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Porosity waves arise naturally from the equations describing fluid migration in ductile rocks. Here, we 
show that higher-dimensional porosity waves can transport mass and therefore preserve geochemical 
signatures, at least partially. Fluid focusing into these high porosity waves leads to recirculation in 
their center. This recirculating fluid is separated from the background flow field by a circular dividing 
streamline and transported with the phase velocity of the porosity wave. Unlike models for one-
dimensional chromatography in geological porous media, tracer transport in higher-dimensional porosity 
waves does not produce chromatographic separations between relatively incompatible elements due 
to the circular flow pattern. This may allow melt that originated from the partial melting of fertile 
heterogeneities or fluid produced during metamorphism to retain distinct geochemical signatures as they 
rise buoyantly towards the surface.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Fluid migration in ductile rocks controls important geological 
processes such as melt segregation and fluid expulsion during re-
gional metamorphism. Fluid production by partial melting and de-
volatilization leads to a percolating fluid network that allows for 
the segregation of fluid by porous flow at very low porosities
(von Bargen and Waff, 1986; Cheadle, 1989; Wark and Watson, 
1998; Miller et al., 2014; Ghanbarzadeh et al., 2014). Fluid seg-
regation is driven by the buoyancy of the fluid and resisted by 
viscous compaction of the solid matrix (McKenzie, 1984; Scott and 
Stevenson, 1984; Fowler, 1985a). Fluid flow in rocks is predom-
inantly vertical, because the segregation velocity of the fluid is 
significantly faster than the solid state creep velocity of the ductile 
rocks (Phipps Morgan, 1987; Sparks and Parmentier, 1991; Katz, 
2008).

Fluid production in heterogeneous rocks leads to spatial varia-
tions in fluid content that may evolve into porosity waves, which 
migrate upwards at a velocity greater than the segregation veloc-
ity of the buoyantly rising background fluid. Porosity waves are an 
ubiquitous feature of the equations governing melt migration by 
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porous flow (Spiegelman, 1993c). Porosity waves are also thought 
to arise from fluid expulsion during regional metamorphism (Bai-
ley, 1990; Thompson and Connolly, 1990; Connolly, 1997, 2010; 
Tian and Ague, 2014; Skarbek and Rempel, 2016) and in the con-
text of brine and hydrocarbon migration in sedimentary basins 
(McKenzie, 1987; Connolly and Podladchikov, 2000; Appold and 
Nunn, 2002; Joshi and Appold, 2016). In the aforementioned appli-
cations it is important to understand if solitary waves are effective 
carriers of energy, mass and geochemical signals. Here we revisit 
the viability of transport by porosity waves.

An idealized limit of compaction-driven porosity waves are so-
called solitary porosity waves, which propagate at constant phase 
velocity, λ, without change in shape (Fig. 1a). In solitary waves 
the decompaction due to fluid overpressure at the front is per-
fectly balanced by compaction due to fluid underpressure in the 
back (McKenzie, 1984; Scott and Stevenson, 1984, 1986; Barcilon 
and Richter, 1986; Wiggins and Spiegelman, 1995; Simpson and 
Spiegelman, 2011). In one dimension, the fluid velocity within the 
solitary wave is increased relative to the background, but always 
remains lower than the phase speed of the solitary porosity wave 
(Fig. 1b). Therefore, no sustained mass transport occurs in one-
dimensional solitary porosity waves (Richter and Daly, 1989; Bar-
cilon and Lovera, 1989; Watson and Spiegelman, 1994; Spiegelman, 
1994; Liang, 2008; Solano et al., 2014). This analysis of the one-
dimensional case has led to the assumption that porosity waves in 
general cannot transport mass.
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Fig. 1. One dimensional solitary porosity wave with phase speed, λ = 4. a) A high accuracy numerical solution for a dimensionless, one dimensional solitary porosity wave 
from Simpson and Spiegelman (2011): Porosity, φ , is scaled to the background porosity, φ0 = 0.001. Fluid pressure, P is scaled by the pressure due to buoyancy over the 
characteristic length scale, �ρgδ0. In the ambient background P is the lithostatic pressure, Pl . The upward volumetric flux of the fluid, qf , and its vertical velocity w f are 
scaled to the background separation flux, q0. Both qf and w f = qf/φ are elevated within the solitary porosity wave. b) Phase and vertical fluid velocities as functions of 
amplitude, A, of the porosity increase at the center of the solitary porosity wave. All calculations use the constitutive exponents (n, m) = (2, 1), see Section 2.1 for definition.
In addition, fluid transport by porous flow in local chemi-
cal equilibrium leads to chromatographic separation of chemical 
elements according to their compatibility within the solid ma-
trix (McKenzie, 1984; Navon and Stolper, 1987; Richter and Daly, 
1989). A perfectly incompatible element travels at the velocity of 
the fluid, whereas the effective transport velocity of a trace ele-
ment decreases relative to the fluid velocity with increasing com-
patibility. In the limit of perfect compatibility, the trace element 
travels with the solid. In one dimension, this chromatographic sep-
aration destroys any geochemical signature associated with the 
production of the fluid (Liang, 2008).

Fluid transport with porosity waves and chromatographic sepa-
rations appear to make it impossible to preserve the distinct geo-
chemical signature associated with the source region of the fluid. 
This is illustrated by the numerical simulation shown in Fig. 2. 
Here, fluid production has locally increased porosity and is ini-
tially co-located with two associated trace elements. Although the 
region of elevated porosity and trace element concentration are 
initially co-located, they become separated during fluid migration. 
As the trace element signatures abandoned by the porosity wave 
slowly migrate upwards, the continuous exchange between the 
fluid and solid separates tracers according to their compatibility. 
This implies that transport induced by the increase in fluid supply 
due to local fluid production carries with it no distinct geochemi-
cal signature.

However, the conclusion that solitary porosity waves do not 
transport mass is based upon one dimensional studies of melt 
transport. It is well known that one-dimensional porosity waves 
are unstable in two and three dimensions and break up into sets 
of cylindrical or spherical porosity waves (Scott and Stevenson, 
1986; Wiggins and Spiegelman, 1995). Here we show that tracer 
transport in such higher dimensional porosity waves is dramati-
cally different that in one dimension.

2. Fluid flow in two dimensional porosity waves

Models for fluid flow in ductile rocks assume a two phase mix-
ture comprised of incompressible solid and melt phases. The flow 
of the fluid is described by Darcy’s law and the solid matrix under-
goes viscous deformation, often assumed to be Newtonian (McKen-
zie, 1984; Scott and Stevenson, 1984; Fowler, 1985a). Due to the 
intrinsic weakness of ductile rocks, porosities are very small. This 
allows significant simplifications to the governing equations that 
describe the two phase mixture. These simplified equations admit 
solutions in the form of solitary waves as shown in Figs. 1 and 2. 
The substantial literature on solitary wave solutions provides the 
ideal framework for discussing mass transport in porosity waves.

