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Abstract We describe and apply a linear inverse model which calculates spatial and temporal patterns
of uplift rate by minimizing the misfit between inventories of observed and predicted longitudinal river
profiles. Our approach builds upon a more general, nonlinear, optimization model, which suggests that
shapes of river profiles are dominantly controlled by upstream advection of kinematic waves of incision
produced by spatial and temporal changes in regional uplift rate. Here we use the method of characteristics
to solve a version of this problem. A damped, nonnegative, least squares approach is developed that permits
river profiles to be inverted as a function of uplift rate. An important benefit of a linearized treatment is
low computational cost. We have tested our algorithm by inverting 957 river profiles from both Africa and
Australia. For each continent, the drainage network was constructed from a digital elevation model. The
fidelity of river profiles extracted from this network was carefully checked using satellite imagery. River
profiles were inverted many times to systematically investigate the trade-off between model misfit and
smoothness. Spatial and temporal patterns of both uplift rate and cumulative uplift were calibrated using
independent geologic and geophysical observations. Uplift patterns suggest that the topography of Africa
and Australia grew in Cenozoic times. Inverse modeling of large inventories of river profiles demonstrates
that drainage networks contain coherent signals that record the regional growth of elevation.

1. Introduction

Uplift and denudation of the Earth’s surface are responses to different tectonic and subplate processes.
Conversely, spatial and temporal patterns of uplift rates indirectly contain useful information about these
processes. In the continents, considerable effort has been expended to constrain these rates by exploiting
a range of techniques. For example, databases of uplift, rock cooling and river incision rates have been built
using radiometric dating of emergent marine terraces, (U-Th)/He thermochronometry, clumped-isotope
altimetry, optically stimulated luminescence, and the history of sedimentary flux [see, e.g., Tanaka et al.,
1997; Ghosh et al., 2006; Flowers et al., 2008; Galloway et al., 2011; Pedoja et al., 2011]. From a global
perspective, these databases comprise spot measurements which means that spatial coverage can be
limited. In most continents, drainage networks set the pace of denudation [e.g., Anderson and Anderson,
2010]. Since these networks are widespread, the notion of combining a quantitative understanding of
drainage development with independent calibration is an attractive one. It may be possible to determine
spatial and temporal patterns of regional uplift rate, which in turn could improve our understanding of
tectonic and subplate processes.

Here we show how linear inverse modeling of longitudinal river profiles, with appropriate calibration, may
help to determine uplift rate histories. Pritchard et al. [2009] and Roberts and White [2010] first showed that
individual river profiles can be inverted by varying uplift rate as a function of time. Subsequently, Roberts
et al. [2012] developed a nonlinear optimization model which fits inventories of river profiles as a function
of the spatial and temporal pattern of uplift rate. Their general methodology has several important
advantages. For example, the relative significance of advective and diffusive erosional processes can be
explored, precipitation rate can be varied through time and space, and Monte Carlo inverse modeling can
be used to investigate how variations and uncertainties in erosional parameters affect patterns of calculated
uplift rate.

A justifiably simpler modeling strategy is amenable to linearization, which greatly speeds up the opti-
mization process [Pritchard et al., 2009; Goren et al., 2014; Fox et al., 2014]. This strategy has two significant
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benefits. First, the erosional parameter space can be more thoroughly and consistently explored. Second,
it becomes more practicable to interrogate large drainage inventories on a continent-wide basis. We
develop a damped, nonnegative, least squares algorithm and apply it to drainage inventories from Africa
and Australia. This algorithm is motivated by the results of our earlier analysis which exploited nonlinear
optimization techniques [e.g., Paul et al., 2014; Czarnota et al., 2014]. It permits assessment of the
applicability of the stream power erosional model at a range of spatial and temporal scales. Goren et al.
[2014] and Fox et al. [2014] have also developed a linear inverse model, which differs in terms of both
implementation and application.

