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Blue marble, stagnant lid: Could dynamic topography avert a waterworld?
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ABSTRACT
Topography on a wet rocky exoplanet could raise land above its sea level. Although land elevation is

the product of many complex processes, the large-scale topographic features on any geodynamically-
active planet are the expression of the convecting mantle beneath the surface. This so-called “dynamic
topography” exists regardless of a planet’s tectonic regime or volcanism; its amplitude, with a few
assumptions, can be estimated via numerical simulations of convection as a function of the mantle
Rayleigh number. We develop new scaling relationships for dynamic topography on stagnant lid planets
using 2D convection models with temperature-dependent viscosity. These scalings are applied to 1D
thermal history models to explore how dynamic topography varies with exoplanetary observables over
a wide parameter space. Dynamic topography amplitudes are converted to an ocean basin capacity,
the minimum water volume required to flood the entire surface. Basin capacity increases less steeply
with planet mass than does the amount of water itself, assuming a water inventory that is a constant
planetary mass fraction. We find that dynamically-supported topography alone could be sufficient
to maintain subaerial land on Earth-size stagnant lid planets with surface water inventories of up to
approximately 10−4 times their mass, in the most favourable thermal states. By considering only
dynamic topography, which has ∼1-km amplitudes on Earth, these results represent a lower limit
to the true ocean basin capacity. Our work indicates that deterministic geophysical modelling could
inform the variability of land propensity on low-mass planets.

1. INTRODUCTION

The concurrence of land and water on a planet’s sur-
face will affect its climate state (Turbet et al. 2016;
Rushby et al. 2019; Del Genio et al. 2019; Graham &
Pierrehumbert 2020; Zhao et al. 2021), the planetary
context of potential biosignatures (Schwieterman et al.
2018; Glaser et al. 2020; Lisse et al. 2020; Krissansen-
Totton et al. 2021), and perhaps its likelihood to host
the prebiotic chemistry that leads to the origin of life
(Patel et al. 2015; Rimmer et al. 2018; Rosas & Ko-
renaga 2021; Van Kranendonk et al. 2021). Planetary
land/ocean fractions emerge in a compromise between
water’s total budget and distribution between surface
and interior reservoirs, and the size of the basins carved
out by topography (e.g., Simpson 2017). The result-
ing ocean mass from the former is largely stochastic:
coded within it are the histories of volatile delivery dur-
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ing accretion (Raymond et al. 2006; Morbidelli et al.
2012), interior degassing from the magma ocean and
succeeding mantle (Elkins-Tanton 2008; Schaefer & Fe-
gley 2017; Barth et al. 2020; Katyal et al. 2020; Or-
tenzi et al. 2020; Guimond et al. 2021; Lichtenberg et al.
2021; Bower et al. 2021), atmospheric erosion by impacts
(Zahnle & Catling 2017; Schlichting & Mukhopadhyay
2018; Howe et al. 2020), and photodissociative atmo-
spheric escape (Tian & Ida 2015; Zahnle et al. 2019;
Gronoff et al. 2020), along with the surface temperature
and pressure. In contrast, large-scale aspects of plane-
tary topography may lend themselves to deterministic
relationships with observable planetary bulk properties.
Although substantial water budgets of a few wt.% would
inevitably produce waterworlds (e.g., Simpson 2017), at
smaller water mass fractions the outcome is sensitive to
the planet’s topography; even a tiny ocean mass would
inundate an atopographic body. Early constraints on
exoplanet land propensity might therefore start with to-
pography.
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This first investigation will limit itself to forms of
topography that could exist without moving plates.
Whether or not a given planet manifests plate tecton-
ics appears to be hysteretic and largely unanswerable
by modelling from state variables (Lenardic & Crowley
2012; Weller & Lenardic 2018; Lenardic 2018). Con-
sequentially, this paper adopts the working hypothesis
that a stagnant lid describes a temperate rocky planet’s
most natural regime (Stern et al. 2018). Here the cool
outermost rock layer does not experience enough stress
to trigger its breaking into plates by brittle failure.
Of the types of topography on planets, so-called dy-

namic topography—the surface deformation from con-
vective upwellings and downwellings in the mantle—can
create significant elevation differences without requiring
plate tectonics. Although dynamic topography is not
independent of plate movement on Earth, where man-
tle convection beneath divergent and convergent plate
boundaries has built ridges higher than sea level and
trenches deeper than Mount Everest, respectively, and
though we expect dynamic topography to be muted in
the absence of plate tectonics, mantle convection would
retain an inevitable influence on the low-order shape of
the stagnant lid surface. That is, dynamic topography
is everywhere: a planet exhibits this phenomenon so
long as its interior convects. Bodies in our solar system
do boast high peaks by other means: massive lava flows
(e.g., Olympus Mons) or impact cratering (e.g., Rheasil-
via on Vesta). Yet if we are interested in whether a
planet’s topography could be higher than its sea level
regardless of volcanism, cratering, and other processes
contingent on a planet’s specific geological history, then
we might begin with dynamic topography as the most
endogenously universal of relief mechanisms.
On long length scales of relief, additional support

comes from the density contrast between the heavier
mantle and lighter crust, which buoys topography at
an equilibrium height. This isostatically-compensated
topography can be higher in part because the maximum
stress underneath the load is shifted to shallower, cooler
depths, where the lithosphere is stronger. Parameteri-
sations of isostatic equilibria, however, depend only on
the density contrast and thickness of the crust, and so
are sensitive to the planet’s specific petrologic history.
This could be daunting if we consider that the emer-
gence of thick granitic continents on Earth still lacks a
consistent explanation, but is probably entwined with
its geodynamic history (Lenardic et al. 2005; Korenaga
2018; Höning et al. 2019). Predicting isostatic elevations
would require information which may always be model-
dependent. Purely dynamic topography, meanwhile,
both originates from and is supported by the sole pro-

cess of thermal convection. It is directly obtained from
any numerical convection model (e.g., McKenzie 1977;
Kiefer & Hager 1992; Kiefer & Kellogg 1998; Huang et al.
2013; Arnould et al. 2018; Lees et al. 2020); its predic-
tion requires less prior knowledge.
Note that stagnant lid convection can lead to other

forms of topography, beyond just that supported dy-
namically by convection (figure 1). The melting asso-
ciated with hot upwelling mantle can form thick, low-
density crust as in figure 1d (Stofan et al. 1995); further,
tension above downwelling plumes can also thicken the
crust tectonically as in figure 1b (Kiefer & Hager 1991;
Pysklywec & Shahnas 2003; Zampa et al. 2018). Both
phenomena would induce compositional isostasy, result-
ing in altitudes unrepresentative of pure dynamic sup-
port. Neither, however, will be included in the ground-
work we perform here. There is also a distinction to be
made for thermal isostasy, in which thermal expansion
of the lithospheric mantle creates the density difference,
rather than compositional separation related to melting
(figure 1c). Hot upwelling mantle will induce thermal
isostasy. By convention, we do include thermal isostasy
within the full dynamic topography (see Molnar et al.
2015; Hoggard et al. 2021). Overall, the elevations we
model here should represent conservative lower limits on
a stagnant lid planet’s static topography.
In summary, among the large-scale mechanisms

sculpting the surface of an active planet, dynamic to-
pography alone has the advantage of being (i) inevitably
present, regardless of tectonic mode; and (ii) a direct re-
sult, quantitatively, of a tractable process (mantle con-
vection). From a modelling perspective, all of these fac-
tors help define a simplified and tractable problem: how
does dynamic topography scale with parameters that
dictate how a planet will convect—like the depth of the
mantle, the thermal state, or the rheology? In princi-
ple this scaling relationship can be extracted from nu-
merical simulations of convection. From there, cheaper
1D parameterised convection models can use this scal-
ing to explore how the amplitude of dynamic topography
changes over a wide range of planetary bulk properties.
Because the scaling itself may be sensitive to a planet’s
tectonic mode, our convection simulations neglect the
possibility of plates.

1.1. Dynamic topography scaling relationships

Limited by computing power, early constructions of
a scaling function for dynamic topography have used
a constant viscosity for the convecting region (Parsons
& Daly 1983; Kiefer & Hager 1992). Under this iso-
viscous paradigm, a single dimensionless parameter, the
Rayleigh number, describes the convective vigour of the
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Figure 1. The four major endogenic sources of topography on a stagnant lid planet. (a) The component of dynamic topography
due to flow-induced traction on the lithosphere. (b) Tectonic crustal thickening caused by tension over cold downwellings. (c)
The component of dynamic topography due to thermal isostasy over thinned lithosphere. (d) Magmatic crustal thickening
caused by melting of upwelling plumes.

system:

Ra =
αρg∆Td3

κη
, (1)

where α is the thermal expansivity of the material in
K−1, ρ is its density in kg m−3, g is the surface grav-
ity in m s−2, ∆T is the temperature contrast across the
layer in K, d is the depth of the convecting region in m, κ
is the thermal diffusivity in m2 s−1, and η is the dynamic
viscosity in Pa s—in isoviscous convection these parame-
ters are all constant. The Ra number can act as a useful
independent scaling variable for many convection phe-
nomena because the vast majority of temperature vari-
ations in a convecting cell occur in its boundary layers
(McKenzie et al. 1974). Boundary layer theory justifies
a power-law relationship between Ra and the thickness
of the upper thermal boundary layer. Hence these pre-
vious works on isoviscous dynamic topography supposed
scaling relationships of the form h/(α∆Td) ∼ Ran (the
α∆Td term ensures that both sides of the proportional-
ity are dimensionless and n is uniquely defined).

In rocky planets, however, η changes with temperature
(Karato &Wu 1993); steep viscosity gradients across the
mantle are a defining trait of natural stagnant lid con-
vection in that the cold surface is too viscous to flow
(Davaille & Jaupart 1993; Solomatov 1995). Scalings
based on (1) defined using constant viscosity will not
necessarily provide an optimal fit to the topography of
stagnant lid bodies (Sembroni et al. 2017; Bodur & Rey
2019). In identifying a convecting system whose viscos-
ity decreases quickly with temperature, we need a second
dimensionless parameter in addition to a Rayleigh num-
ber: the viscosity contrast across the layer, ∆η = η0/η1,
where η0 is the viscosity at the top and η1 the viscosity
at the bottom. A nonuniform viscosity profile implies
many possible thermal Rayleigh numbers. Here Ra1 de-
notes (1) evaluated at η = η1. In simple numerical mod-
els, viscosity is often assumed to follow an exponential
law, η(T ) = η0 exp(−bT ), where the temperature pref-
actor b = ln (∆η) is a constant (Solomatov 1995).
Further, any Ra scaling function will only apply to

its intended convection regime. Canonical studies of
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temperature-dependent viscosity convection distinguish
between at least two series of regimes. These regimes
have their own transitions in Ra1-∆η space, which would
manifest as discontinuities in the scaling function. A
first series concerns the mobility of the surface: as ∆η

increases, a convecting system will move from a small
viscosity contrast regime (similar to the isoviscous case)
to a stagnant lid regime, via an intermediate regime of a
sluggish lid (Solomatov 1995; Moresi & Solomatov 1995;
Kameyama & Ogawa 2000). In a second series of tran-
sitions, the so-called stationarity of convection changes.
As Ra1 increases, the system will move roughly from a
steady-state regime to a chaotic time-dependent regime,
again through a transitional regime (Dumoulin et al.
1999; Solomatov & Moresi 2000). For either series, the
regime boundaries are not sharp in Ra1-∆η space, but
depend on this parameter space in a complex way via
the aspect ratio of convection and the initial conditions.
Whilst ascribing Ra1 presumes a bottom-heated con-
vection cell, different modes of heating may also affect
dynamic topography scaling relationships in ways we do
not yet understand.
A waypoint objective of this work is therefore to de-

velop a preliminary dynamic topography scaling rela-
tionship for the stagnant lid regime. Whilst the topog-
raphy of stagnant lid bodies has indeed been modelled
numerically before (Moresi & Parsons 1995; Solomatov
& Moresi 1996; Vezolainen et al. 2003, 2004; Orth &
Solomatov 2011; Golle et al. 2012; Huang et al. 2013),
the majority of this literature is directed at producing
geoid-to-topography ratios to invert for interior prop-
erties of Venus or Mars, as opposed to fully exploring
parameter space with forward models. As such, we are
aware of no published scalings as explicit functions of
the relevant convective parameters. Given the scope of
our work here, we do not attempt to characterise the
scaling behaviour near the regime discontinuities (which
would require a much finer grid of models in Ra1-∆η
space). Instead, we restrict ourselves to the chaotic
time-dependent stagnant lid regime located in Moresi
& Solomatov (1995) and Orth & Solomatov (2011), and
simulated previously with Venus- and Mars-like parame-
ters (Solomatov & Moresi 2000; Hauck 2002; Reese et al.
2005; Orth & Solomatov 2011). As such, we are assum-
ing that chaotic stagnant lid convection will apply to
most geodynamically-active rocky planets—an assump-
tion that may be tested in the future when detailed char-
acterisation of rocky exoplanets becomes possible.