2.1. Governing equations in the small porosity limit

The dimensionless governing equations for the evolution of a 
porosity anomaly in a uniform background, in the limit of small 
porosities, are

∂φ

∂t
= P

ξφ

, (1a)

−∇ · Kφ∇P + P
ξφ

= −∇ · Kφ ẑ, (1b)

where P and φ are the dimensionless fluid pressure and poros-
ity respectively and ẑ is the upward pointing unit vector. Here we 
write (1a) in terms of the partial derivative rather than the mate-
rial derivative and assume no net translation of the solid. For the 
full dimensional governing equations see Appendix A.1.

The dimensionless permeability, Kφ , and effective viscosity, ξφ , 
are functions of porosity based on phenomenological laws,

Kφ = φn and ξφ = φ−m, (2a,b)

where the values of the exponents are typically n ∈ [2, 3] and m ∈
[0, 1] (Wark and Watson, 1998; Simpson and Spiegelman, 2011).

The porosity has been scaled to the characteristic porosity, φ0, 
of the ambient background outside the porosity anomaly. The nat-
ural length scale that arises from the governing equations is the 
compaction length of the background, δ0 = √

K0ξ0/μ, where K0
and ξ0 are permeability and effective viscosity of the background 
and μ is the fluid viscosity.

The fluid pressure, P , is scaled by the pressure due to buoyancy 
over a compaction length, �ρgδ0, where �ρ = ρs −ρf is the den-
sity difference between solid and fluid, and g is the gravitational 
acceleration. The sign of P therefore indicates over and underpres-
sure. Time is scaled by the segregation time δ0/w0, where the 
segregation velocity w0 = Kφ�ρg/φ0μ, is induced by the buoy-
ancy of the fluid. The characteristic time scale is the time required 
for a percolating fluid to traverse a compaction length in the back-
ground.

The governing equations (1) admit solitary wave solutions in 
one, two and three dimensions. Fig. 3a shows porosity contours 
and the fluid pressure for a two-dimensional solitary porosity 
wave. Due to buoyancy, the fluid in the upper half of the soli-
tary porosity wave is above lithostatic pressure and dilates the 
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Fig. 2. Tracer transport in a one dimensional solitary porosity wave, for animation see mmc1.mp4. Two chemical tracers of different compatibility are initially co-located with 
the porosity anomaly due to melting of a heterogeneity. The green tracer is perfectly incompatible (D = 0) with the solid phase and travels at the velocity of the melt. The 
blue tracer is slightly compatible (D = 2 × 10−3) with the solid and travels with a reduced velocity. For definition of distribution coefficient, D , see Section 3. Time is scaled 
to the amount of time required for the background melt to travel one characteristic compaction length, δ0. Characteristic scales are introduced in Appendix A.3. The distance 
melt travels at the characteristic velocity is demonstrated by the dotted black line and four times slower than the solitary porosity wave traveling at the phase speed λ = 4. 
All calculations use the constitutive exponents (n, m) = (2, 1), see Section 2.1 for definition. (For interpretation of the references to color in this figure, the reader is referred 
to the web version of this article.)

Fig. 3. a) Two-dimensional solitary porosity wave with phase speed, λ = 4, and constitutive exponents, (n, m) = (2, 1). Dimensionless pressure of the melt phase, P , with 
porosity contours, φ in gold from Simpson and Spiegelman (2011). The black line down the center of the contour plot shows the spatial location of the “one-dimensional” 
profile. This profile is analogous to Fig. 1a. Notably, w f > λ suggesting that sustained mass transport is possible within two-dimensional solitary porosity waves. b) Vertical 
melt velocity at the center of the solitary porosity wave and phase speed as a function of amplitude, A. Constitutive exponents, (n, m) = (2, 1) as in a. (For interpretation of 
the references to color in this figure, the reader is referred to the web version of this article.)
matrix, while the pressure of the fluid in the lower half is below 
lithostatic, allowing the matrix to compact. This balance between 
dilation and compaction leads to steady upward migration of the 
solitary porosity wave at a fixed phase speed, with solutions when 
λ ≥ 3. Fig. 3a also shows a cross-section of the two dimensional 
plot to help draw comparison to Fig. 1. Below we utilize two di-
mensional solutions for solitary porosity waves with (n, m) = (2, 1)

provided by Simpson and Spiegelman (2011), to highlight pre-
viously unrecognized implications for mass transport in porosity 
waves.

2.2. Mass transport mechanism in solitary porosity waves

To understand mass transport within solitary porosity waves, 
the fluid and solid flow fields must be computed. Although the 
governing equations in the small porosity limit are independent 
of the solid flow field, knowledge of the solid flow field is re-
quired to understand the transport of compatible trace elements. 
The movement of the solid can be recovered by solving the fol-
lowing equation for the scalar solid velocity potential,

−∇2U = P
ξφ

. (3)

The potential U captures the perturbation to the solid velocity field 
from compaction and decompaction induced by the solitary poros-
ity wave. Once U and P are known, the flux of fluid relative to 
solid, qr, is described by Darcy’s law and the solid velocity field, 
vs , is found from the gradient of the solid velocity potential,

qr = φvf = −Kφ

[∇P − ẑ
]

and vs = −∇U . (4a,b)

In the small porosity limit, the motion of the solid can be ne-
glected in the formulation of Darcy’s law, so that the fluid flux 
is equal to the relative fluid flux, qf = qr (see Appendix A.3). 
Throughout this study, u represents the horizontal component of 
the velocity field and w denotes the vertical vp = [

up wp
]
, where 
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Fig. 4. Streamlines of a solitary porosity wave with λ = 4 and constitutive exponents (n, m) = (2, 1). The porosity contours in gold are identical to those shown in Fig. 3a. a)
Solid flow streamlines in Eulerian reference frame. b) Fluid streamlines in Eulerian reference frame. c) Solid streamlines in Lagrangian reference frame. d) Fluid streamlines 
in Lagrangian reference frame, w̃p = wp −λ, where p = (f, s). Dividing streamlines are depicted in red. Within the dividing streamline there are symmetrical counter-rotating 
cells. Each panel is 20δ0 × 20δ0. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
subscript, p ∈ [f, s] denotes the fluid and solid phases. Unlike pre-
vious studies, the solid velocity has been scaled by φ0 w0. This 
scaling takes into account the reduction of solid motion with de-
clining background porosity.

The fluid flux, qf , in both one and two dimensional solitary 
porosity waves is enhanced relative to the background, q0 = φ0 w0. 
Similar to the one dimensional case, the phase velocity of the 
porosity wave is larger than the background fluid velocity (Figs. 1a
and 3a). In one dimension, fluid speed never exceeds the phase 
speed of the porosity wave. Therefore, an incompatible tracer ex-
periences no sustained transport (Fig. 1 and Fig. 2). In contrast, 
Fig. 3b, shows that the fluid velocity at the center of two dimen-
sional velocity waves exceeds the phase velocity, w f > λ for all 
λ > 3.