2. Modeling Strategy

It is generally agreed that the shape of a longitudinal river profile (i.e., elevation, z, as a function of upstream
distance, x) is determined by some combination of uplift rate, U, and erosion rate, E, both of which can vary
as a function of time and space. Thus,

− 𝜕z
𝜕t

= E(x, t) + U(x, t), (1)

where x is distance from the river mouth and t is time before present day. Roberts and White [2010] showed
that if the shape of a river profile is known, it is feasible to invert for uplift rate as a function of time and/or
space. The crux of this problem lies in knowing the erosional history of a river. Erosion of a river channel is
a complex process, which is usually approximated by assuming that two forms of erosion occur. The first
form assumes that elevation along a river profile is controlled by headward propagation of steep slopes
(i.e., detachment-limited erosion) [Howard and Kerby, 1983; Whipple and Tucker, 1999]. The second form
assumes that elevation is strongly influenced by sedimentary transport (i.e., transport-limited erosion) [Sklar
and Dietrich, 1998, 2001; Rosenbloom and Anderson, 1994; Whipple and Tucker, 2002; Tomkin et al., 2003].

Erosion rate can be written as

E(x, t) = −v◦[PA(x)]m
(
𝜕z
𝜕x

)n

+ 𝜅(x) 𝜕
2z

𝜕x2
, (2)

where v◦ is a calibration constant with the dimensions of velocity if m=0, P is precipitation rate which can
vary with space and time, A is upstream drainage area that can be measured at the present day, m and n are
dimensionless erosional constants whose values are much debated, and 𝜅 is “erosional diffusivity,” which
could vary along a river profile (Table 3).

In a series of contributions, Pritchard et al. [2009], Roberts and White [2010], Roberts et al. [2012], and
Paul et al. [2014] showed that the general inverse model can be posed and solved. They demonstrated
that values of the four erosional parameters, v◦, m, n, and 𝜅, affect residual misfits between observed and
predicted river profiles in different ways. There is considerable debate about the values of v◦, m, and in
particular n [e.g., van der Beek and Bishop, 2003; Roberts et al., 2012; Royden and Perron, 2013; Mudd et al.,
2014; Lague, 2014]. In general, v◦ determines the timescale for knickpoint retreat and its value must be
independently estimated from geologic constraints (e.g., present-day measurements of incision). Both
Roberts and White [2010] and Croissant and Braun [2014] showed that v◦ and m trade off negatively with
each other so that different combinations of v◦ and m yield equally acceptable fits between observed and
predicted river profiles.

The value of n is subject to much discussion [see, e.g., Lague, 2014]. Solutions of the detachment-limited
model (i.e., first term on right-hand side of equation (2)) can develop shocks if n>1 so that steeper slopes
propagate faster than shallower slopes [Pritchard et al., 2009; Royden and Perron, 2013]. If shocks develop,
steep slopes can consume shallower slopes and part of the uplift history will be erased, resulting in
spatiotemporal gaps. If n=1, the advective velocity is v◦(PA)m and uplift events map directly into changes
of elevation. There is no convincing evidence for shock wave behavior which implies that n=1 [Pritchard
et al., 2009]. A more compelling argument is given by Paul et al. [2014] who examined residual misfits
between observed and predicted river profiles as a function of n. They showed that global minima occur at,
or near, n=1. These minima exist for different model regularizations and for different degrees of smoothing,
suggesting that drainage inventories are poorly fitted when n≠1. Their results are consistent with some
field studies, which imply that n∼1 [e.g., Whittaker et al., 2007; Whittaker and Boulton, 2012].
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Figure 1 shows the results of jointly inverting the Orange river and its longest tributaries that drain South
Africa using the nonlinear inverse method of Roberts et al. [2012]. During each inversion run, v◦ and n were
covaried to test the sensitivity of calculated uplift to changes in the value of erosional parameters [see Paul
et al., 2014]. The residual root-mean-squared (RMS) misfit, H, between observed and predicted river profiles
is given by

H =

√√√√√ 1
K

I,J∑
i,j=1

(
zo

ij − zc
ij

𝜎

)2

, (3)

where zo
ij and zc

ij are observed and predicted river profile elevations, 𝜎 is the uncertainty associated with each
elevation (typically ∼20 m away from narrow channels) [Farr et al., 2007], I is the number of points along a
given river profile, J is the number of river profiles, and K is total number of data points. Figure 1d shows
that the RMS misfit has a global minimum at n∼1. At n=1, a reliable uplift rate history can be retrieved.
If n<1, we found that the calculated peak uplift rate is higher and later. If n>1, the calculated peak uplift
rate is both smaller and earlier, in agreement with the finding of Goren et al. [2014]. For example, if n=0.7,
calculated peak uplift rate shifts forward to ∼9 Ma. If n=1.5, the calculated peak uplift rate shifts backward
to ∼40 Ma. Figures 1f–1h shows how residual misfit varies as a function of erosional parameters for a set of
forward models where U(t) is fixed. Note that a global minimum occurs at n=1, although some trade-off
between v, m, and n occurs. Combined with previously published results, these analyses suggest that it is
reasonable to assume n ∼1, which then justifies a linear inverse approach.