1.2. The harmonic structure of planetary surface relief

In the second part of this study, we convert scaled
dynamic topographies into the corresponding volumes

of the largest possible ocean basin. The key product
here is a spherical harmonic expansion of this scaled to-
pography onto a Cartesian grid, as a synthetic elevation
map. Yet, all that our stagnant lid convection scaling
law provides is a scalar height value. With some conve-
nient assumptions about dynamic topography’s spectral
properties, it is in fact straightforward to find a power
spectrum which is consistent with both the scalar height
we have, and with some set of spherical harmonic coef-
ficients we need.
Initial observations of Venus, Earth, and Mars’ (to-

tal) topographies suggested a remarkably log-linear re-
lationship between the 1D power spectral density, φPSD

h

in m3, and the wavenumber, k in m−1. From spher-
ical harmonic degree l = 5 to at least l = 100,
the available spectra appeared consistent with a slope
dlogφPSD

h /dlogk ∼ −2 (Turcotte 1987; Rapp 1989;
Balmino 1993). This precise slope value was predicted
earlier still by Vening Meinesz (1951) and appears to be
physically-motivated (Sayles & Thomas 1978; Lovejoy
et al. 1995)—perhaps emerging from sediment trans-
port laws (Pelletier 1997, 1999; Roberts et al. 2019),
although we will not be considering topography’s mod-
ification by erosion explicitly. Statistically, a slope of
−2 corresponds to red noise, the noise associated with
a random walk process.
The convenient consequence of a log-linear spectral

model—with a pre-determined slope—is that it would
let us approximate the shape of any planetary sur-
face given just one free parameter; i.e., the y-intercept
of φPSD

h (k). As for dynamic topography in particu-
lar, models and Earth observations have indicated a
shallower spectral slope roughly consistent with pink
noise ∝ k−1, up to l ∼ 30 (Hoggard et al. 2016, 2017;
Davies et al. 2019). However, there is no evidence that
this spectral structure should characterise dynamic to-
pography under all tectonic regimes. Hence, we ex-
tract the spectral structure of our own numerically-
modelled stagnant lid topography profiles. We will see
that our rudimentary analysis again produces constant
dlogφPSD

h /dlogk values, albeit ones more strongly nega-
tive than −2. Observations of real stagnant lid bodies in
the solar system could then suggest an empirical modi-
fication of this purely-dynamic spectral model.

1.3. Study outline

Our methods are described in section 2. The approach
we take is outlined as follows: we begin by extracting
scaling relationships for the RMS amplitude of dynamic
topography from 2D numerical mantle convection sim-
ulations with temperature-dependent viscosity (section
3.1.1). Second, we embed these scaling relationships in
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a suite of 1D parameterised convection models, allow-
ing us to explore the sense of change of RMS dynamic
topography across a wide model parameter space and
planet age distribution (section 3.2.2). For this param-
eter study we focus on the planet mass, age, radiogenic
element abundance, and core mass fraction, all relevant
to the cooling history and Rayleigh number of a planet.
We focus on these four parameters because they may be
amenable to being observationally constrained for exo-
planets, at least in principle. Third, we synthesise 2D
maps from the projected RMS amplitudes to see how the
maximum capacity of ocean basins, and hence the mini-
mum elevation gain needed for dry land, might trade off
with planet size (section 3.3). We end with a discussion
of the study’s limitations and applicability (section 4).

2. METHODS

2.1. Numerical convection model

Numerical computations were performed using the
ASPECT code version 2.2.0 (Kronbichler et al. 2012;
Heister et al. 2017; Bangerth et al. 2020). For each case
we systematically varied two key input parameters: Ra1
and ∆η. Although we originally explored Ra1 varying
from 1×107 to 3×108, we found that simulations below
Ra1 = 1 × 108 were not in the chaotic time-dependent
regime, and showed characteristically different topogra-
phy scaling behaviour. Because the present study was
not designed to precisely locate these transitions, we fo-
cused only on the chaotic time-dependent regime. Sim-
ulations above Ra1 = 3× 108 were found to be compu-
tationally impractical.
Our ASPECT implementation results in dimension-

less temperature and velocity fields, denoted by the
prime symbol. These and their derivative quantities can
be dimensionalised as, e.g.,

T = ∆T T ′ + T0,

u =
κ

d
u′,

(x, y) = d (x′, y′),

δrh = d δ′rh,

δlid = d δ′lid,

h = α∆Td h′,

(2)

where T ′ is the dimensionless temperature, u′ is the hori-
zontal component of the dimensionless velocity, δ′rh is the
dimensionless thickness of the upper thermal boundary
layer, δ′lid is the dimensionless thickness of the stagnant
lid, h′ is the dimensionless height of topography, T0 is
the dimensional surface temperature, ∆T is the dimen-
sional temperature difference from bottom to surface,
and the other (dimensional) parameters are defined un-
der (1) above.

Table 1. Numerical model setup.

Case Ra1 ∆η Mesh size Initial temperatures

1 1× 108 1× 106 512 × 64 Sinusoid
2 2× 108 1× 106 1024 × 128 Sinusoid
3 3× 108 1× 106 1024 × 128 Sinusoid
4 1× 108 1× 107 512 × 64 Sinusoid
5 2× 108 1× 107 1024 × 128 Case 4
6 3× 108 1× 107 1024 × 128 Case 4
7 1× 108 1× 108 1024 × 128 Case 4
8 2× 108 1× 108 1024 × 128 Case 4
9 3× 108 1× 108 1024 × 128 Case 4
10 1× 108 1× 109 1024 × 128 Case 4
11 2× 108 1× 109 1024 × 128 Case 4
12 3× 108 1× 109 1024 × 128 Case 4

All simulations involve a 2D rectangular box with
fixed top and bottom temperatures, T ′0 = 0 and T ′1 = 1

respectively, and no internal heating. Free-slip bound-
ary conditions are ascribed to the top and bottom sur-
faces, whilst reflecting boundary conditions are ascribed
to the sides. We use a wide box with a nondimen-
sional depth Y ′ of unity and a nondimensional width
of X ′ = 8Y ′ to minimise the influence of the side walls.
We assume an incompressible, infinite-Prandtl-number
fluid and use the Boussinesq approximation. Viscosity
is Newtonian and varies with temperature according to
an exponential rheology law, η′ = exp(−b T ′), where
b = ln(∆η). We use the coarsest mesh size still able to
resolve the lower thermal boundary layer; this varies for
different Ra1. Table 1 lists the relevant details of the
model setup.
Each experiment is deemed to have reached quasi-

steady-state when both its RMS velocity stabilises to
within 0.002% and its top and bottom heat fluxes con-
verge. All time steps prior to this point are discarded,
and the models are then allowed to run for long enough
such that the distribution of RMS dynamic topography
is well-characterised. All cases are confirmed to be in the
stagnant lid mode of convection based on the surface mo-
bility criterion, S = (δ′0)2u′0 � 1, where δ′0 = δ′lid +δ′rh is
the dimensionless thickness of the lithosphere, and u′0 is
the dimensionless surface velocity (Solomatov & Moresi
1997).

2.1.1. Extraction of parameters from the temperature and
velocity profiles

The average thickness of the stagnant lid, δ′lid, is found
using the graphical method of Solomatov & Moresi
(2000). We first fit a smoothing spline of degree 4 to
the horizontally-averaged, time-averaged velocity mag-
nitude profile. To ensure we are detecting the lid, we
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find the inflection point associated with the greatest ve-
locity magnitude, and ignore the region downwards of
this point. We then find the maximum gradient of the
remaining spline. The intersection of the depth (y′) axis
with the tangent to the maximum gradient locates the
base of the lid, y′lid, so δ

′
lid = Y ′ − y′lid.

Another degree-4 spline fit to the temperature profile,
also horizontally-averaged and then time-averaged, tells
us the lid basal temperature T ′lid, being the value of the
spline at y′lid. The temperature of the nearly-isothermal
interior, T ′i , is defined by Solomatov & Moresi (2000)
as the local maximum horizontally-averaged tempera-
ture in the convecting layer. Here, we systematically
interpret this local maximum as the uppermost inflec-
tion point in the temperature spline.
Immediately below the stagnant lid is the upper ther-

mal boundary layer. Unlike the cold lid, this thinner
layer is dynamically unstable and does interact with the
rest of the convection cell; cold downwellings form lo-
cally where its thickness exceeds a critical value. Its
thickness is given by δ′rh = (T ′i − T ′lid)/F ′0, where F ′0 is
the total dimensionless heat flux out of the upper bound-
ary divided by X ′ (Thiriet et al. 2019). The drop from
T ′i to T ′lid defines ∆T ′rh, the temperature contrast across
the upper thermal boundary layer. The commonplace
subscript denotes “rheological" because ∆T ′rh is tied to
the rate of change of ln(η) with temperature; in expo-
nential viscosity models this is always a constant and
proportional to b.

2.1.2. Fitting a topography scaling relationship

The ASPECT code calculates the horizontal profile of
the surface dynamic topography via a stress balance at
the centre of each cell on the top boundary,

σyy = −ρgh, (3)

where σyy is the vertical component of the stress im-
parted by convection, g is the gravity, and ρ is the mantle
density. Equation (3) assumes mechanical equilibrium
between the surface topography and the interior density
structure, a safe assumption for the long timescales of
convection (e.g., Ricard 2015). At each time step, we
first normalise the dimensionless topography profile to
ensure its mean is zero, and then find its RMS value,
h′rms.
We choose the RMS amplitude of topography as the

representative scalar quantity to fit, rather than the
peak amplitude. This choice is based on the reasoning
that the RMS value may be less sensitive to the model
geometry—crucial for inferring 3D behaviour from 2D
models, as we will be doing. As such, we ran prelimi-
nary isoviscous convection simulations to confirm that

neither Cartesian nor cylindrical 2D geometries show
the same peak topographies as the equivalent 3D spher-
ical experiments from Lees et al. (2020), whereas, for
all three setups, the RMS topographies align well. That
the same result holds for non-isoviscous simulations is
an outstanding caveat of this study.
Earlier in section 1.1, we motivated the need for two

parameters, a Rayleigh number and viscosity contrast,
to fully describe stagnant lid convection. These will
serve as the independent variables in the scaling func-
tion. We define an interior Rayleigh number,

Rai =
αρg∆Td3

κη(Ti)
= Ra1

η(T1)

η(Ti)
; (4)

that is, evaluating (1) using the “interior” viscosity at
T ′i (Solomatov & Moresi 2000). This formulation of the
Rayleigh number is easily transferable to 1D convec-
tion models that predict a single mantle temperature,
and sidesteps any problems with predicting lower mantle
viscosities (where pressure effects are important). Also
with an eye toward 1D model integration, we use the
exponential temperature prefactor b = ln(∆η) as the
second variable. We anticipate a power-law relationship
and thus fit a linear model to b, log(Rai), and log(h′rms),
with an interaction term between b and log(Rai):

log h′rms = A+Bb+ C log Rai +D (b log Rai) , (5)

where T ′i in (4) is determined from the horizontally- and
time-averaged temperature profile as per section 2.1.1,
h′rms is taken as the mean of the RMS value over all
time steps, and the log notation refers to the base-10
logarithm here and throughout. Thus, each experiment
provides one (b, Rai, h′rms) coordinate. Whilst these
data have some distribution due to the chaotic time-
dependence of convection, we found that including the
standard error of the mean of log h′rms has negligible ef-
fect on the regression results (for simplicity we do not
consider the uncertainty on Rai).
Coefficients A, B, C, D, and their covariance matrix

are estimated using orthogonal distance regression. The
interaction term, D (b log Rai), accounts for cross-effects
between b and Rai. Although including the interaction
term adds an extra parameter, we will see that we need
this term to properly capture the observed effect of Rai
on h′rms, which has magnitude and direction depending
strongly on b as the data will show; the presence of the
fourth term decreases the residual variance of the fit by
three-fold compared to its absence.

2.2. Parameterised thermal history model
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Table 2. Dimensional parameters used in the 1D thermal history model. The top panel lists parameters which are constant
in all runs. The middle panel lists those parameters which are systematically varied in certain sections of the study, and held
constant at the baseline value where noted. The bottom panel lists the unknowns, treated here as random variables distributed
as given, such that a distribution of output parameters is obtained.