Figs. 4a and 4b show the streamlines of the solid and fluid ve-
locity fields, vs and vf in a fixed Eulerian reference frame at an 
instant in time. In the Eulerian reference frame the solid in the 
far-field is stationary. Solid streamlines show a dipole-like pat-
tern. They emanate from the dilating region at the front of the 
porosity wave, and converge in the compacting region at the back. 
Fluid streamlines are sub-vertical and deflected towards the inte-
rior of the solitary porosity wave, indicating a focusing of the fluid 
flux into the high porosity wave. Focusing of the flow allows the 
speed of the fluid at center of the wave to exceed the phase speed 
(Fig. 3b). This suggests that sustained tracer transport may be pos-
sible, because perfectly incompatible tracers at the center of the 
wave move faster than the solitary porosity wave and are not left 
behind as in Fig. 2.
However, in the Eulerian reference frame it is not possible to 
infer the physical path of fluid from the streamlines, because the 
porosity field and its associated velocity fields evolve in time. In 
a Lagrangian reference frame, moving with the constant phase 
speed of the solitary porosity wave,

w̃p = wp − λ, p ∈ [f, s], (5)

the porosity field and the streamlines become stationary (Fig. 4c
and 4d). Here, the solid streamlines are sub-vertical and deflected 
outward from the center of the porosity wave. In the far-field, the 
solid moves downward with speed λ.

After shifting into the Lagrangian reference frame, the move-
ment of the fluid becomes apparent. Fluid streamlines show dis-
tinct behavior in the interior and exterior of the porosity wave 
(Fig. 4d). These regions are separated by two semi-circular dividing 
streamlines that meet at two stagnation points along the vertical 
symmetry axis of the porosity wave, where (uf, w̃ f) = 0. In the in-
terior, there are two symmetric cells of closed streamlines where 
fluid circulates outwards around two additional stagnation points 
along the horizontal axis of symmetry. Outside the circular divid-
ing streamline, the fluid streamlines are sub-vertical and deflected 
away from the wave moving downward at a speed bounded be-
tween 0 and λ, relative to the background velocity of the solid. 
Fluid on the interior of the circular dividing streamline is trans-
ported by the solitary porosity wave, while fluid outside is stripped 
away and experiences no sustained transport. Unlike their one 
dimensional counterparts, two dimensional porosity waves may 
transfer mass.
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Fig. 5. Demonstration of transport of bulk composition, C, for a perfectly incompatible tracer, D = 0, initially co-located with a solitary porosity wave (λ = 5, (n, m) = (2, 1)). 
This simulation uses the same governing equations and constitutive relationships as in Fig. 2. Red lines with arrowed tips show the dividing streamlines and their direction 
of flow. Maroon dots show the location of stagnation points where uf = w̃ f = 0. Lastly, the gold circle is five percent of the maximum porosity anomaly. Within this gold 
circle the tracer field is initialized to xf = 1. For an incompatible tracer the dimensionless bulk composition is simply, C = φxf , so the variation of C within the wave is 
largely a reflection of dimensionless porosity field, φ. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
3. Tracer transport in porosity waves

Starting with Korzhinskii (1965) and Hofmann (1972) it has 
been recognized that elements may undergo chromatographic sep-
aration during fluid percolation in geological processes. In mag-
matic systems, chromatographic separations are most commonly 
invoked in studies of trace element and radionuclide transport 
(McKenzie, 1984, 1985a; Navon and Stolper, 1987; DePaolo, 1996; 
Hauri, 1997; Hauri and Kurz, 1997). Similarly, chromatographic 
concepts have been important in metamorphic systems, where 
they are commonly applied to stable isotope transport (Norton and 
Taylor, 1979; Baumgartner and Rumble, 1988; Bickle and McKen-
zie, 1987; Bowman and Willett, 1991). In either case, models with 
one-dimensional flow at constant porosity result in the linear sep-
aration of tracers based on their compatibility with the solid phase.

3.1. Tracer transport in low porosity limit

The chromatographic separation of tracers is determined by the 
distribution coefficient, which is variably defined, either as a ratio 
of mass fractions (McSween et al., 2003), Dx = xs/xf , or as a ratio 
of concentrations (White, 2013),

D = cs

cf
= ρsxs

ρfxf
= ρs

ρf
Dx. (6)

Here, cs is the total concentration of the tracer in all solid phases 
and cf is its concentration in the fluid and similarly xs is the to-
tal mass fraction of tracer partitioned into all solid phases while xf

is the mass fraction of tracer in the fluid. For a perfectly incom-
patible tracer D = 0, there is no incorporation of the trace element 
into the solid phase and the velocity of the tracer is that of the 
fluid flow field (Figs. 4b and 4d). Conversely, as D → ∞, the tracer 
prefers the solid and the effective velocity of the tracer is that of 
the solid flow field (Figs. 4a and 4c). For all intermediate cases, the 
dimensionless effective velocity in the small porosity limit is given 
by

ve = φvf + vs D

φ + D/φ0
, (7)

where a term containing the characteristic porosity, D/φ0, has 
been retained, because the distribution coefficient itself may be 
small. Here, the dimensionless effective tracer velocity is scaled by 
w0. For dimensional equations, scaling and simplification see Ap-
pendix A.2, Appendix A.3 and Appendix A.4, respectively. When 
D 	 φ0 	 1, ve → vf and when D 
 φ0, ve → φ0vs ≈ 0. Fig. 2
illustrates the reduction in the effective velocity of a moderately 
compatible tracer relative to a perfectly incompatible tracer in a 
one dimensional flow field.
Assuming chemical equilibrium and purely advective transport, 
the dimensionless conservation equation for bulk tracer evolution 
in absence of hydrodynamic dispersion is given by

∂C
∂t

+ ∇ · [veC] = 0, (8)

where the dimensionless bulk concentration of tracer in the small 
porosity limit is given by

C = (φ + D/φ0) xf. (9)

For the derivation and scaling of equations (8) and (9) see Ap-
pendices A.2 to A.4. Below, we first investigate the evolution of a 
perfectly incompatible tracer in the fluid phase, before illustrating 
the effect of partitioning on tracer transport by porosity waves.

3.2. Perfectly incompatible tracer

Consider a local increase in porosity generated by localized 
melting or fluid production characterized by a distinctive geochem-
ical tracer, C , as shown in the t = 0 panel of Fig. 5. According to 
conventional wisdom, the tracer should become decoupled from 
the porosity wave, similar to the one-dimensional case shown in 
Fig. 2. However, the results in Fig. 5 illustrate that only the outer 
portion of the tracer is stripped away, while the tracer in the cen-
ter migrates upward with the solitary porosity wave. This central 
region corresponds to the area within the circular dividing stream-
line. Once the porosity wave migrates a distance proportional to 
the radius of the circular dividing streamline, it will contain two 
distinct fluids: one derived from the heterogeneity that generated 
the solitary porosity wave and another from the background.

