixes
(*) denote volatile elements, for which estimates of bulk Earth composition are much more
uncertain. Estimates are based on those used by Corgne et al.7 and Wade and Wood6 (in
turn based on52–54) with the exception of W which is based on12. The volatile and only
moderately siderophile elements Zn and Ga have very uncertain abundances. Ti is normally
regarded as a refractory lithophile element, and thus its concentration in the core is usually
estimated to be zero.

log10 D
obs 2σ interval for Dobs

W 1.513 (0.077) 23-46
Ni 1.418 (0.017) 24-28
P∗ 1.398 (0.140) 13-48
Co 1.381 (0.013) 23-26
Pb 1.159 (0.118) 8-25
Fe 1.136 13.66
Cu∗ 0.801 (0.099) 4-10
V 0.262 (0.042) 1.5-2.2
Cr∗ 0.195 (0.175) 0.7-3.5
Mn∗ -0.155 (0.274) 0.2-2.5
Nb -0.276 (0.211) 0.2-1.4
Ta -0.611 (0.195) 0.1-0.6
Si∗ -0.728 (0.136) 0.10-0.35
Zn∗ -0.824 (0.301) 0-0.6
Ga∗ -1.000 (0.301) 0-0.4
Ti −∞ 0
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Supplementary Table 6: Table of variables

a, b, c, d, v coefficients used in partition coefficient parametrisation ((G.5) and Supplementary Table 4)
cb concentration of chemical species in the bulk Earth
cc concentration of chemical species in the Earth’s core
cc0 initial concentration of chemical species in the Earth’s core (cc at t = 0)
cce concentration of chemical species in the core of the embryos
cm concentration of chemical species in the Earth’s mantle
cme concentration of chemical species in the mantle of the embryos
d daughter isotope, e.g. 182W
d reference isotope, e.g. 184W
D partition coefficient by mass
D partition coefficient by mole

Dmodel cc/cm from model calculations
Dobs cc/cm from observed abundances (Supplementary Table 5)
F mass fraction of Earth’s core (0.323)
k mass fraction of metal that chemically equilibrates during accretion

M(t) fraction of Earth accreted at time t
N molar ratio of non-bridging oxygens to tetrahedral cations in the silicate melt
p parent isotope, e.g. 182Hf
p reference isotope, e.g. 180Hf
P pressure
R = FD/(1− F )
Sd random variable defined by (C.1)
t time since beginning of solar system
t2 two stage model age

t2,eq two stage model age, assuming full equilibration (k = 1)
T temperature
Td random variable defined by (B.13)
α time scale parameter of Weibull distribution
β shape parameter of Weibull distribution
γ activity coefficient

∆IW oxygen fugacity relative to the iron-wüstite buffer in log10 units
λ decay constant
µ 238U/204Pb isotopic ratio corrected for radioactive decay
σ standard deviation
τa exponential model age (mean age and time of 63% accretion)

τa,eq exponential model age, assuming full equilibration (k = 1)
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