Symbol Description Value Units Ref.

Constant bulk properties for all planets
ρm Mantle density 3500 kg m−3 Thiriet et al. (2019)
cm Mantle specific heat 1142 J kg−1 K−1 Thiriet et al. (2019)
cc Core specific heat 840 J kg−1 K−1 Thiriet et al. (2019)
km Mantle thermal conductivity 4 W m−1 K−1 Thiriet et al. (2019)
αm Mantle thermal expansivity 2.5× 10−5 K−1 Thiriet et al. (2019)
κm Mantle thermal diffusivity 1× 10−6 m2 s−1 Thiriet et al. (2019)

Raucrit Critical Rayleigh number 450 - Thiriet et al. (2019)
arh Viscosity temperature scale coefficient 2.44 - Thiriet et al. (2019)
β Heat flow scaling exponent 1/3 - Solomatov (1995)
Ts Surface temperature 273 K

Variables tested in the parameter study
τ Planet age 2–4.5, baseline: 4.5 Gyr
Mp Planet mass 0.1–5.0, baseline: 1.0 M⊕ Rogers (2015); Zeng et al. (2016)
CMF Core mass fraction 0–0.4, baseline: 0.3 - Zeng et al. (2016)
χrad U and Th budget relative to solar 0.3–3.0, baseline: 1.0 - Nimmo et al. (2020)

Unknown random variables
Ea Viscosity activation energy U(200, 300) kJ mol−1 Karato & Wu (1993); Zhang et al. (2017)
η0 Viscosity prefactor U(2.6× 1010, 5.3× 1013) Pa s see section 2.2.3 in text

A,B,C,D Topography scaling coefficients N (µ,Σ)a - This work

awith mean µ and covariance Σ given by the results of the linear regression (see section 2.1.2 and Table 3).

In a fraction of the CPU time of a full dynamical
convection simulation, parameterised convection models
can result in similar temperatures to numerical models
by tracking heat fluxes across the two thermal boundary
layers (Thiriet et al. 2019). Parameterised convection
can also produce a thermal history of the planet, from
which we can extract a self-consistent evolution of dy-
namic topography. Further, such low-cost models invite
parameter studies, which naturally we conduct in this
segment. Important caveats are discussed in section 4.
We will be exploring how topography changes with

planet age, τ , mass, Mp, core mass fraction, CMF, and
radiogenic heating expressed as an abundance of U and
Th relative to the Sun, χrad. As such, these four param-
eters are independently and systematically varied be-
tween experiments. Meanwhile, we anticipate that some
of the biggest uncertainties lie in the unknown mantle
rheology. To see how these uncertainties would prop-
agate, rather than testing their effect on hrms explic-
itly, we will treat the parameters in the viscosity law as
uniform random variables. In addition to the viscosity
parameters, we also account for model uncertainty by
drawing the topography scaling coefficients in (5) from
a multivariate normal distribution whose mean and co-

variance are given by the results of the regression from
section 2.1.2. Table 2 lists all dimensional input param-
eters used in the 1D model, which the remainder of this
section describes.

2.2.1. Governing energy balances

The approach outlined here closely follows that of
Thiriet et al. (2019). The mantle and core temperatures
are governed by the 1D energy balances,

Mm cm
dTm
dt

= −quAu + qradMm + qcAc,

Mc cc
dTc
dt

= −qcAc,
(6)

where t is time in s, Mm is the mass of the convecting
part of the mantle in kg, cm is the mantle specific heat
capacity in J kg−1 K−1, qrad is the radiogenic heat flux in
W kg−1, qu is the heat flux out of the top of the convect-
ing region in W m−2, and Au is the surface area of the
top of the convecting region in m2. The subscript u de-
notes the upper boundary layer; the analogous notation
with subscript c applies to the core. Mc is found through
the core mass fraction. Just as in the 2D models, we ex-
plicitly include a mechanical stagnant lid, sitting atop
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the upper thermal boundary layer, never participating
in convection.1 Our choice of initial conditions for the
governing equations are explained in section 2.2.5.
Note also that we assume a perfectly spherical planet.

For simplicity, and for consistency with our assumption
of incompressibility in the 2D models, we treat cm and
other thermodynamic quantities as constant throughout
the mantle (i.e., always equal to their reference values at
the top of the convecting mantle); in reality these would
vary with the adiabatic profile. This assumption would
be a greater source of error for more massive planets
with higher pressures at the base of the lithosphere. Al-
though (6) simplifies the problem by omitting other heat
fluxes like volcanism (see section 4.4.3), it will suffice in
capturing the essential behaviour of a cooling convective
planet (Jaupart et al. 2015).

2.2.2. Interior structure

The radius of the planet, Rp, is based on the
physically-motivated mass-radius relation in Zeng et al.
(2016),

Rp
R⊕

= (1.07− 0.21 CMF)

(
Mp

M⊕

)1/3.7

, (7)

whilst the radius of the core, Rc, is from Zeng & Jacob-
sen (2017),

Rc = Rp CMF0.5. (8)

We use a surface gravity gs consistent with Mp and Rp.
Note that Table 2 suggests the mantle density, ρm, is a
constant, but (7) and (8) assume that density decreases
radially outwards such that gravity is constant through
the mantle. Our box model can be said to treat ρm as a
near-surface value, apt for the upper thermal boundary
layer typically found at r ≈ 0.99Rp. Note that (7) and
(8) entail extrapolating equations of state to pressures
beyond their validity range, which could lead to errors
in Rp and Rc, compared to more accurate high-pressure
equations of state such as in Hakim et al. (2018). Even
at 5 M⊕, however, the radius predicted by (7) is 1.2%
smaller than that from Hakim et al. (2018) for an Earth-
like core size. This radius error has no effect on RMS
dynamic topography, but decreases ocean basin sizes by
8%. Significant errors in dynamic topography predic-
tions would come with Rp overinflations of more than

1 Note that this study does not make a compositional distinction
(e.g., in density or heat-producing element concentration) be-
tween the convecting mantle and the lid. In reality, this mechan-
ical boundary layer would partially overlap with the planetary
crust, the latter being the product of bulk mantle that partially
melted, generated magmas that rose buoyantly to the surface,
and re-crystallised as a lower-density rock.

20%. In detail, accurate mass-radius relations will re-
quire tailoring to specific bulk compositions.
In the parameter study, we vary CMF from 0.0 to 0.4,

the quoted range for which (7) is valid. Neglecting any
potential silicate mass loss after planet differentiation,
oxidation chemistry predicts a theoretical upper CMF
of 0.34 (Dyck et al. 2021). We consider values of Mp

ranging from 0.1M⊕ to 5M⊕, corresponding to a Mars-
sized body and to an equivalent radius slightly below
the accustomed upper limit for rocky planets at 1.6 R⊕
(Rogers 2015) based on (7) with a CMF of 0.33.

2.2.3. Mantle rheology

The rheology of rocky mantles is thought to obey an
Arrhenius law (Karato & Wu 1993). The Arrhenius
functional form yields exceedingly large viscosity con-
trasts over the cold lithosphere—spawning numerical is-
sues in 2D models that preclude its use there. We exploit
the Arrhenius form in the 1D model, but to maintain
consistency between our 1D and 2D models, we ignore
any pressure-dependence and non-Newtonian behaviour.
We adopt a canonical law for diffusion creep as a func-
tion of temperature,

η(T ) = η0 exp

(
Ea
RbT

)
, (9)

where η is the dynamic viscosity in Pa s, Rb = 8.314

is the gas constant in J mol−1 K−1, Ea is the activation
energy in J mol−1, and η0 is a prefactor with the same
units as η. Note that our definition of η0 does not act
as a “reference viscosity" sometimes employed; it just
encompasses all pre-exponential terms. In natural sys-
tems, the mantle viscosity will also depend on pressure;
this caveat is discussed in section 4.2.
In testing variations of η0 and Ea, we shall try to

capture the uncertainty imparted by unconstrained ex-
oplanet rheologies. Strain rates brought on by the dif-
fusion creep of silicate mantle rock would be strongly
affected by both the water content and the bulk mineral-
ogy. For olivine, Karato & Wu (1993) give the canonical
wet (water-saturated) and dry (water-free) flow laws: Ea
from 240 kJ mol−1 in the former to 300 kJ mol−1 in the
latter; water weakens the rock. For the pre-exponential
coefficient η0, the same canonical laws correspond to
1.6 × 1011 and 2.6 × 1011 Pa s, which produces a dry
olivine viscosity of ∼1021 Pa s at 1600 K.
We also expect to find overall higher viscosities inside

planets that have mantles with lower Mg/Si compared to
Earth’s value of ∼1.3 (Pagano et al. 2015; Spaargaren
et al. 2020; Ballmer & Noack 2021). At Mg/Si < 1,
the upper mantle composition would be dominated by
orthopyroxene; at Mg/Si near 2 it would approach pure
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olivine. Our coarse treatment considers some empirical
end members. We have laws for olivine; Zhang et al.
(2017) give an Arrhenius flow law for the diffusion creep
of enstatite. They find that Ea = 200 kJ mol−1, that wet
enstatite is approximately 10 times more viscous than
wet olivine at depth, and that virtually-dry enstatite is
about 100 times more viscous than wet enstatite.
So far, this simple mineralogical paradigm would im-

ply that water-saturated regions of Earth’s upper man-
tle would exhibit the weakest-possible diffusion creep
among rocky planets. To be conservative, we set a mini-
mum η0 of 2.6×1010 Pa s, an order of magnitude weaker
than wet olivine (Karato & Wu 1993). The maximum
η0 is set at 5.3 × 1013 Pa s, approximating a dry en-
statite rheology (Zhang et al. 2017). We test Ea be-
tween 200 kJ mol−1 and 300 kJ mol−1. Both Ea and
η0 are drawn from random uniform distributions. By
varying these parameters independently, we are likely
overestimating the true uncertainty if they are in fact
correlated. Note that we do not self-consistently adapt
other bulk properties to account for the unknown min-
eralogy (an invaluable endeavour, but outside the scope
of the current manuscript).

2.2.4. Heat fluxes

Internal heating—The radiogenic heat flux at t is:

qrad =

4∑
i=1

χicihi exp

[
(τ − t) ln 2

τ1/2,i

]
, (10)

χi =

χrad if i ≥ 2

1 otherwise

where we are summing over the heat-producing isotopes
40K, 238U, 235U, and 232Th, ci is the present-day bulk
silicate Earth concentration of the ith isotope in kg kg−1,
hi is the heating contribution in W kg−1, and τ1/2,i is
the half-life in the same units as t. Values for these
parameters are taken from Table 1 in O’Neill et al.
(2020). Further, for the refractory elements U and Th,
we multiply the summand by a common factor χrad

to reflect potentially-extraterrestrial variations in the
abundances of these r-process elements. As surveyed in
Nimmo et al. (2020), U and Th abundances are conser-
vatively expected to vary across Sun-like stars from be-
tween 30% to 300% of the solar value, which—assuming
that relative mantle concentrations directly reflect rel-
ative stellar abundances (Thiabaud et al. 2015; Hinkel
& Unterborn 2018; Putirka & Rarick 2019; Adibekyan
et al. 2021)—translates to a range in qrad of 2.22–14.34
pW kg−1 at 4.5 Gyr, with the baseline value equivalent
to 5.36 × 10−12 W kg−1. (We ignore the unconstrained
variations in 40K, a volatile isotope which in any case

contributes less heating with age than refractory U and
Th.) Although we do not account for the galactic chem-
ical evolution of U and Th abundances as a function of
stellar age (Frank et al. 2014), some of this variation is
captured in χrad regardless.