To more effectively illustrate the motion of the tracer that 
is transported by the solitary porosity wave, consider the initial 
tracer distribution shown in the first panel of Fig. 6. Here, the ini-
tial distribution of the tracer is confined to a disc that is smaller 
than the circular dividing streamline. In this case, the porosity 
wave transports two fluids of distinct composition within the cir-
cular dividing streamline, distinguished by the concentration of the 
tracer, C . The circulation of the fluid within the dividing stream-
line is much faster than the phase speed of the solitary porosity 
wave. This stretches the tracer into symmetrical filaments that spi-
ral inwards to the central stagnation points in a swirling motion 
reminiscent of Cinnamon rolls, similar to tracer patterns observed 
solitary waves that arise in Stokes flows in fluid conduits (White-
head and Helfrich, 1988).

The tracer pattern in Fig. 6 remains relatively sharp, because 
molecular diffusion, Dmol and mechanical dispersion, Ddis, are ne-
glected in the simulation. The presence of any significant hydro-
dynamic dispersion Dhyd = Dmol + Ddis, will tend to homogenize 
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Fig. 6. Transport of bulk composition, C, using initial tracer distribution confined to disc smaller than the circular dividing streamline of a solitary porosity wave (λ = 5, 
(n, m) = (2, 1)). The initial condition is, xf = 1 for φ > 0.7 max(φ) and zero elsewhere. Circular dividing streamline is shown in red, stagnation points are in maroon and the 
gold halo representing the five percent porosity contour is left for comparison to Fig. 5. (For interpretation of the references to color in this figure, the reader is referred to 
the web version of this article.)
the composition of the fluid transported within the porosity wave. 
The importance of hydrodynamic dispersion is given by the Péclet 
number, Pe = wmr/Dhyd, where a suitable length scale is the ra-
dius, r, of the circular dividing streamline. Dispersion could result 
in the homogenization of the tracer within smaller porosity waves 
during migration. Furthermore, small amounts of tracer may be 
lost to the background across the dividing streamline when hy-
drodynamic dispersion is considered. The importance of dispersion 
is difficult to asses, because the physical size of solitary porosity 
waves changes dramatically with the choice of the constitutive ex-
ponents, n and m. For discussion of this issue see Section 4.2.

3.3. Tracers of varying compatibility

Tracers with nonzero distribution coefficients are transported 
by an effective velocity field that is a weighted average of the solid 
and fluid flow fields, given by equation (7). The Lagrangian fluid 
streamlines for tracers with increasing distribution coefficients are 
shown in Fig. 7. The overall circulation pattern remains the same, 
except the radius of the circular dividing streamline shrinks with 
increasing D as the effective velocity decreases. At the critical dis-
tribution coefficient, D∗ , the circular dividing streamline has col-
lapsed to a point and the solitary porosity wave stops transporting 
the tracer.

This implies that the effect of partitioning on tracer transport in 
higher dimensional solitary porosity waves is drastically different 
from transport in one-dimensional columns typically considered. 
In one dimension the distribution coefficient determines velocity of 
transport. In contrast, within higher dimensional solitary porosity 
waves the distribution coefficient determines the amount of tracer 
transported, but not its overall velocity. Of course, the migration 
of compatible trace elements along the circular streamlines is re-
tarded, but the overall vertical migration velocity is λ for all trace 
elements with D < D∗ . Trace elements with D ≥ D∗ , are not trans-
ported by solitary porosity waves.

The exact value of D∗ depends on the phase speed and ampli-
tude, of the solitary porosity wave, as shown in Fig. 8a and on the 
constitutive exponents, n and m. As the distribution coefficient in-
creases above D/φ0 = 10−1 the volume of fluid transporting tracer, 
V e, begins to decrease and vanishes at D∗ . For transport to occur 
the vertical effective velocity of the tracer, we, must exceed the 
phase speed, λ, of the solitary porosity wave. Since the fluid veloc-
ity is largest in the center of the wave, D∗ can be obtained from 
(7) by setting we = λ at the center of the solitary porosity wave. 
Therefore, the critical distribution coefficient is given by

D∗/φ0 = φ (w f/λ − 1) at x̃ = 0, (10)

where the values of the variables at the center are obtained from 
the semi-analytical solution for the solitary porosity wave (Simp-
son and Spiegelman, 2011). Fig. 8b shows that D∗ increases rapidly 
with λ, because larger amplitude porosity wave focus fluid more 
effectively. For distribution coefficients based on mass fractions the 
critical distribution coefficient is D∗

x ∼ ρf/ρs D∗ .
Due to lithological changes, partitioning behavior often changes 

with depth as a porosity wave rises buoyantly. While the porosity 
wave itself is not affected by partitioning, the radius of the di-
viding streamline changes. Fig. 9 illustrates the resultant mixing 
behavior assuming a sharp decrease in D . Below the transition, the 
dynamics of tracer transport are analogous to the behavior shown 
in Fig. 5. However, due to the nonzero distribution coefficient, the 
radius of the circular dividing streamline is smaller (Fig. 7), re-
sulting in a reduced volume within which tracer is transported 
(Fig. 8a). As the solitary porosity wave crosses the transition in the 
distribution coefficient, the expansion of the dividing streamline 
incorporates background fluid into the transported volume. This 
newly incorporated fluid, is primarily derived from above the tran-
sition and becomes mixed with the tracer carried from below in 
a swirling pattern analogous to the dynamics in Fig. 6. The migra-
tion of solitary porosity waves across such transitions in mineral 
assemblage therefore provides a natural mixing mechanism for flu-
ids with different trace element signatures and different depths of 
origin.

4. Discussion

For clarity, the analysis presented in this manuscript is based 
upon highly idealized solutions for solitary porosity waves. These 
waves have been studied extensively and their properties are well 
constrained (Scott and Stevenson, 1984, 1986; Barcilon and Richter, 
1986; Barcilon and Lovera, 1989; Richter and McKenzie, 1984; 
Richter and Daly, 1989; Wiggins and Spiegelman, 1995; Simpson 
and Spiegelman, 2011). For the Lagrangian reference frame used in 
this study, knowledge of the exact phase velocity of the porosity 
waves is essential. The results above show that solitary porosity 
waves in two dimensions transport mass. Below we use numer-
ical simulations to demonstrate that this conclusion also applies 
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Fig. 7. Demonstration of increasing distribution coefficient D on fluid streamlines within a solitary porosity wave (λ = 5, (n, m) = (2, 1)). Fluid streamlines are shown in 
black with the dividing streamline in blue. The red circle indicates the dividing streamline for the perfectly incompatible case, D = 0, for reference. As D increases the 
semi-circular dividing streamline of the effective velocity shrinks until it vanishes at the critical distribution coefficient D∗ . At D∗ the vertical fluid velocity of the wave in 
the Lagrangian reference frame w̃e = 0. The blue dot in the D∗ panel indicates the point that the vertical velocity profile becomes zero a the porosity maximum for a tracer 
with compatibility D∗ . As in Figs. 3 and 4, the wave speed, λ = 4. The size of the domain in all cases is 20δ0 × 20δ0. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)
Fig. 8. a) Normalized volume of tracer melt retained by two dimensional solitary 
porosity waves as a function of partitioning behavior and phase speed. Light blue 
circles for λ = 4, correspond to results shown in Fig. 7. The intercept at the x-axis 
where V e = 0 corresponds with D∗ . b) The phase speed of the critical partition 
coefficient, D∗ against phase speed, λ. Filled in, colored, circles correspond to the 
x-intercept of 8a. For visualization of the growth of D with λ and the corresponding 
porosity profile, see Fig. B.12 in Appendix B. (For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article.)