Rosenbloom and Anderson [1994] have suggested that 𝜅 is unlikely to be greater than 5×105 m2 Ma−1.
Nevertheless, it is possible that 𝜅 varies by many orders of magnitude (e.g., 1–107 m2 Ma−1). In our inverse
models, river profiles are sampled every 10–20 km, which implies that the minimum value of 𝜅 that can be
resolved is 107 m2 Ma−1 (i.e., 𝜅= l2∕Tl , where l= horizontal resolution and Tl = longevity of a river). This value
exceeds all reported estimates and implies that erosional diffusivity can be safely ignored. In other words,
advective retreat of uplift signal is the dominant control and transport-limited processes are of negligible
importance at the scales under consideration [e.g., Berlin and Anderson, 2007].

Finally, a parsimonious strategy assumes that both A, P, and the reference level (i.e., sea level) are invariant.
In fact, A is undoubtedly modified by river capture events and precipitation rates vary with space and
time. The integral solution of equation (11) suggests that significant temporal changes of A and P have a
relatively minor effect on calculated uplift histories. Changes in A scale time, which is clear from the
governing equation when diffusion is neglected. Since it is taken to a fractional power, A can vary by ±0.5A
without adversely affecting calculated uplift rate histories. Paul et al. [2014] showed that their African results
are essentially unchanged when precipitation rate is varied, provided P varies with a period of less than
∼10 Ma. They also showed that lithology and slope, curvature or steepness index correlate less well at
wavelengths greater than several kilometers and that drainage planforms have probably been configured
by Neogene dynamic support. Czarnota et al. [2014] showed that altering river profile lengths by 10–50 km
has a small effect on calculated uplift rate histories. Finally, it can be shown that rapid glacioeustatic changes
in sea level do not adversely affect the long-wavelength component of river profiles [e.g., Miller et al., 2005].

A key outcome of earlier optimization schemes, which solve equation (1) in its general form, is that erosional
parameter values must be constrained using independent observations of uplift and/or incision rate
histories. Without careful calibration, uplift rate histories cannot be convincingly determined [e.g., Royden
and Perron, 2013]. In some locations (e.g., southeast Australia, Colorado Plateau, and West Africa), local uplift
and incision histories demonstrate how v◦, m, and n trade off against each other [Stock and Montgomery,
1999; Czarnota et al., 2014]. Since our previous results are insensitive to published values of 𝜅 and since
n ∼1 gives the best fit to data, we can now formulate the linear inverse problem.

3. A Linear Inverse Model
3.1. Method of Characteristics
Our experience of solving the general optimization problem suggests that the evolving shape of a river
profile can be approximated by

− 𝜕z
𝜕t

+ vAm 𝜕z
𝜕x

= U(x, t). (4)
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Figure 1. Inverse modeling of Orange river and its tributaries. (a) Topography and drainage of southern Africa. White lines = drainage network; black lines
= drainage divides; red line = Orange catchment; gray/blue lines = modeled tributaries. (b) Landscape response time, 𝜏G , for map shown in Figure1a. (c) Joint
inversion of three tributaries of Orange river for U(t). Gray/blue lines = observed profiles; red lines = predicted profiles for n=1. (d) Residual RMS misfit between
observed and calculated river profiles as function of n from joint inversion. Arrow indicates global minimum at n=1. (e) Cumulative uplift as function of time
determined by general, nonlinear, optimization algorithm for single tributary of Orange river with n=1 (blue lines in Figures 1a and 1c). Encircled numbers
= principal uplift events (cf. linearized inversion; Figure 2c). (f ) RMS misfit between observed and calculated Orange tributary (Figure 1c, blue line) when v and
m are covaried in series of forward models with fixed uplift rate history. Input uplift history shown in Figure 1e. Misfit variation along trade-off relationship (red
and white shading). (g) RMS misfit when m and n are covaried for fixed uplift rate history shown in Figure 1e. Misfit variation along trade-off relationship (red
and white shading). (h) RMS misfit when v and n are covaried for fixed uplift rate history shown in Figure 1e. Misfit variation along trade-off relationship (red and
white shading).
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This kinematic wave equation can be solved using the well-known method of characteristics [e.g., Lighthill
and Whitham, 1955; Weissel and Seidl, 1998]. The solution takes the form of z(x, t) = z(x(t), t). Since