Thermal boundary layers—Across the upper and lower
thermal boundary layers, heat fluxes are conductive:

qu,c = km
∆Tu,c

δu,crh

, (11)

where km is the mantle thermal conductivity in
W m−1 K−1, ∆Tu (respectively ∆T c) is the tempera-
ture contrast across the upper (lower) boundary layer in
K, and δurh (δcrh) the thickness in m.
The thermal boundary layer thicknesses are controlled

by their local Rayleigh numbers:

δu,crh = (Rlid −Rc)
(

Rau,ccrit

Rau,crh

)β
, (12)

Rau,crh =
αρgu,c∆Tu,c(Rlid −Rc)3

κη(Tu,c)
, (13)

where Rau,crh is the local Rayleigh number, Raucrit is the
critical Rayleigh number for convection, and β is a con-
stant which can be obtained from either experiments
or theory. For both thermal boundary layers we take
β = 1/3, such that qu is independent of d; the bound-
ary layers are assumed to be in a state of marginal sta-
bility (e.g., Solomatov 1995). The value of β is tied
physically to the planet’s dominant cooling mechanism,
which strongly depends on the tectonic mode (Lenardic
2018; Seales & Lenardic 2020). The choice made here is
appropriate for chaotically-time dependent, stagnant lid
convection with temperature-dependent viscosity (Solo-
matov 1995; Solomatov & Moresi 2000). Other fitting
choices do not significantly change our results (Thiriet
et al. 2019).
For the upper thermal boundary layer, we have:

∆Tu = Tm − Tlid; η(Tu) = η(Tm); gu = gs; and we
fix Raucrit at 450. Now for the lower layer, this becomes:
∆T c = Tc − Tm; η(T c) = η[(Tc + Tm)/2]; gc the gravity
at Rc; and after Deschamps & Sotin (2000), Racrit,c =
0.28Ra0.21i , with Rai the interior Rayleigh number de-
fined for 1D convection in (17). Although Racrit,c can
be tricky to parameterise, Tc tends to equilibriate with
Tm fairly quickly under this setup, hence qc � qu.
Finally, the temperature Tlid at the base of the lid in

K (identically, at the top of the convecting region) is ob-
tained for parameterised convection in a similar way to
numerical models. The temperature drop between Tm
and Tlid is proportional to the so-called viscous temper-
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ature scale, ∆Tν (Davaille & Jaupart 1993):

Tlid = Tm −∆Trh = Tm − arh∆Tv, (14)

∆Tν =
η(Tm)

dη/dT |Tm

=
RbT

2
m

Ea
. (15)

The coefficient arh is empirically-determined; we adopt
a value of 2.44 for β = 1/3 based on Thiriet et al.’s
(2019) fits to 3D spherical convection simulations. The
radius Rlid of this temperature coordinate is described
in the next section.

2.2.5. Stagnant lid thickness and the final governing
equation

The lid does not instantly grow or shrink in response
to a change in the heat flux coming from the upper ther-
mal boundary layer. Rather, there is a lag in which δlid
adjusts such that the difference between the flux out of
the top of the lid and the flux into the base of the lid is
minimised:

dδlid
dt

=
qlid|Rlid

− qu
ρmcm(Tm − Tlid)

, (16)

where the heat flux profile of the lid, qlid(r) in W m−2,
is obtained by solving the steady-state conductive heat
transfer equation in spherical geometry with bound-
ary conditions (Rlid, Tlid) and (Rp, Ts) where Ts is the
surface temperature in K, and with internal heating
equal to the mantle qrad (in reality, we might antici-
pate higher concentrations of lithophiles U, Th, and K
in the lid). This steady-state formulation ignores the
time-dependence of heat conduction in the lid, leading to
errors compared to a time-dependent model in the sur-
face heat flux of . 5 mW m−2 for a Mars-sized planet. A
smaller error is expected for larger planets with thinner
lids (Thiriet et al. 2019).
We account for the mass of the convecting re-

gion changing with δlid by subtracting the lid mass,
ρm4π/3(R3

p − R3
lid), from the fixed quantity Mp(1 −

CMF). At each time step we also updateRlid = Rp−δlid.
Thus (16) presents a third differential equation that
must be solved simultaneously with (6). We solve
this system of equations using the explicit Runge-Kutta
method of order 5. The initial conditions, Tm,0, Tc,0,
and δlid,0 reflect the unknown formation history of the
planet—the leftover gravitational energy of accretion
and core segregation, and the crystallisation of the pri-
mordial magma ocean(s). To bypass this uncertainty,
we only consider simulations that have converged to a
memoryless state. That is, we prime each experiment
by running it forwards from t = −5 to 0 Gyr, and using
the solution at 0 Gyr as the initial conditions. Then (6)
and (16) are solved again from t = 0 to τ .

2.2.6. Dynamic topography

Once we have a solution for the planet’s thermal his-
tory, we combine these results with (5) to find h′rms.
Since we have b and Rai forming the basis of the topog-
raphy scaling from 2D experiments, applying (5) to 1D
thermal histories requires writing 1D-appropriate ana-
logues of these two variables. An analogue of Rai is
quite straightforward; for parameterised convection this
variable is defined a posteriori as

Rai =
αmρmgs∆T (Rp −Rc)3

κmη(Tm)
, (17)

where ∆T = Ts − Tc. This equation is the same as
(4) using the dimensional parameters for the mantle in
Table 2 and simply letting the interior viscosity η(Ti) =

η(Tm). For our runs, Tc ≈ Tm. Note also that Rai differs
from Raurh (13) in that the latter excludes the stagnant
lid from its domain.
Meanwhile, b as defined in the exponential viscosity

law must be related to Arrhenius law parameters, since
the 1D convection model the latter, more-realistic law.
Moresi & Solomatov (1995) demonstrate such an expo-
nential approximation to an Arrhenius law. The ap-
proximation comes from the idea that in the stagnant
lid regime, it is the local rheological gradient over the
upper thermal boundary layer that propels temperature-
dependent viscosity convection, rather than the total do-
main viscosity contrast, ∆η (Davaille & Jaupart 1993).
One can therefore write η(T ) ∼ exp [(∆T/∆Tν)T ],
where the viscous temperature scale ∆Tν is re-scaled by
∆T to make the temperature prefactor dimensionless.
From (15) this implies

b =
∆T

RbT 2
m/Ea

. (18)

In 2D applications, setting Tm at the interior tempera-
ture just below the upper thermal boundary layer would
create a viscosity profile which is most closely aligned to
the Arrhenius profile, especially over the key region of
the upper thermal boundary layer (Moresi & Solomatov
1995).
Finally, the dimensionless h′rms resulting from (18),

(17), and (5) is scaled by αm∆Td (2) to get the di-
mensional hrms. To clarify, we do consider the whole
domain in the dimensionalisation, so d = Rp − Rc and
again ∆T = Tc − Ts; the fact that several of these con-
stituents evolve with time means that hrms is a function
of the age of the planet.
These calculations so far have assumed subaerial to-

pography. Water-loaded topography would be higher by
a factor of ρm/(ρm− ρw) ≈ 1.5, where ρw is the density
of water.
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It is worth mentioning at this point that the depen-
dence in several places on Ts—inside the definition of
b in particular—means there is a certain sensitivity of
hrms to this free parameter. For example, all else held
constant at the baseline value (Table 2), increasing Ts
from 273 to 373 K is associated with a 30% decrease
in hrms. However, because this study is only concerned
with temperate planets which have a narrow range in
Ts, we do not consider its effect on topography.

2.3. Expansion to maps and the volume of ocean basins

We have based our scaling relationship on hrms (sec-
tion 2.1.2), yet it is the peak topography, hpeak, that
controls how much water a planet’s surface reservoirs
can hold at the maximum capacity. Therefore we require
the peak topography associated with an RMS value in a
3D spherical geometry, given assumptions about topog-
raphy’s distribution.
Appendix A explains the relevant spherical harmon-

ics method in more detail. Suppose we have a log-linear
power spectrum, which fiducially describes dynamic to-
pography amplitudes on a sphere. Essentially, for each
run of 1D thermal evolution, we transpose the power
spectrum vertically such that its frequency-domain RMS
value matches the spatial-domain RMS value expected
from the hrms(Rai, b) scaling function. The transposed
spectrum is expanded onto a 2D map, h(x, y), which has
its own hpeak = max(h). The volumetric ocean basin ca-
pacity in cubic metres—the main intended application
of our topography modelling—is estimated as

Vcap =
ρm

ρm − ρw

∫
[hpeak − h(x, y)] dS

=
ρm

ρm − ρw
4πR2

phpeak,
(19)

where the integral is over the surface S and the 2D map
is multiplied by the density ratio term to account for
water-loaded topography (our purpose here entails that
the whole map is underwater, save for the single grid
point corresponding to hpeak). The actual basin capac-
ities of Venus, Earth, and Mars defined this way are
3.4, 3.3, and 2.9 Earth oceans respectively—we expect
to find lower values by considering only dynamic topog-
raphy.
Robust models of dynamic topography power spectra

are not available at this time. Instead, for the spectrum
needed above, we explore three hypothetical scenarios.
The first and most simple model is that all topography
behaves like red noise, as per the historical paradigm
introduced in section 1.2 (e.g., Turcotte 1987). The sec-
ond option is to represent empirical dynamic topography
with the observed shape of Venus—although broad re-
gions of Venus’ highlands indicate isostatic support, so

Table 3. Topography scaling coefficients and their errors
obtained from fitting a multiple linear regression model with
an interaction term to equation (5). The bottom row reports
the residual variance, σ2

res, of the fit.

A B C D

Best fit 9.581 -0.5818 -1.510 0.07536
Standard deviation 3.298 0.1859 0.4220 0.02379

σ2
res = 1.584× 10−3

the resulting spectral distribution should reflect a mix
of support mechanisms (e.g., Kiefer et al. 1986; Arkani-
Hamed 1996; Simons et al. 1997; Yang et al. 2016); fur-
ther, Venus may not be a perfectly archetypal stagnant
lid planet, and be better described instead by a plutonic-
squishy lid regime (Lourenço et al. 2020). Option three
is to be consistent with the pure dynamic topography
we already produced to feed our scaling functions: we
derive time-averaged power spectral densities from the
numerical topography profiles, to which we fit a generic
model.
Although the present study only considers dynamic

topography, this same framework could be applied to
any kind of topography on a planet as long as we can
infer its spectral distribution.

3. RESULTS

3.1. Numerical modelling results

The products of numerically-modelled chaotic stag-
nant lid convection include time-dependent, dimension-
less temperature fields and surface dynamic topogra-
phy profiles (figure 2). For each case, temporally- and
horizontally-averaged temperature fields are used to cal-
culate T ′i , Rai, and other convective parameters; full
outputs can be found in Table B1 in the appendix to
this paper. Average T ′ profiles hardly vary in time,
hence neither does T ′i nor the average position of the
upper thermal boundary layer’s base. Stepping up Ra1
thins δ′rh, and lowers the RMS height of topography in
the regime we explore numerically. Increasing ∆η thick-
ens the stagnant lid because high viscosities are reached
at lower depths; this is also associated with a slight in-
crease in δ′rh.

3.1.1. Fit to RMS height of topography

Figure 3 shows the four-parameter linear fit between
log(h′rms), log(Rai), and ln(∆η), using the functional
form in (5). Best-fit parameter values and standard
deviations are given in Table 3. The residual variance
of this fit is σ2

res ∼ 10−3, equal to the sum of squares
error divided by the degrees of freedom. Because the
fitted data correspond to averages over model time, the
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Figure 2. Snapshot from a single time step of the dimensionless temperature field (bottom), surface dynamic topography, h′

(top), and temperature profile, T ′ (right), for chaotically time-dependent convection in the stagnant lid regime. This example
shows Ra1 = 1×108 and ∆η = 1×108. The dimensionless temperatures range from 0 (cold; blue) to 1 (hot; red). The grey box
in the temperature profile shows the instantaneous location and thickness of the upper thermal boundary layer. The vertical
scale of h′ is exaggerated.