to a broader set of less idealized porosity waves and their for-
mation. This is followed by a comparison of tracer transport 
in two-dimensional porosity waves and classical results in one-
dimensional linear columns. Finally, we discuss the physical di-
mensions and transport timescales of the porosity waves in ductile 
rocks as well as the limitations of this model.

4.0.1. Tracer incorporation during formation of porosity waves
The examples discussed in Section 3.2 demonstrate that an 

incompatible tracer can be transported by a fully formed, two-
dimensional solitary porosity wave. In all examples shown above 
the tracer is initially located in the recirculating region within the 
circular dividing streamline. In these simulations fluid at the cen-
ter of the solitary porosity wave is isolated from the background 
for the entire duration of transport. Therefore, it is not yet clear if 
a tracer can be incorporated into a porosity wave during its forma-
tion.

To illustrate the incorporation of a tracer into porosity waves, 
we study the break-up of a perturbed one-dimensional solution 
representing a laterally extensive region of elevated porosity. Sev-
eral authors have shown that one-dimensional solitary porosity 
waves are unstable in higher dimensions and lead to the formation 
of stable, higher-dimensional porosity waves (Scott and Stevenson, 
1986; Wiggins and Spiegelman, 1995). Fig. 10 shows the evolution 
of a perturbed one-dimensional solitary porosity wave from Simp-
son and Spiegelman (2011) in two-dimensions. The unperturbed 
one-dimensional evolution of this initial condition using the same 
parameters is shown in Fig. 2, which demonstrates that tracers 
are not transported. If the two-dimensional simulation is not per-
turbed, the solution remains one-dimensional and reproduces the 
behavior seen in Fig. 2. However, a slight perturbation in porosity 
leads to the break-up of this one-dimensional wave and the for-
mation of a two-dimensional porosity wave.

Fig. 10 shows that some tracer is initially left behind, while 
the wave remains quasi-one-dimensional. Eventually, the wave-
front scallops and forms a porosity maximum in the center of the 
domain due to the perturbation. This central porosity maximum 
begins to collect fluid laterally, increasing the fluid velocity and 
propelling the tracer upwards. The local increase in vertical fluid 
velocity leads to the incorporation of a fraction of the tracer orig-
inally co-located with the one-dimensional solitary porosity wave. 
Meanwhile, the porosity field coalesces into a radially symmetric 
porosity wave that travels with constant velocity and asymptotes 
towards solitary wave behavior as described in Section 2. Within 
this porosity wave a swirling tracer mixing pattern develops sim-
ilar to Fig. 6. This suggests that the formation of porosity waves 
leads to the incorporation and mixing of geochemical signatures 
initially located within the one-dimensional porosity wave with 
that of the ambient background near the initial location.
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Fig. 9. Finite volume simulation initialized with solitary wave solution used in Figs. 5 and 6. For animation see mmc2.mp4. The gray-scale filled contours show the evolution 
of tracer composition. As in Fig. 5 the gold circle is five percent of the maximum porosity anomaly. Half way through the domain, at sixty four characteristic compaction 
lengths, the compatibility of the tracer with the solid matrix transitions from D/φ0 = 2.25 to perfectly incompatible, D = 0, as indicated at the left hand side of the figure. 
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 10. Finite volume simulation initialized with a transversely perturbed one-dimensional solution for a solitary porosity wave, for animation see mmc3.mp4. The initial 
condition corresponds to the one-dimensional solitary porosity wave (λ = 4, (n, m) = (2, 1)) from Simpson and Spiegelman (2011), also shown in Fig. 2. Tracer is initialized 
so that xf = 1 where φ is greater than 50% of the maximum porosity anomaly. Contours for 20% and 80% of the maximum initial porosity anomaly are shown in gold. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
The porosity wave forming in Fig. 10 is not a true solitary 
wave in the mathematical sense, but the dynamics of tracer trans-
port are similar to the limiting case of a true solitary porosity 
wave. This demonstrates that a broader set of porosity waves re-
circulate fluid in the interior and therefore allow mass and tracer 
transport. Given that wave-like behavior is ubiquitous in simu-
lations of fluid flow in ductile rocks, this transport mechanism 
applies to a broad range of geological phenomena, including: par-
tial melting and melt segregation in the mantle (Katz and Rudge, 
2011; Weatherley and Katz, 2012) fluid release during regional 
metamorphism (Bailey, 1990; Thompson and Connolly, 1990; Con-
nolly, 1997, 2010; Tian and Ague, 2014; Connolly and Podladchikov, 
2015; Skarbek and Rempel, 2016) and brine migration during com-
paction of sedimentary basins (McKenzie, 1987; Connolly and Pod-
ladchikov, 2000; Appold and Nunn, 2002; Joshi and Appold, 2016). 
These waves arise in a range of porous media as they are a con-
sequence of the dispersive nature of the governing equations for 
fluid flow in a viscously compacting medium (Spiegelman, 1993a, 
1993b).

4.1. Implications for trace element transport in ductile rocks

This manuscript shows that two-dimensional solitary porosity 
waves may transport mass and that trace element transport is 
possible when D < D∗ . Increasingly compatible elements may be 
transported as phase speed and amplitude increase (Fig. 8b). Tracer 
transport in porosity waves differs from one-dimensional tracer 
chromatography in several important ways. Classical chromatog-
raphy in a linear flow field has the following characteristics:

1. Each element travels at a different velocity, determined by its 
distribution coefficient.

2. The absolute abundance of elements is not affected by chro-
matographic separation.

3. Linear chromatography provides no natural mechanism for 
mixing of distinct fluids.

In contrast, transport in two dimensional porosity waves has the 
following characteristics:

1. Elements with D < D∗ are transported together with the ve-
locity of the porosity wave, λw0.

2. The absolute abundance of elements transported with the 
wave is determined by compatibility.

3. Transport in porosity waves provides a natural mechanism for 
mixing of distinct fluids from different depths in a viscously 
compacting medium.
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Fig. 11. Band of possible solitary porosity waves given the dimensional length of the wave, �, and the dimensional speed of the wave, 	. The parameters used to generate 
this figure are typical upper-mantle values and can be found along with details of calculation in Appendix B. Red contours show the background porosity, φ0 required for a 
wave given its dimension and speed. The gold contour represents, the chosen boundary of the small porosity approximation, φmax = 0.05. Analysis assuming small porosity 
applies to solutions below and to the left of this contour. a) Gray scale contours show phase speed, λ, given the diameter of the recirculating region, �, and dimensional 
wave speed 	. b) Gray scale contours illustrate the critical distribution coefficient, D∗ , for tracers in solitary porosity waves. (For interpretation of the references to color in 
this figure, the reader is referred to the web version of this article.)
These differences arise because the transported fluid migrates 
along closed streamlines inside the porosity wave (Fig. 4d). Along 
these closed streamlines chromatographic separation affects the 
angular velocity of tracers interacting with the solid phase, which 
only leads to a phase shift. This negates the chromatographic sep-
arations for sufficiently incompatible elements that are otherwise 
inevitable during fluid percolation. Instead of reducing the effective 
transport speed, increasing compatibility of a tracer reduces the di-
ameter of the circular dividing streamline (Fig. 7), thereby reducing 
the mass of tracer transported (Fig. 8a). Therefore, mass transport 
in porosity waves may alter the relative abundances of trace el-
ements with different compatibilities. The dynamics observed in 
Figs. 9 and 10 demonstrate that fluid transport in porosity waves 
provides natural mechanisms to mix fluid of different origin and 
depth.

4.2. Physical size and speed of porosity waves

The size, �, and velocity, 	, of a porosity wave determine if 
the phenomena discussed here are relevant to a particular ge-
ologic process. Fig. 11a shows combinations of dimensional size 
and velocity for which porosity waves are expected, given typi-
cal upper-mantle parameters. Parameter values and calculations for 
Fig. 11 are detailed in Appendix B.

The existence of porosity waves is limited to a diagonal band 
in logarithmic �	-space, by the conditions that λ > 3 and that 
the porosity is small. Here we assume that the small porosity ap-
proximation is valid to 5% porosity, so that φmax = 0.05. Note that 
the φmax boundary cannot be traced all the way, because the semi-
analytic solutions of Simpson and Spiegelman (2011) only converge 
for λ ≤ 8.75, for (n, m) = (2, 1). It is therefore possible that very 
large very slow waves exist that are not captured here.

The velocity of a porosity wave increases with size as, 	 ∼ �2, 
because the segregation velocity of the melt increases with the 
compaction length as, w0 ∼ δ2

0 . Thus, the slope of the band in 
logarithmic �	-space is two and the speed of a porosity wave 
increases rapidly with its size. Fig. 11a also shows the dependence 
of wave speed and size on the model parameters φ0 and λ. At con-
stant φ0, an increase in λ initially increases the size of the wave 
more rapidly than its velocity, see also Fig. B.12. However, due to 
the limited range of the phase speed, 3 ≥ λ ≥ 8.75, the dominant 
control on both size and velocity of the wave is the background 
porosity, φ0.

Unfortunately, φ0 is poorly constrained and often treated as an 
adjustable parameter (McKenzie, 1985b; Connolly, 1997). Fig. 11a
shows that decreasing φ0 will reduce the size of the porosity wave, 
but only at the expense of its velocity. Similarly, the wave velocity 
can be increased by elevating the background porosity. However, 
the maximum wave velocity that can be attained is limited by the 
small porosity approximation.

Numerical simulations of fluid flow in ductile rocks commonly 
lead to porosity waves that exceed 5% porosity (Connolly and Pod-
ladchikov, 2000, 2007; Appold and Nunn, 2002; Šrámek et al., 
2012; Joshi et al., 2012). These porosity waves are not described by 
the small porosity analysis presented here. However, such waves 
likely also transport mass in higher dimensions, as long as the 
porosity contrast to the background is sufficient to focus fluid flow 
into the wave.

Fig. 11b shows that the contours of the critical distribution co-
efficient, D∗ , are mostly vertical. The ability of a porosity wave 
to transport tracers therefore increases with its size. This is due 
to the improved melt focusing in large high-amplitude waves. The 
behavior changes only in the vicinity of the λ = 3 cut-off, where 
the contours become near horizontal, suggesting that transport im-
proves with increasing velocity, and hence background porosity, φ0. 
Note that even waves with λ = 3 can transport tracers, though the 
transported volume/area is very small, see Fig. B.12.

The analysis in this manuscript is limited to the standard vis-
cous rheology, with the constitutive exponents (n, m) = (2, 1), in 
two dimensions. The size and velocity of small amplitude poros-
ity waves and their ability to transport tracers is likely to change 
dramatically with the choice of constitutive exponents and the 
spatial-dimension (Simpson and Spiegelman, 2011). In general, 
tracer transport is determined by the efficiency of fluid focusing 
for a particular wave (Fig. 4b). This focusing is likely to be more ef-
ficient in three dimensions, so that the magnitude of D∗ in Fig. 11b
should provide a lower limit.

5. Conclusions

Here we show that higher-dimensional solitary porosity waves 
transport mass, because they focus the background fluid flow. This 
allows the fluid velocity to exceed the phase velocity in the high 
porosity center of the wave. Streamlines in a Lagrangian refer-
ence frame, moving with the phase velocity of the solitary porosity 
wave, show that the fluid recirculates in the core of the porosity 
wave. Mass within the recirculating region is transported by the 
porosity wave, because it is separated from the outer flow field 
by a circular, dividing streamline. Incompatible tracers are trans-
ported in the volume of the porosity wave enclosed by the dividing 
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streamline of the fluid flow field. For compatible tracers, the radius 
of this circular dividing streamline, and hence the volume trans-
ported, decreases as the tracers becomes more compatible, until 
the transport ceases as the distribution coefficient exceeds a crit-
ical value. Unlike one-dimensional chromatography, transport in 
porosity waves does not produce chromatographic separations be-
tween relatively incompatible elements. Instead, it transports them 
together with the phase velocity of the porosity wave, and modi-
fies their relative abundances. Therefore, porosity waves in ductile 
rocks provide a potential mechanism for the transport and preser-
vation of geochemical signatures derived from melting of fertile 
heterogeneities in the mantle and the devolatilization metamor-
phic rocks. Sufficiently incompatible trace elements will travel to-
gether in an isolated batch of churning fluid. Furthermore, porosity 
waves provide a natural mechanism for mixing fluids and their 
geochemical signatures.
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Appendix A. Model equations

A.1. Dimensional model equations

The equations governing the percolative flow of a fluid through 
a viscously deformable, permeable matrix were originally pre-
sented by McKenzie (1984), Scott and Stevenson (1984) and Fowler 
(1985b) and are given by

∂ρfφ

∂t
+ ∇ · [ρfφvf] = 
, (A.1a)

∂ρs(1 − φ)

∂t
+ ∇ · [ρs(1 − φ)vs] = −
, (A.1b)