Figure 3. Fitted scaling relationship for dimensionless
RMS dynamic topography, h′rms, from 2D numerical con-
vection simulations (n = 12). Topography is given by a
four-parameter linear model, which depends on the interior
Rayleigh number, Rai, and the viscosity temperature pref-
actor, b = ln(∆η). Markers represent individual cases (see
Table 1) and are coloured according to ∆η. The uncertain-
ties on h′rms, taken to be the standard errors of the mean,
are smaller than the marker size. Dashed lines represent the
best-fit parameter combination at discrete ln(∆η). Swaths
span one standard deviation of the response variable, prop-
agated from the covariance matrix of the fit.

standard errors of the mean independent and dependent
variables are all small and do not impact the regression.
The key piece of information from this section is that

chaotic convection with temperature-dependent viscos-
ity does not lend itself to constant power-law scalings of
h′rms with Rai (or Ra1). The value of ∆η is effectively
altering the slope of log(h′rms) with log(Rai). Smaller
viscosity contrasts of 107 (b = 16) and below are asso-
ciated with strongly negative slopes. With increasing
∆η, the slope grows systematically shallower, until it
changes sign between ∆η = 108 (b = 18) and ∆η = 109

(b = 20). Conversely, the effect of Rai on ∆η is such
that at higher Rai above ∼ 6× 107, large viscosity con-

trasts favour high RMS topography, whilst at lower Rai
below ∼ 6 × 107, small viscosity contrasts favour high
RMS topography. At Rai ∼ 6× 107, these slopes “cross
over" and the effect of ∆η disappears.
Evidently this behaviour is governed by a complex,

chaotic system; extracting a general mechanistic under-
standing is compromised by the limited number of runs
performed here. The effect of ∆η to increase h′rms may
be related to thermal isostatic uplift within the stag-
nant lid (Kucinskas & Turcotte 1994; Moore & Schu-
bert 1995; Orth & Solomatov 2011). We include thermal
isostasy as part of the full dynamic topography. Under
a swell, hot low-density upwelling material extends to
shallower depths. To compensate, the cold, dense over-
lying lithosphere grows thinner, and it is buoyed up-
wards. It can be shown that the maximum amount of
thinning is directly proportional to the average litho-
spheric thickness. Hence, higher-viscosity-contrast con-
vection, with its deeper lid bases, will enable a greater
magnitude of thermal thinning. Meanwhile, smaller Rai
are associated with thicker δrh, to which dynamic topog-
raphy should be proportional (Parsons & Daly 1983).
(For a constant ∆η, lowering Ra1 also slightly increases
δlid and thus the potential for thermal thinning.) We
speculate that there is a trade-off whereby the ∆η ef-
fect dominates when stagnant lids are already thick and
when convection is too vigorous to support high topog-
raphy in its thin thermal boundary layers. Conversely,
for lids that are not particularly thick, Rai (and δrh)
become more relevant.
A corollary of this is that at the still-higher values

of Rai expected for realistic rocky planets (up to sev-
eral orders of magnitude beyond the range amenable
to numerics; see discussion in section 4.4.2), the sensi-
tivity of h′rms to the viscosity scale becomes quite high
indeed. If the absolute viscosity follows an exponential
law, η(T ) ∼ exp(−bT ), high b is associated with low η

for the same T , implying low h′rms.
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3.2. Parameterised modelling results
3.2.1. Thermal evolution

Underlying thermal histories are sampled in figure
4. Because all test planets are initialised at quasi-
equilibriated temperatures and stagnant lid thickness,
their evolutionary paths reflect secular cooling alone,
which track roughly parallel at around −100 K Gyr−1.
Radiogenic heating inevitably declines with age, with
surface heat losses lagging behind slightly; the present-
day Urey ratios are ∼0.65 depending on planet mass.
Interior temperatures and Rai increase with Mp as

anticipated from simple scaling laws. We expect the
heat flux qu to increase linearly with planet radius for
a fixed internal heat generation rate. This implies that
qu ∝M1/3

p , ignoring compression. We can rewrite (11)–
(15) as

ηu =
ρmg

uαmk
3
ma

4
rh∆T 4

ν

κmq3uRaucrit
, (20)

Thus we have ηu ∝ M−1p ; (17) leads to Rai ∝ M2
p for

approximately the same temperature difference. A five-
times more massive planet has a 25-times larger Rai (see
also Stevenson 2003; Kite et al. 2009).
Figure 4 illustrates how uncertainty in the viscosity

law parameters Ea and η0 affects the spread and mean
behaviour of the dimensional hrms and its physical con-
stituents over time. Temperature-dependent viscosity
exhibits self-regulating behaviour: a slight increase in
temperature lowers the viscosity, hence more vigorous
convection via (1). This leads to more efficient heat loss
out of the top of the convecting cell, lowering temper-
atures in turn. This positive feedback is not visible in
a single run (which are already at quasi-steady-state in
our case), but we do see the effect at play over the entire
ensemble: its range of ηm(t) is always less than an order
of magnitude, despite a three-order range in η0. Mean-
while, Tm is adjusting such that qu approaches a bal-
anced state for a given qrad and surface area-to-volume
ratio. Hence the rheological uncertainty manifests itself
in Tm.
We note that these calculated Rai values are on av-

erage higher for a given Mp than those commonly as-
sociated with Venus or Mars. The thermal Rayleigh
numbers of real planets require some dexterity to ex-
tract, but the few constraints available suggest a value
on the order of 106 for Mars (Kiefer 2003; Samuel et al.
2019). Constraints for Venus are even more scarce, but
previous work employs Ra at upper mantle tempera-
tures on the order of 107 up to 108 (Huang et al. 2013;
King 2018). This discrepancy is partly explained by the
more viscous mantles we permit in this exoplanet study.
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Figure 4. Thermal evolutions sampled from the 1D model
ensemble, as a function of time in Gyr. From top to bot-
tom: mantle temperature, Tm in K, mantle viscosity, ηm in
Pa s, dimensionless inverse viscous temperature scale, b, in-
terior Rayleigh number, Rai, topography dimensionalistion
factor, d∆Tαm in m, and RMS dynamic topography, hrms

in m. Columns compare planet masses from 0.1 M⊕ (left),
through 1 M⊕ (centre), to 5 M⊕ (right). Each thin black
line (n = 500) represents a single evolution, drawing random
values of the unknown viscosity activation energy and pref-
actor, hence an evolutionary spread. Green lines follow the
ensemble mean (for Rai, which is log-normally distributed,
this is the log-normal mean). All runs use baseline values of
the core mass fraction and radioisotope budget. Parameter
values and random variable distributions are given in Table
2.
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Further caveats to our Rai estimates are discussed in
section 4.4.3.
The dimensional hrms reflects a trade-off between b,

Rai, and the dimensionalisation factor d∆Tαm through
(2) and (5). Extrapolating figure 3 would imply that, in
the b-Rai regime of the 1D models, high hrms is favoured
with high b and low Rai. Thus deep, hot, weak mantles
are doubly-inhibited from having any remarkable topog-
raphy. It is clear from figure 4 that deeper mantles are
not enough to make up for lost h′rms.
Ultimately, the thermal state plays a main role in

limiting the amplitude of dynamic topography. Hotter
mantles necessitate lower viscosities, more vigorous con-
vection, and thinner thermal boundary layers. Within
these thinner boundary layers, there may be less scope
for density variations related to thermal expansion. If
we know some property of a planet to have a strong ef-
fect on its interior temperatures, then we might expect
it to also impact its dynamic topography.

3.2.2. Dynamic topography as a function of bulk
exoplanetary properties

We now test the topographic reaction to planet age,
mass, CMF, and radioisotope budget (figure 5). We
find hrms to decrease with Mp and χrad, and increase
with age and CMF. Assuming that the x-axes in this
figure cover the limits within which we expect to find
most rocky exoplanets, then it is plausible that the re-
sulting y range marks the variability of pure dynamic
topography which nature could manifest, if our scaling
relationship indeed applies. The fact that hrms drops
by the largest absolute amounts over Mp and χrad re-
flects the geodynamic significance of these parameters,
as well as the spread over which we would expect to

find rocky planets. The senses of change of hrms with
Mp and χrad are predictable from their known effects on
Tm. That is, hotter interiors are expected for massive,
U- and Th-rich planets, hence lower hrms. Uncertainty
in hrms predictions is tied to uncertainty around the un-
derlying thermal histories: yet another clue to the im-
measurable usefulness of characterising this uncertainty
more rigorously (e.g., Seales & Lenardic 2020).
The raw values of hrms predicted by our scaling rela-

tionship are on the order of hundreds of metres, whilst
the hottest planets can exhibit mere tens of metres
of dynamic topography. In fact, due to inherent self-
regulation, it is difficult to achieve significantly higher
topographies in our 1D model while keeping to Earth-
like values of the free parameters. This result may seem
very low when compared to the heights of typical topo-
graphic features seen across the Solar System. However,
a fair comparison requires isolating an RMS height of
just the dynamic component of topography; this is not
model-independent, as we will discuss (section 4.3.4).

3.3. Ocean basin capacity scalings

We have tested three fiducial spectral models to find
a relationship between the RMS and peak value of dy-
namic topography. The theoretical red noise model, the
empirical Venus model, and the numerical dynamic to-
pography model all produce an hpeak which is, on aver-
age, some constant scalar multiple of hrms. For both nu-
merical dynamic topography and the total Venus topog-
raphy, hpeak ≈ 3.5hrms, and for red noise topography,
hpeak ≈ 3.9hrms. (For a pink noise structure similar to
Earth’s observed dynamic topography, hpeak ≈ 4.0hrms.)
We use our hpeak estimations to derive the ocean basin

volume capacity Vcap as a function of planet mass (fig-
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ure 6). This quantity represents the smallest volume
of surface liquid water that would entirely inundate a
planet. The actual land fraction requires knowing the
ocean mass. We leave sea level as an unknown quantity
and simply consider fiducial surface water budget sce-
narios. Specifically, we treat the amount of surface water
as a constant mass fraction of Mp. This parameterisa-
tion brackets the planet’s total water budget with its
volatile partitioning between the interior and exterior—
in reality the amount of water stored in the mantle would
affect the planet’s thermal evolution through its rheol-
ogy (and melting history, which is not modelled).
As the basin volume capacity changes with Mp, so

too does the water volume corresponding to this mass
fraction (we assume a density of 1000 kg m−3; salt water
is slightly denser). Figure 6 can be read as follows: for
a given surface water budget, the planet mass where
this contour intersects the basin capacity gives the most
massive planet that could sustain land with dynamic
topography alone. For example, a 1-M⊕, 4.5-Gyr-old
planet endowed with solar U and Th could hold about
0.3 Earth oceans on its surface. The internal heating
rate has a strong influence on Vcap.
Figure 6 compares different assumptions about the

spectral distribution of topography, which would affect
the relationship between the peak and RMS topogra-
phy. The dynamic topography and Venus models over-

lap identically, and the red noise spectrum results in only
slightly larger Vcap, seemingly because they are very sim-
ilar in the low-degree regions where most of their power
is concentrated. The basin volume corresponding to an
infinitesimally-small but nonzero land area is insensitive
to the distribution of topography at high frequencies.
We can formulate these results in terms of a sim-

ple scaling analysis. Equation (19) can be written as
Mcap = 4πR2

pρwρm/(ρm − ρw)hpeak, where Mcap is the
ocean basin capacity in kg. For Earth’s ocean mass
(1.4×1021 kg), this means a peak topography hpeak less
than 2.7 km leads to a waterworld. If hpeak were inde-
pendent of planet mass, we would expect Mcap ∝M2/3

p

due to the increase in surface area alone (the mass-radius
relation in (7) gives a slightly shallower power due to
compression). However, we have hpeak strongly decreas-
ing with increasing mass. For dry olivine and solar U
and Th abundances, hpeak ∝ hrms ∝M−0.5p . From (19),
Mcap ∝ R2

phpeak, so Mcap ∝ M0.04
p using (7). Warmer,

less viscous interiors decrease this exponent, so the most
massive rocky planets have the smallest basin capac-
ities even though they have the largest surface areas.
If the pressure of a topographic load is balanced only
by a constant compressive strength of the crust rock,
we have hpeak ∝ g−1, and the resulting proportional-
ity Mcap ∝ M0.08

p is also quite flat (though the overall
basin capacity would be higher). We are being conser-
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vative about how likely planets are to have dry land by
considering only dynamic topography.
It is important to emphasise that the basin capaci-

ties shown in figure 6, based on dynamic topography
alone, are likely underestimating the true value. The
observed topographies of Venus, Earth, and Mars pro-
duce basin capacities of 3.4, 3.3, and 2.9 Earth oceans
respectively, whereas the model produces basin capaci-
ties of <1 Earth ocean. The peak and RMS elevations of
our terrestrial planets are much higher than those pre-
dicted by the dynamic topography scaling here. Other
mechanisms contribute to supporting higher topography
on planets. Also, our model may under-predict dynamic
topography for a given planet mass, as we will discuss
in the next section.

4. DISCUSSION

4.1. Expanding RMS topography

Figure 6 suggests that reasonable changes to the spec-
tral distribution of topography have no strong effect
on how peak dynamic topography scales with planet
mass, and hence on the volume of water that could be
contained below this highest point. Our concern with
topography’s characteristic harmonic structures might
thus seem somewhat tangential to (or in the worst case,
distracting from) the basic problem that this study pur-
ports to address. However, these details would become
more of a concern if the field can mature—and especially
if we hope, someday, to use informed topography distri-
butions as a boundary condition in exoplanet climate
models (e.g., Turbet et al. 2016; Rushby et al. 2019).
For example, the volume calculated in (19) represents
the amount of water that would flood a planet exactly,
leaving just an island with infinitesimally-small area.
Yet in principle one could also calculate the maximum
basin size associated with any arbitrary land fraction.
These intermediate land fractions may be much more
sensitive to spectral complexities, such as wide plains or
anisotropic mountain ranges.
The initial questions here have justified simplified har-

monic structures of topography as such. Specifically, we
have presumed a log-linear model of the power spectral
density, which is to say that the variance of elevation is a
power-law function of the horizontal distance scale, and
that this relationship is constant over the whole planet
(as proposed in, e.g., Turcotte 1987). Contemporary
workers now know the behaviour to be much more nu-
anced. Local estimates of topography’s spectral slope
can appear notably inconstant—the surface roughness
is heterogeneous—but these differences are entwined by
further power laws of other statistical moments, out
to virtually-infinite order, all culminating neatly in a

mathematical model with three scale-invariant parame-
ters (e.g., Pelletier 1999; Gagnon et al. 2006; Lovejoy &
Schertzer 2007; Ali Saberi 2013; Liucci & Melelli 2017;
Rak et al. 2018; Landais et al. 2019a; Keylock et al.
2020). Landais et al. (2019b) have demonstrated the
use of such a descriptive model for synthesising surface
relief of arbitrary rocky planets. Thus, the framework
exists for representing full global topography layouts to
a high degree of statistical realism and with few param-
eters. The hitch is that these parameters are empirical
on a case-by-case basis: the gain in descriptive accuracy
may not translate to predictive power for distant exo-
planets. At present there is no theory tying the pattern
to the (geophysical) process. If this gap could be bridged
with more work based on Earth and solar system bod-
ies, then these realistic mathematical models could be
applied, and higher-order insight about the topographies
of exoplanets might not necessarily be a fantasy.

4.2. The role of rheology and its uncertainties

Any deterministic prediction of hrms will be hin-
dered by the unknown mantle rheology. Increasing
the activation energy of viscosity from 240 kJ mol−1 to
300 kJ mol−1 will double hrms for an Earth-mass planet,
all else being equal. This uncertainty propagation is
built into our model via the scaling functional form in
(5). Ea enters this equation twice, in both b and Rai (via
ηm). Particularly in the high-Rai regime, small changes
in the viscosity contrast parameter b create large changes
in h′rms (figure 3).
We have attempted to capture some of the rheological

uncertainty by varying Ea and η0, the free parameters
in the Arrhenius viscosity law (9). However, we can-
not claim that our results are propagating nature’s true
variability. Firstly, the underlying covariance of these
parameters is not known. The prior range employed by
our study covers only pure olivine and pure orthopyrox-
ene, and roughly so at that. Spaargaren et al. (2020) also
parameterise the mineralogical control on viscosity with
an extra prefactor that increases over three orders of
magnitude, calibrated between ferropericlase-rich (high
Mg/Si) and stishovite-rich (low Mg/Si) lower mantle
compositions (Xu et al. 2017; Ballmer et al. 2017). Re-
lating the rheological parameters to the lower or upper
mantle composition in a realistic way requires not only
a complex thermodynamic model predicting these min-
eral compositions, but also a dataset of strain rates from
experiments and ab initio mineral physics. The actual
strain rate of an olivine-orthopyroxene aggregate is cer-
tainly not a simple combination of diffusion creep flow
laws. Further, in practice, real mantle viscosities will
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be strongly sensitive to their water content, unlikely to
ever be known for a given exoplanet.
The second reason why we are not capturing the true

variation is that our fixed rheological model ignores
structural uncertainty by design. We have only consid-
ered diffusion creep with no pressure dependence, but
the creep mechanism depends on shear stress and is not
known a priori. Including pressure dependence in the
parameterisation (with adiabatic profiles from an inte-
rior structure model, for example) would lead to higher
viscosities and sluggish flow in the lower mantle. Im-
portantly, and in particular for more massive planets,
this fact could render the viscosity self-regulation less
efficient (Stamenković et al. 2012), meaning that in-
ternal temperatures for evolved planets become much
more sensitive to initial temperature conditions, and
the resulting hrms scatters more widely (overall, retain-
ing a hotter mantle at older ages will reduce hrms).
Uncertainty would grow severer still if one allowed for
complex rheological features such as a low-viscosity as-
thenosphere (Bodur & Rey 2019), which manifests in
smaller-scale dynamic topography on Earth (Hoggard
et al. 2016). Finally, technically, the lithosphere itself
obeys a distinct viscoelastic rheology, and coupling these
dynamics to a convection model would also modify its
topography amplitudes (Patočka et al. 2017)—we have
ignored elastic effects in this attempt (section 4.3.3).
All this rheological uncertainty is worth discussing

because dynamic topography is apparently sensitive to
both viscosity’s absolute value and how it changes over
the boundary layers (Hager et al. 1989). Low viscosities
imply higher temperatures and low convective stresses.
For the isoviscous case, the association of low viscos-
ity with low topography can be seen clearly in Table
2 of Lees et al. (2020), from which we get a numerical
scaling of h′rms ∝ η−0.6, with interior temperature and
lithospheric thickness fixed. If we have two isoviscous
layers with a stiffer top layer (i.e., approximating a cool
viscous lithosphere), then there is an analytical solution
for the surface normal stress induced by a spherical den-
sity anomaly at some depth (equation (34) in Morgan
1965). In this solution, the effect of relative viscosity is
strongest when density anomalies are nearer the surface.

4.3. Caveats to topography predictions from numerical
convection

In determining a scaling relationship for the RMS and
peak amplitudes of dynamic topography from numerical
convection, we have assumed that details of our method-
ology can produce generalisable results. This section
discusses some important caveats.

4.3.1. Low-order power

The contribution to the total power drops off quickly
with spherical harmonic degree for the spectral slopes
used here. Consequently, the overall RMS amplitude
is unaffected by the high-frequency power, whilst the
low-frequency power has a disproportionately large in-
fluence. Our simulations show a flattening-out of the to-
pography power spectra as we go to wavelengths larger
than twice the layer depth. Yet topography on Venus
clearly exhibits long-wavelength features (figure A1).
On Earth, the dynamic topography power is largely con-
centrated at degree 2 (Hoggard et al. 2016; Yang & Yang
2021). The relatively simple rheologies in our model
cannot produce these features. Long-wavelength mantle
flow on Earth may be deeply entwined with the presence
of an asthenosphere and tectonic plates, themselves en-
twined further (Lenardic et al. 2019).
Mars provides a case that’s different still. Its topog-

raphy is dominated by a degree-1 signal; that is, Mars
shows an asymmetry where the southern hemisphere
sits higher than the northern, and the volcanically-
constructed Tharsis plateau dominates the east side of
the former. Whilst this pattern is thought to be re-
lated to degree-1 mantle convection, as of yet there is no
fully-endogenous mechanism consistent with all the ob-
servables (Roberts 2021). Regardless, the processes we
model will never lead to such a convection pattern. The
possibility of degree-1 convection could further compli-
cate our preliminary scaling relationship between hrms

and Ra.

4.3.2. Geometry and heating mode effects

Our numerical convection simulations were performed
exclusively in a bottom-heated 2D box. For 2D isovis-
cous models, RMS topography appears consistent across
Cartesian and cylindrical geometry, with a scaling ex-
ponent on Ra close to −1/3 as expected from theory
(McKenzie et al. 1974; Parsons & Daly 1983). However,
in the non-isoviscous settings we study here, this scal-
ing is not necessarily insensitive to the model geometry.
It remains to be seen how higher spatial dimensions,
or cylindrical or spherical geometry, would explicitly af-
fect hrms. Internally-heated convection—best described
with an altogether different formulation of the Rayleigh
number—tends to result in different convective plan-
forms and may also show different patterns with respect
to dynamic topography (e.g., Orth & Solomatov 2011).
This distinction between heating modes would be espe-
cially relevant for young planets with high radioisotope
concentrations.

4.3.3. Filtering in the lithosphere

In reality, the peak amplitude of dynamic topogra-
phy is modulated by the flexure of the elastic litho-
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sphere, which depends on the lithosphere’s effective elas-
tic thickness. Thin elastic lithospheres (expected for hot
stagnant lid planets such as Venus) could bring a . 5%

reduction in dynamic topography (Golle et al. 2012; Du-
moulin et al. 2013; Patočka et al. 2019). Here we omit
this filtering for simplicity and instead predict an upper
limit of dynamic topography.
In addition to these elastic effects, the lithosphere can

deform plastically in response to convective stress, as
illustrated by the crustal thickening example in figure
1b (Kiefer & Hager 1991; Pysklywec & Shahnas 2003;
Zampa et al. 2018). We have not considered higher-order
effects from the formation of a crust, whose marginally
lower density with respect to mantle rock would buoy
topography slightly higher.

4.3.4. Paucity of ground truths

Ultimately, making accurate predictions of dynamic
topography amplitudes is meaningless without accu-
rately measuring them somewhere. It is not trivial to
isolate the dynamically-supported component of the cu-
mulative topography we observe. Serious efforts at sep-
arating out the isostatic component on Venus rely on
knowing the associated admittances, simulated or in-
ferred from a crustal thickness estimate (McKenzie 1994;
Pauer et al. 2006; Wei et al. 2014; Yang et al. 2016), to
leave a result that is not model-independent.
For Earth, meanwhile, estimates of oceanic

bathymetry less its age-depth cooling pattern can been
used to navigate this impasse, revealing dynamic to-
pography peak amplitudes of ∼1 km (Hoggard et al.
2016, 2017). Although this result happens to align with
our Earth-mass planet predictions, a direct compari-
son demands caution because we have been modelling
stagnant lid planets—modern Earth is evidently outside
this regime. Sections 4.2 and 4.3.1 have mentioned how
the pattern of Earth’s dynamic topography is a conse-
quence of its experiencing convection under plates. Any
plate behaviour is not captured in our numeric simu-
lations. Indeed, dynamic topography observed on the
only known planet with plate tectonics seems to reflect
both deeper mantle flow and shallower lithospheric and
aesthenospheric structure, as well as the coupling be-
tween them (Davies et al. 2019). Nor is our 1D thermal
history model strictly applicable: the thick, insulating
lids imposed by the stagnant lid regime would lead to
underestimated surface heat flow for a plate tectonics
regime. Note further that this hpeak ∼ 1 km estimate
for Earth purposefully excludes the thermal bathymetry
of mid-ocean ridges, a plate-scale topographic expres-
sion which could technically could fall under dynamic
support.

4.4. Caveats to using scaling relationships
4.4.1. Sensitivity to functional form

A scaling law will never be more than a mathemat-
ical shortcut: a tool to preempt heavy model running
for any imaginable parameter combination. This work
has adopted a log-linear scaling for dynamic topogra-
phy in terms of the Rayleigh number and rheological
temperature scale of convection. Whilst this choice of
independent parameters is indeed physically justified, it
is not unique in being justifiable. We emphasise that the
result of this study—that dynamic topography becomes
essentially negligible with hotter (younger, deeper more
radioactive) mantles—is fundamentally a consequence of
our scaling functional form.
The interaction between ∆η and Rai in our scal-

ing somewhat complicates a comparison with previous
power-law relationships for isoviscous convection—recall
that constant-viscosity convection is described by a sin-
gle value of the Rayleigh number. Boundary layer theory
suggests that h′ ∼ Raγ (McKenzie et al. 1974; Parsons
& Daly 1983) with γ = −1/3, whilst more recent 3D
Cartesian simulations of Lees et al. (2020) have γ rang-
ing from -0.289 to -0.342. Under our scaling function,
an equivalent exponent to ∼ −1/3 on Rai is met at high
values of b ∼ −23.7, at which h′rms could be said to scale
similarly to the isoviscous case.

4.4.2. Extrapolation across Rayleigh numbers

For Ra1 much greater than 3× 108, the highest value
considered in our experiments, one may be waiting pro-
hibitively long for numerical convection models to con-
verge. Yet the thermal histories we have produced in 1D
tend to deliver these very large, out-of-range Rayleigh
numbers (figure 4). Wielding the numerical scaling to
estimate hrms thus necessitates an extrapolation over up
to four orders of magnitude in Rai. (Meanwhile, values
of the 1D b analogues are indeed accessed in 2D.) This
projection into high-Rai-space has unproven fidelity, and
brings a heavy caveat to our results. Namely, extrapo-
lating scaling functions for convection rely on there be-
ing no regime change or otherwise discontinuous effects
in the region to which we are blind. Yet the fitted func-
tion (figure 3) indicates complex interactions between
Rai, b, and h′rms, which we cannot claim to have pre-
dicted in the moderate-Rai regime, and cannot expect
to predict elsewhere.