φ(vf − vs) = − Kφ

μ

[∇ P + ρf gẑ
]
, (A.1c)

∇ P = ∇ ·
(
η

[
∇vs + ∇vT

s − 2
3 (∇ · vs) I

])
+ ∇ (ζ∇ · vs) − ρgẑ,

(A.1d)

where φ is the porosity or fluid fraction, ρf is the density of fluid, 
μ is the viscosity of the fluid, vf is the fluid velocity and 
 is the 
fluid production rate. The density of the solid matrix is ρs, its ve-
locity is vs and its permeability is Kφ . The densities of the fluid 
and solid are assumed to be constant, but not necessarily equal, so 
ρ̄ = ρfφ + ρs(1 − φ). Here P is the pressure of the fluid, η and 
ζ are the effective shear and bulk viscosities of the two phase 
mixture, g is acceleration due to gravity, z is the vertical coor-
dinate and ẑ = ∇z the upward pointing unit vector. For closure, 
constitutive relationships are needed for permeability and effective 
viscosity and a mass transfer rate, 
, is required. For a full ther-
modynamic description of fluid production rate, melting-freezing, 
or dissolution-precipitation, additional conservation energy, mate-
rial compositions and equations of state for reactions and phase 
equilibria are required (e.g. Rudge et al., 2011).

If the shear viscosity η is constant the momentum balance of 
the solid can be written as
∇ P = η∇ × ∇ × vs + ∇
[
(ζ + 4

3η) (∇ · vs)
]
− ρgẑ, (A.2)

which allows the identification of three different contributions to 
the fluid pressure gradient,

∇ P = ∇ P∗ + ∇P + ∇ Pl. (A.3)

where P∗ is dynamic pressure, Pl is lithostatic pressure in the 
absence of fluid (Pl ≡ −ρs gz), and P is an effective compaction 
pressure defined by

P ≡ ξφ∇ · vs, (A.4)

where ξφ ≡ ζ + 4
3 η. Substituting (A.3) into the system (A.1) yields

∂φ

∂t
+ vs · ∇φ = (1 − φ)

P
ξφ

+ 


ρs
, (A.5a)

−∇ · Kφ

μ
∇P + P

ξφ

= ∇ · Kφ

μ

(∇ P∗ − �ρgẑ
) + 


�ρ

ρfρs
, (A.5b)

∇ · vs = P
ξφ

, (A.5c)

∇ P∗ = η∇ × ∇ × vs + φ�ρgẑ, (A.5d)

where �ρ = ρs − ρf . Equation (A.5b) is a modified Helmholtz 
equation for compaction pressure P that reduces to the familiar 
Darcy’s law in the limit of large ξφ . Equation (A.5c) relates the di-
vergence of the solid flow field to the compaction pressure and the 
resistance of the media to volumetric expansion and contraction. 
Finally, Equation (A.5d) is a Stokes-like equation for solid velocity 
and dynamic pressure driven by deviatoric stresses with buoyancy 
driven by porosity. Equation (A.5c) can be decoupled from Equa-
tion (A.5d) by applying a Helmholtz decomposition to the solid 
velocity field, vs = −∇U + ∇ × �, where U is the scalar poten-
tial and � is the vector potential (Spiegelman, 1993c). Lastly, using 
(A.3), the fluid flux relative to the movement of the solid matrix is 
given by

qr = φ(vf − vs) = − Kφ

μ

(∇ [
P∗ +P − �ρgz

])
. (A.6)

A.2. Tracer conservation equation

For a tracer that partitions into both phases the bulk concen-
tration in the system is conserved and given by,

C = φρfxf + (1 − φ)ρsxs, (A.7)

where ρp and xp are the densities and mass fractions of tracer 
partitioned across the solid phases and fluid phase respectively. At 
local chemical equilibrium the partition coefficient, D defined in 
(6), can be used to eliminate xs from (A.7), so that

C = (φ + (1 − φ)D)ρfxf. (A.8)

Tracer is transported by advection of the two phases, molecular 
diffusion and mechanical dispersion. The latter two are usually 
negligible on transport distances considered in melt migration. 
Therefore, we focus on advective transport here, so that the to-
tal mass conservation equation is given by

∂C

∂t
+ ∇ · [(φvf + (1 − φ)vs D)ρfxf] = 0, (A.9)

where vf and vs are the fluid and solid velocities. Using (A.8) to 
eliminate ρfxf the evolution equation for the bulk composition is 
simply
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∂C

∂t
+ ∇ · [veC ] = 0, (A.10)

where the effective velocity of the tracer is given by

ve = φvf + (1 − φ)vs D

φ + (1 − φ)D
. (A.11)

A.3. Scaling

The compaction length is the intrinsic length scale for the sys-
tem of governing equations given by (A.5). The compaction length 
is the solid phase relaxation distance for a piezometric overpres-
sure dilating the porosity, or the length scale over which P re-
sponds to variations in the relative fluid flux qr . Using a reference 
porosity, 0 < φ0 < 1, the characteristic compaction length, is given 
by,

δ0 =
√

K0ξφ0

μ
, (A.12)

where K0 = Kφ(φ0) and ξφ0 = ξφ(φ0) in equation (2). The buoy-
ancy-driven separation flux of the fluid relative to the solid is given 
by

φ0 w0 = K0�ρg

μ
, (A.13)

where w0 is the characteristic fluid segregation velocity. Using 
(A.12) and (A.13) along with material properties, the suite of model 
equations can be scaled by the following,

x = δ0x′ ∇ = ∇′/δ0

φ = φ0φ
′ t = (δ0/w0)t

′

vf = w0v′
f vs = φ0 w0v′

s

P = �ρgδ0P ′ P∗ = φ0�ρgδ0 P∗′ (A.14)

Kφ = K0 K ′
φ ξφ = η

φ0
ξ ′
φ

C = φ0ρfC U = φ0 w0δ0U

� = φ0 w0δ0�
′ 
 = ρsφ0 w0

δ0

′

where primes denote dimensionless variables. Substituting these 
scales into the system of equations given by (A.1) and dropping the 
primes we obtain the dimensionless system of governing equations

∂φ

∂t
+ φ0vs · ∇φ = (1 − φ0φ)

P
ξφ

+ 
, (A.15a)

−∇ · [Kφ∇P
] + P

ξφ

= ∇ · [Kφ

(
φ0∇ P∗ − ẑ

)] + 

�ρ

ρf
, (A.15b)

−∇2U = P
ξφ

, (A.15c)

∇ P∗ = ∇ × ∇ × ∇ × � + φẑ. (A.15d)

The volumetric flux of the fluid is given by

qr = φ (vf − φ0vs) = −K
(∇P + φ0∇ P∗ − ẑ

)
. (A.16)

Substituting (A.14) into (A.8)–(A.11), the scaled dimensionless 
tracer evolution equations is

∂C
∂t

+ ∇ · [veC] = 0, (A.17)
where the dimensionless bulk composition and effective velocity 
are given by

C = (φ + (1 − φ0φ)D/φ0) xf (A.18)

and

ve = φvf + (1 − φ0φ)vs D

φ + (1 − φ0φ)D/φ0
. (A.19)

Here we have dropped the primes indicating dimensionless vari-
ables.