4.4.3. Accuracy of interior Rayleigh number estimates

With the above said, our Rai results seem unrealis-
tically high. The parameterised convection model ne-
cessitates large Rai through its relatively hot Tm and
weak ηm, which viscosity self-regulation makes difficult
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to avoid. By comparison, mantle Rayleigh numbers used
to reproduce Venus are often on the order of ∼107 (e.g.,
Kiefer & Hager 1992; Kiefer & Kellogg 1998; Vezolainen
et al. 2003, 2004; Pauer et al. 2006; Smrekar & Sotin
2012; Noack et al. 2012; Huang et al. 2013), implying
that the extrapolation issue in section 4.4.2 could in fact
fix itself, if Rai could only naturally settle down to a
level a few orders of magnitude lower. However, these
literature quotes come from different model setups that
set Ra a priori ; e.g., to obtain desired, Earth-like aver-
age viscosities around ∼1021 Pa s. This theme of other
works adopting lower Ra and higher viscosities might
largely explain why our hrms predictions appear lower
(e.g., Kiefer & Hager 1992; Huang et al. 2013).
Thermal models of stagnant lid planets are notorious

for producing infernal mantles because their heat escape
is limited by slow conduction through thick outer shells
(e.g., Driscoll & Bercovici 2014). Hence they evolve
towards low viscosities and vigorous convection to aid
heat loss. A parameterised model could slip into cooler
temperatures by including the energetics of melting and
transport of magma: likely major mantle heat sinks for
stagnant lid planets (Moore et al. 2017; Lourenço et al.
2018). Melting would also help to regulate mantle tem-
peratures and viscosity because melting leads to geo-
chemical depletion, which hinders further melting un-
til upwelling replenishes the melt zone. Ideally, stag-
nant lid convection models should include melting pro-
cesses. We note that melting itself also could be an
important source of constructional surface topography
on these planets.

4.4.4. Model validity at high planet mass

Rocky planets more massive than Earth can reach in-
terior pressures high enough for perovskite to transi-
tion to post-perovskite. This phase transition, in addi-
tion to weakening the viscosity locally, could stratify the
convection in the lower mantle (Umemoto & Wentzcov-
itch 2011; Karato 2011; Tackley et al. 2013; Umemoto
et al. 2017; Shahnas et al. 2018; Ritterbex et al. 2018;
van den Berg et al. 2019). Although single-layer pa-
rameterised convection models have been applied pre-
viously to massive rocky planets (e.g., Kite et al. 2009;
Tosi et al. 2017), our model likely fails to capture the
heat flow of a multi-layered system (van Thienen 2007),
with potentially important implications for topography.
Indeed, lower-pressure phase transitions in Earth’s man-
tle influence its convective dynamics (Christensen 1995),
and including the 410-km exothermic phase change has
been explicitly shown to raise dynamic topography am-
plitudes in convection simulations (Yang & Yang 2021).

4.5. A crustal strength limit and the inundation of the
TRAPPIST-1 system

Agol et al. (2021) give preliminary constraints on the
surface water content of the TRAPPIST-1 planetary
system, for different values of the CMF and assuming
all water exists as a condensed surface layer. Although
the problem is degenerate, planets e–g appear consistent
with water layers deeper than Earth’s, on the order of at
least 0.1% of the planet mass. Other independent esti-
mates have produced similar results (Acuña et al. 2021).
This water budget would place TRAPPIST-1e to g well
above the upper water mass limit for maintaining land
with dynamic topography. Note, however, that the high
rates of tidal heating inferred for some of these plan-
ets (Barr et al. 2018) would reduce dynamic topography
beyond what is modelled here.
As we have previously emphasised, however, the true

limit to elevation differences on a planet will be higher
than that suggested by purely dynamic topography. To
estimate a planet’s total scope for land, we can calcu-
late the minimum value of hpeak required for an instance
of land on a planet with a given radius and surface
water content. We find that any instance of land on
TRAPPIST-1e would require a peak topographic am-
plitude of ∼40 km (a minimum RMS topography of
∼10 km), given 0.3 wt.% surface water (Agol et al.’s
estimate for a CMF of 0.25). Then one could compare
this minimum to a rough estimate of the overall maxi-
mum elevation.
In section 1 we motivated a crustal strength limit: for

a surface load of ρgh, somewhere in the crust below, at
a depth of about 1/4 times the load width, a minimum
stress difference Y of 1/2 to 1/3 ρgh is sustained (Jef-
freys 1929). This result assumes a flat earth model of
elastic stress distributions, and holds for various load
configurations of horizontal scale less than a few hun-
dred kilometres. Melosh (2011) illustrates that the force
balance given by

Y ≈ 0.5ρcgh, (21)

with a crust density ρc = 2700 kg m−3, and Y set at an
effective crustal strength on the order of 100 MPa, will
roughly reproduce the maximum elevations of Venus,
Earth, and Mars (figure 7). Whilst this estimate is cer-
tainly an oversimplification, a more rigorous effort will
naturally become very complicated, not the least due to
the difficulty in predicting, from planetary bulk proper-
ties, a value of Y corresponding to the maximum h.
In typical crustal strength models, the strength in-

creases with depth (lithostatic pressure) according to
the rock’s resistance to frictional sliding in the rela-
tively cool, shallow part—the brittle regime—until vis-
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Figure 7. Various scalings for the maximum surface water capacity set by a planet’s peak elevation, expressed as a fraction
of the total planet mass. The yellow lines show the peak topography balanced by crustal rock strength alone, and scales
approximately with M−0.9

p ; line widths correspond to different assumptions about the maximum strength with a fixed crust
density of 2700 kg m−3. The thick green line shows pure dynamic topography with the coolest mantles considered, given a
dry olivine rheology (∝ M−0.8

p ). The thin green line is the same for the hottest mantles (∝ M−1.2
p ). Scalings assume the

mass-radius relation in (7) and a red noise-like topographic spectral structure. Points with error bars are estimates of the
surface water inventories of planets e–g in the TRAPPIST-1 system from Agol et al. (2021), for different possible values of the
core mass fraction (CMF). Note that their analysis suggests cores most likely smaller than the Earth-like CMF of 33%. Our
thermal evolution model does not include tidal heating, which would push the TRAPPIST-1 planets towards higher mantle
temperatures. For context, the labelled blue stars show the maximum ocean masses that could be contained on Venus, Earth
and Mars, plus Earth’s actual ocean mass.

cosity is low enough to favour ductile deformation in-
stead, and strength starts to decrease with depth (tem-
perature). Thus the strongest part of the crust is near
this brittle-ductile transition. However, the resulting
strength maxima of ∼500 MPa or more for Earth-like
conditions (Katayama 2021) would imply ∼40 km of
peak topography using (21); it is a limit not necessar-
ily reached in practice. Further complicating the ap-
plication of (21), crustal strength profiles are strongly
sensitive to the temperature profile and porosity of the
crust—generating these profiles for arbitrary exoplan-
ets must attend to assumptions on these facets (Byrne
et al. 2021)—and surface gravity has a nonlinear effect
on brittle strength through its influence on porosity and
fracture density (Heap et al. 2017). For example, dou-
bling the thermal gradient will approximately halve the
maximum Y—and thus h—in a dry case, and including
hydrostatic pore fluid pressure shows a similar decrease
(Katayama 2021).

A parallel approach to estimating maximum elevation
differences from crustal concerns comes from isostasy.
The height of a topographic feature above a plain is
hA = (tR−tavg)(ρm−ρc)/ρc, where tR is the thickness of
the crust below the feature and tavg is the average crustal
thickness of the plain. For a basaltic crust (the primary
crust formed from an Earth-like bulk composition), the
maximum value of tR is set by the phase transition from
basalt to denser and unstable eclogite: the crust cannot
be much thicker than the depth of this transition. This
fact limits the peak isostatic hA to about 15 km for a
Venus-like case (Jull & Arkani-Hamed 1995). However,
the depth of this phase transition depends sensitively
on the crust thermal structure, and estimating hA in
practice requires knowing tavg.
Finally, the height limits of volcanoes in particular

must follow tighter rules. Magma will only rise to the
top of a vent—and contribute to a growing pile of lava—
so long as the vertical pressure gradient across the sys-
tem is positive. Castruccio et al. (2017) write this limit
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as hmax = (∆ρ/ρm)H + ∆Pi/(ρmg), where ∆ρ is the
density contrast between the crust and the magma, H
is the depth from the surface to the magma chamber,
and ∆Pi is the critical overpressure to trigger an erup-
tion (the pressure that would crack the magma chamber
roof, related to the tensile strength of the crust and tel-
lurically on the order of ∼20 MPa). Although a narrow
range of H can be argued for on Earth, related to the
magma water content and crustal rheology (Huber et al.
2019), this concept has not yet been expanded to com-
parative planetology.
In light of the above complexities, it is difficult to find

a middle ground between the oversimplification of (21)
using a universal crustal strength estimate, and a careful
case-by-case application. We will employ the former for
the present purpose of comparing peak dynamic topog-
raphy to peak total topography. We consider Y = 100

MPa, ostensibly representing the compressive strength
of granite—the difference in compressive strength be-
tween an average granite and average basalt seems to
be smaller than the spread seen across individual basalt
samples in various laboratory conditions (Heap et al.
2017)—but also include scalings for half and double this
strength value.
Figure 7 plots the containable ocean mass fraction

scalings corresponding to both this crust strength limit
and to the dynamic topography limits calculated pre-
viously. For a given scaling relationship, points above
the line would be waterworlds. We see that planet e
may have coexisting land and water if its crust could
withstand around 200 MPa of normal stress. Although
these strengths can be achieved on Earth, it is not im-
mediately obvious that they would available at the right
loci. Note that it is very difficult in practice to put a
lower limit on these water budgets. Nevertheless, ac-
cording to Agol et al. (2021), TRAPPIST-1e through
g could easily be wet enough that estimating their land
propensities may seem moot. However, our growing cat-
alogue of planets may soon present a case study closer
to the waterworld-land world transition.
Another takeaway from figure 7 is that for the most

massive rocky planets, amplitudes of dynamic topog-
raphy in the most favourable case seem to approach
the overall limit. Scalings for different internal heat-
ing scenarios have different slopes because, as surface
heat fluxes increase with the surface area-to-volume ra-
tio, larger planets are penalised such that any extra ra-
diogenic heat would escape less easily. Thus more in-
ternal heating per unit volume in more massive planets
will have a more drastic effect on topography.
At the moment, it is not guaranteed that constraints

on these or any rocky exoplanet water budgets could be

tightened much in the future. With current Bayesian in-
ference methods, uncertainties on retrieved water mass
fractions may be capped at around σ ≈ 10 wt.%, inde-
pendent of the observational uncertainty on the planet
mass itself (Otegi et al. 2020). Meanwhile, topography
can avert waterworlds only for water mass fractions of
. 1 wt.%. Therefore, with respect to predictions about
a given exoplanet, any topographic contribution to land
coverage could be washed out by the uncertainty on the
inferred water budget.

4.6. Constraints from astrophysical data

In figure 5, we predicted how dynamic topography
might vary as a function of several properties broadly
deemed observable. None of these properties will be
perfectly known, or even necessarily constrained well-
enough such that they are not the dominant source of
uncertainty, but we will leave a more detailed assessment
of this uncertainty to future work.
In any case, an obvious fact emerging from our scal-

ing law application is that there is a pivotal future role
to be filled for any constraints on rocky planet com-
positions. This study provides yet another example of
how higher-order properties of planetary interiors gov-
ern their surface character. Namely, mantle viscosities,
radiogenic heating rates, and core mass fractions all re-
late to planetary ratios of certain major elements: vis-
cosities decrease with Mg/Si, radiogenic heating rates
increase with U/Si and Th/Si, and core mass fractions
increase with Fe/O. Exoplanet compositional parame-
ters are not completely inaccessible because refractory
element ratios are expected to generally preserve them-
selves between a star and its planets (Thiabaud et al.
2015; Hinkel & Unterborn 2018; Putirka & Rarick 2019;
Adibekyan et al. 2021). Although pilot work is surely
needed, this useful fact means that element abundances
from stellar spectra offer a promising constraint on plan-
etary interior dynamics. Additionally, measurements of
the same element ratios in polluted white dwarf spec-
tra could inform the underlying natural distributions of
bulk rocky planet composition across nearby star sys-
tems (Bonsor et al. 2021).
Observables for exoplanetary topography itself would

be buried quite deep. McTier & Kipping (2018) pro-
posed that extreme topographic features could induce
scatter in an exoplanet’s transit photometry, but the
associated signal would not be detectable with real-
istic photometric precision. Proposed next-generation
direct imaging missions might be capable of enough
precision for the exo-cartography of small planets—
solving the inverse problem of 2D albedo distributions
from time-resolved light-curves—which might discrim-
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inate between land and ocean surfaces (Cowan & Fu-
jii 2018; Farr et al. 2018; Lustig-Yaeger et al. 2018;
Kawahara 2020; Aizawa et al. 2020). Interpretations of
the data may remain highly model-dependent and bur-
dened by cloud removal, however (Paradise et al. 2021;
Teinturier et al. 2022). Ocean fractions might also be
discerned from near-infrared polarimetric observations
(Takahashi et al. 2021). A land fraction between zero
and unity would necessitate some surface roughness,
leading to an upper limit on the water budget given
some inferences about topographic propensity.

5. CONCLUSIONS

This work has predicted scaling relationships for the
RMS amplitude of dynamically-supported topography
on stagnant lid planets, which we propose to be a
deterministically-tractable aspect of rocky exoplanet
surface character. We find RMS topography to decrease
strongly with higher interior temperatures and lower
mantle viscosities. Planets near the upper mass-limit
of rockiness would thus have inconsequential dynamic
topography, as would planets with radioisotope abun-
dances several times that of Earth. For planets less
than about twice the mass of Earth, our thermal history
model predicts RMS dynamic topography on the order
of hundreds of metres. This result emphasises that mod-
elling purely dynamic topography will underestimate a
planet’s true RMS elevation. A robust upper limit to to-
tal topography may be limited by our ability to predict
crustal thicknesses.
Considering that dynamic topography is guaranteed

to exist on active planets, however, the model can be
used to infer, with strong caveats, whether subaerial
land exists on a planet for a given surface water bud-
get. We define the ocean basin capacity as the volume
of water that could be contained below the highest eleva-
tion. As planet size increases, interior temperatures and
surface gravity increase and topography shrinks, but the
available storage of the ocean basins expands with the
surface area. These effects nearly cancel out at Earth-
like radiogenic heating rates, leading to a constant ocean
basin capacity of about 0.3 Earth oceans if topography
is dynamically-supported alone. For a 1-M⊕ planet this
translates to a maximum surface water mass fraction
of ∼60 ppm before the planet has no land above sea
level. The same water budget would flood more massive
planets. In reality, volcanic construction would lead to
higher surface relief than that from dynamic topography
alone—in modelling only the latter, we are providing a
lower limit, or “worst-case scenario," of the true ocean
basin capacity. To avert waterworlds on high mass plan-
ets, other sources of topography would be vital.

A useful waypoint from this work is a naive scaling
relationship of RMS dynamic topography in terms of
the mantle Rayleigh number and viscosity contrast, for
chaotic time-dependent convection with large viscosity
contrasts. Our results suggest a weaker Ra-dependence
and overall higher topography amplitudes compared to
the isoviscous convection scalings previously reported.
Segments of the general approach here might

guide other mysteries about rocky planet surface
architecture—which seems, at the time of writing, an
unpopulated but fertile field of research. We conceive
of a framework into which new geophysical or geo-
morphological models could easily slide. Particularly,
the method of gauging whole surface layouts via the
RMS amplitude extends to other ways of generating
large-scale topography, so long as—and this step is
nontrivial—one could write process-based scaling laws
for how its RMS value changes with planetary bulk prop-
erties. Reasonable assumptions about the power spec-
tral distribution of topography give peak amplitudes be-
tween 3.5 and 3.9 times the RMS value, consistent across
different ways of supporting loads. With that said, care
should be taken to not overemphasise the general feasi-
bility of such applications, given that decades of exam-
ination into our own planet’s topography have not yet
reached any steadfast deterministic rules. To push the
marriage between these sciences further (Shorttle et al.
2021), then, finding tighter links between pattern and
process on the surface of Earth will be paramount to
understanding how landscapes manifest on billions of
rocky planets in the universe.
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APPENDIX

A. SPHERICAL HARMONIC METHODS FOR TOPOGRAPHY

A.1. A baseline power spectrum

We choose our Case 4 simulation (Table 1) from which to extract a scaleable model spectrum of the surface dynamic
topography, since its temporal distribution of h′rms is the most narrow. A type-2 orthonormalised discrete cosine
transform of this profile produces a Fourier representation,

fp = 2γ

N−1∑
n=0

h′n cos

(
πp(2n+ 1)

2N

)
,

γ =


√

1
4N , if p = 0√
1

2N , otherwise,

(A1)

from which we can find a 1D power spectral density,

φ1D0 = 2∆x′ (fp)
2
, (A2)

as a function of dimensionless wavenumber,
k′ =

π

L′
p, (A3)

where h′n is the height of dynamic topography at sample point n, N is the number of sample points in the spatial
profile (fixed by the mesh size), p = [0, ..., N − 1], L′ = 8 is the dimensionless box width, and ∆x′ = L′/N . We
calculate φ1D0 at every model time step and use the average for our baseline spectrum. This spectrum has an RMS
amplitude h′rms,0.
There is an upper wavenumber limit, k′max, at around the equivalent wavelength of the upper thermal boundary layer

thickness, δrh, where features narrower than this are not meaningful for the dynamic topography. We also observe
all spectra roughly rolling off to a constant value at wavenumbers below around twice the convection cell depth, so
we set k′min = 2d. In log-log space, φ1D0 is approximately linear from k′min to k′max. Therefore we approximate the
power spectra by two line segments. We fit a constant slope between k′min and k′max, and assign a value of φ1D0 (k′min)

wherever k′ < k′min. This fit is done to the average power spectral density over all time steps for the given simulation.
We interpolate this fitted function such that it has a discrete value at each integer spherical harmonic degree l, where
l = k′R′p − 0.5, from l = 1 to the nearest degree to k′max. That is, we do not scale k′max. Whilst realistically k′max

would increase with Ra1, the effect on h′rms is small (less than one part in a thousand) because these high wavenumber
bands hold such little relative power. For this generic spectrum we assume a dimensionless planet radius R′p = 2 (a
core radius fraction of 0.5 for a dimensionless mantle depth of 1; varying R′p has negligible effects on the results).
Figure A1 shows the 1D power spectral densities φPSD

h of dynamic topography computed from our 2D numerical
modelling experiments, normalised as a percentage of the total power. Between k′min and k′max, the log-linear slopes of
the topography spectra are roughly similar within the noise for all Ra1, ∆η cases. Due to our limited number of 2D runs,
however, we cannot really make a compelling case for this statement, and we would not back our interim result outside
of its intended, rather inconsequential usage here. For example, we might expect more vigorous, higher-Ra convection
to exhibit more smaller-scale drips from the upper thermal boundary layer, leading to slightly more topographic power
at high wavenumbers—although the total power would be virtually unaffected by these high-frequency features. Note
also that because the spatial domain topography is 1D, data paucity will always entail a certain amount of noise,
compared to a 2D grid of topography from a 3D convection simulation.
Also in figure A1 is the observed topography spectrum of Venus from Wieczorek (2015). On Venus, elastic and

compositional sources of topography are superimposed upon dynamic topography. Venus’ spectrum thus provides an
empirical modification of the pure dynamic topography. As a third and final spectral model, we have the theoretical
red noise spectrum given by the power law φPSD

h ∝ k−2 and a roll-off wavenumber the same as the numerical spectrum.
Compared to the numerical dynamic topography, Venusian topography and red noise topography both have a shallower
slope and retain more power at higher wavenumbers—as expected from the high-frequency nature of topography created
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Figure A1. (Top:) Dimensionless 1D power spectral densities of dynamic topography from 2D numerical convection simula-
tions, normalised to an RMS power of unity. In purple triangles is the model dynamic topography spectrum obtained from a
log-linear fit to the Ra1 = 108,∆η = 107 case. (Bottom:) The model dynamic topography spectrum shown with, in yellow tri-
angles, the observed overall topography of Venus (Wieczorek 2015), and, in red circles, a theoretical spectrum with a power-law
dependence ∝ k−2, corresponding to red noise.

by impact cratering and volcanism. The Venus spectrum additionally shows a peak at degree l = 3. Note that these
(normalised) spectra represent different geophysical and geomorphologic processes, and are therefore not expected to
have the same absolute RMS value.

A.2. Generating random maps

We use the pyshtools.SHCoeffs.from_random() function to obtain a set of spherical harmonic coefficients con-
sistent with φ1D0 (Wieczorek & Meschede 2018). This function requires a power per l (dimensional units m2), so we
apply a conversion from φ1D0 (dimensional units m2 m). First we find the effective 2D power spectral density assuming
radial symmetry, φ2Diso (dimensional units m2 m2), which would correspond to our 1D spectrum:

φ2Diso =
1

k′
φ1D0 . (A4)
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Figure A2. A synthetic topography map, obtained from a random power spectrum (lmax = 53) consistent with the numerically-
modelled “baseline" dynamic topography spectrum (see text for details on randomisation). This map has a peak elevation of
820 m and an RMS elevation of 190 m. The nominal planet has a mass of 1 M⊕, dry olivine rheology, and a solar radiogenic
heating budget.

The power per l is:

Sl =
φ2Diso (2l + 1)

4πR′2p
. (A5)

With these normalisations, the total power per coefficient,

Slm =
Sl

2l + 1
, (A6)

is proportional to φ2Diso . In converting our spectra into 2D equivalents, we are presupposing that 2D Cartesian and
3D spherical models result in approximately similar topography power spectra with consistent h′rms. Using the output
from Lees et al. (2020), we have verified that constant-viscosity convection in Cartesian geometry indeed produces
similar spectra between 2D and 3D, but the assumption remains a caveat until dedicated 3D spherical realisations
can test it. Nevertheless, we already know that it is incorrect to try fitting a scaling function to 2D numerical hpeak
directly—this quantity is certainly sensitive to details of the model setup, as we have mentioned in section 2.1.2.
If we are seeking a spatial map of a hypothetical spectrum other than φ1D0 (i.e., different RMS value), we take

advantage of the fact that numerical dynamic topography spectra will appear to have roughly consistent slopes between
k′min and k′max, and hence scale Sl appropriately,

S̄l = Sl

(
h′rms,1

h′rms,0

)2

, (A7)

where h′rms,1 refers to the desired rms of the new spectrum.
We can now obtain our set of coefficients via pyshtools: random spherical harmonic coefficients are generated from

a normal distribution with unit variance, subject to the strong assumption of no correlation between wavenumbers.
Then we again use pyshtools to expand the random spherical harmonic coefficients onto a Gauss-Legendre quadra-

ture grid. At this stage we can dimensionalise the spatial domain topography with (2), given the results of the
parameterised convection model. A sample elevation map is shown in figure A2. Because the randomly-generated
spherical harmonic coefficients are not unique for a given power spectrum, we reduce the noise by generating 500 sets
of coefficients and taking the average of the resulting peak elevation values.

B. TABULAR OUTPUT OF 2D NUMERICAL CONVECTION EXPERIMENTS

Table B1 provides additional numerical output. See section 2.1 for definitions of these quantities. Nu is the Nusselt
number, the ratio of convective to conductive heat transfer at the surface, calculated as Nu = Y ′F ′0/[k

′(T ′1 − T ′0)],
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where Y ′ is the dimensionless box height, F ′0 is the total surface dimensionless heat flux divided by the dimensionless
box width, k′ = 1 is the dimensionless thermal conductivity, and T ′1 and T ′0 are the dimensionless temperatures at the
bottom and top boundaries respectively.

Table B1. Selected time-averaged results of the numerical model. Symbols are defined in the text.

Case Ra1 ∆η Rai δ′lid δ′rh T ′i T ′lid ∆T ′rh Nu h′rms h′peak

2 2× 108 1× 106 7.20× 107 0.133 0.0248 0.926 0.785 0.141 6.17 0.00716 0.0152

3 3× 108 1× 106 1.07× 108 0.118 0.0218 0.925 0.790 0.135 6.97 0.00667 0.0130

4 1× 108 1× 107 3.62× 107 0.199 0.0370 0.937 0.794 0.143 4.10 0.00893 0.0214

5 2× 108 1× 107 7.08× 107 0.165 0.0238 0.936 0.816 0.120 5.12 0.00610 0.0159

6 3× 108 1× 107 1.07× 108 0.148 0.0215 0.936 0.816 0.120 5.70 0.00673 0.0145

7 1× 108 1× 108 3.60× 107 0.235 0.0394 0.945 0.806 0.138 3.50 0.00907 0.0243

8 2× 108 1× 108 7.24× 107 0.199 0.0295 0.945 0.821 0.124 4.23 0.00765 0.0174

9 3× 108 1× 108 1.08× 108 0.179 0.0253 0.945 0.826 0.118 4.75 0.00788 0.0179

10 1× 108 1× 109 3.57× 107 0.274 0.0427 0.950 0.819 0.131 3.03 0.00815 0.0252

11 2× 108 1× 109 7.20× 107 0.232 0.0329 0.951 0.831 0.120 3.65 0.00878 0.0250

12 3× 108 1× 109 1.11× 108 0.213 0.0262 0.952 0.846 0.105 4.07 0.00876 0.0180
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