A.4. Small porosity approximation and the reduced model for fluid 
migration

Throughout this manuscript we apply the small porosity ap-
proximation, assuming that the ambient mantle has a porosity 
φ0 	 1. Application of the small porosity limit to the dimension-
less system of governing equations (A.15) results in the following 
simplifications: The solid volume fraction is unity, (1 − φ0φ) ≈ 1. 
Equation (A.15d) decouples, because terms containing P∗ in other 
equations are negligible. Terms containing vs are negligible, except 
the term containing D in (A.19). After the application of these sim-
plifications to the dimensionless system (A.15), the system reduces 
to

∂φ

∂t
= P

ξφ

, (A.20a)

−∇ · Kφ∇P + P
ξφ

= −∇ · Kφ ẑ, (A.20b)

−∇2U = P
ξφ

. (A.20c)

Using the scaled relationship for permeability, Kφ = φn , the phase 
velocities are given by

vf = −φ(n−1)
(∇P − ẑ

)
and vs = −∇U . (A.21)

The evolution of the dimensionless bulk composition is given by

∂C
∂t

+ ∇ ·
[

φvf + vs D

φ + D/φ0
C
]

= 0. (A.22)

Appendix B. Dimensional solitary porosity waves

To explore the relevancy of solitary porosity waves as a trans-
port mechanism in regional metamorphic fluid release and magma 
transport applications alike, the wavelength or size of the wave 
and speed of the wave must be known. Here we define the size 
of a solitary porosity wave to be the diameter of the circular di-
viding streamline, � = D(λ)δ0, where D(λ) for λ ∈ [3, 8] is an 
empirical fit to the semi-analytic solutions shown in Fig. 8c and 
further illustrated in Fig. B.12. The dimensional speed of the wave, 
	 = λw0 is simply the phase speed of the wave multiplied by the 
characteristic segregation velocity due to the buoyancy of the melt. 
Determining the physical size and speed of porosity waves is com-
plicated by three factors:

1. The strong dependence of the solitary waves on the constitu-
tive exponents n and m as well as the physical dimension.

2. The natural variation and the uncertainty in the magnitude of 
the physical parameters (e.g. grain size of the ambient mantle 
background).

3. The presence of the two parameters φ0 and λ that are often 
unconstrained and hence commonly used as fitting parame-
ters.
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Fig. B.12. Gray scale contours show the logarithm of scaled porosity field, φ′ = φ/φ0. The maroon contour shows the circular, dividing streamline, the diameter of which is 
D(λ). It is worth noting that the dividing streamline and amplitude increase considerably with phase speed λ, the extent of the porosity anomaly grows much more slowly. 
This illustrates that relatively fast moving waves are higher amplitude and thus focus melt far more efficiently. (For interpretation of the references to color in this figure, 
the reader is referred to the web version of this article.)
Table B.1
Parameters required for Equation (B.7).

Variable Description Value Dimensions

d Grain size 10−3 m
g Gravity 9.81 m s−2

η Shear viscosity of solid 1019 Pa s
τ Dimensionless parameter in K0 1600 –
μ Viscosity of fluid 1 Pa s
�ρ Density difference of melt & matrix 500 kg m−3

All results presented in Sections 2 and 3 are for porosity waves 
with constitutive exponents (n, m) = (2, 1) and in two-dimensions. 
Therefore, the discussion of the effect of these parameters is be-
yond the scope of this manuscript, but clearly an important ques-
tion for future work. Similarly, we will not explore the possible 
range of physical parameters, but simply assume commonly cho-
sen values for the upper-mantle as given in Table B.1. We focus on 
the two parameters φ0 and λ, which are often unclear.

The relevant physical relationships for solitary porosity waves 
form a nonlinear system of algebraic equations,

	 = λw0, (B.1)

� = D(λ)δ0, (B.2)

w0 = K0�ρg

φ0μ
, (B.3)

K0 = d2φ2
0

τ
, (B.4)

δ0 =
√

K0ξ0

μ
, (B.5)

ξ0 = ζ0 + 4

3
η, (B.6)

where D(λ) is a cubic fit of model output as shown in Fig. 8c and 
Table B.2, and ζ0 = ζ ∗φ∗η/φ0. The ratio of bulk to shear viscos-
ity of the matrix at reference porosity, φ∗, is denoted, ζ ∗ , and may 
range from 10–200. The product of ζ ∗φ∗ has been estimated both 
experimentally and theoretically ranging from 1–10 (Cooper, 1990; 
Hewitt and Fowler, 2008). Here we choose ζ ∗φ∗ = 1 so equation 
(B.6) becomes ξ0 = η(1/φ0 + 4/3). Lastly, τ (a dimensionless pa-
rameter in the permeability, K0) is chosen to be 1600, which is 
Table B.2
Polynomial fit for f (λ) = a0 + a1 · λ + a2 · λ2 + a3 · λ3 + a4 · λ4.

a0 a1 a2 a3 a4

D −32.1647 17.4541 −2.4443 0.1237 0

φ′
max −97.6775 66.7686 −14.9377 1.2758 0

D∗ 31.8696 −28.2758 8.8501 −1.1785 0.0654

appropriate for n = 2 (Frank, 1968; von Bargen and Waff, 1986; 
Cheadle, 1989).

The nonlinear system of algebraic equations (B.1)–(B.6) are 
combined to obtain a single residual function,

R(�,	,λ) = � −D(λ)
1

λ

(
	τμ

d�ρg

)√
η

τμ

[
4

3
+

(
λ

d2�ρg

	τμ

)]

= 0. (B.7)

Given values for 	 and � the residual function is solved for λ and 
the relationships described in (B.1)–(B.6) are determined. Addition-
ally, the background porosity can be expressed by rearranging (B.1)
as,

φ0 = 1

λ

	τμ

d2�ρg
. (B.8)

This background porosity is contoured in Fig. 11. General contours 
for porosity maximum porosity, or amplitude plus the background 
porosity, φ′

max = A + 1, are obtained using a cubic fit with coef-
ficients provided in Table B.2. The dimensional gold contours for 
φ = 0.05 in Fig. 11a are calculated by multiplying contours ob-
tained from this cubic fit by the background porosity. The criti-
cal distribution coefficient, D∗ , contoured in Fig. 11b is fit using 
a quartic polynomial to the model data plotted in Fig. 8b with 
D∗/φ0. Coefficients for this fit are also given in Table B.2. Gray-
scale contours for D∗ in Fig. 11b are also dimensionalized by mul-
tiplying by the background porosity.

Appendix C. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi.org/10.1016/j.epsl.2017.12.024.
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