dz
dt

= 𝜕z
𝜕t

+ dx
dt

𝜕z
𝜕x

=
(

vAm + dx
dt

)
𝜕z
𝜕x

− U(x(t), t), (5)

the solution can be written as a pair of ordinary differential equations

dx
dt

= −vAm, (6)

dz
dt

= −U(x(t), t). (7)

Appropriate boundary conditions are

x = x∗, z = z∗ at t = 0 (8)

and x = 0, z = 0 at t = 𝜏G. (9)

The first boundary condition represents the present day, where at a position x∗ along a river, the elevation
is z∗. For position x∗, 𝜏G is termed the Gilbert Time. The second boundary condition represents a time in
the past, 𝜏G, at which the characteristic curve intersects the river mouth (i.e., x=0) which occurs at sea level
(i.e., z=0). From equations (6), (8), and (9), the Gilbert Time must satisfy

𝜏G = ∫
x∗

0

dx
vAm

. (10)

A general solution for equations (6)–(9) can be written in integral form as

𝜏G − t = ∫
x(t)

0

dx
vAm

and (11)

z∗ = ∫
𝜏G

0
U(x(t), t)dt. (12)

This analysis closely follows the approaches used by Lighthill and Whitham [1955], Luke [1972], Weissel and
Seidl [1998], Smith et al. [2000], and Pritchard et al. [2009].

3.2. Linear Least Squares Inversion
We wish to use a collection of observations, z∗, to invert the integral equation (12) for uplift rate, U(x, t).
First, the problem must be discretized in both space and time. Spatial discretization is accomplished by
using a triangular mesh of the domain. Temporal discretization is accomplished by using a finite set of time
intervals. In this way, uplift values can then be specified at a discrete set of spatial and temporal nodes as a
vector of values given by U. Values of uplift between these nodes are obtained by linear interpolation.

Given a discrete set of positions, x∗, and the upstream drainage area, A, along a river profile, equation (10)
can be straightforwardly integrated using the trapezoidal rule. This integration yields values of Gilbert
Time. Equation (11) is then used to obtain the characteristic curves. These curves are combined with linear
interpolation to discretize equation (12), once again using the trapezoidal rule. The resultant matrix
equation takes the form

z = MU (13)

for a set of elevations, z, at different positions on different river profiles (Appendix A).

We can now invert equation (13) to find U from z. To avoid the possibility of positive and negative
oscillations, a nonnegativity constraint is normally imposed [Parker, 1994]. Since this particular problem is
often underdetermined (i.e., M can have fewer rows than columns), it is also necessary to exploit a damped
least squares approach. We minimize

|MU − z|2 + 𝜆2
S|SU|2 + 𝜆2

T |TU|2

subject to U ≥ 0, (14)
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which is a nonnegative least squares (NNLS) problem. Smoothing parameters are 𝜆S and 𝜆T , which control
the regularization of this problem. The matrix S represents spatial smoothing and is given by

|SU|2 = ∫S ∫
tmax

t=0
|∇U|2 dt dS. (15)

Matrix T represents temporal smoothing and is given by

|TU|2 = ∫S ∫
tmax

t=0

||||𝜕U
𝜕t

||||
2

dt dS. (16)

Parameters 𝜆S and 𝜆T are chosen by analyzing the trade-off between smoothness and misfit [Parker, 1994].
We solve this NNLS problem using a limited memory version of the Broyden-Fletcher-Goldfarb-Shanno
algorithm, L-BFGS-B, which is suited to problems with large sparse matrices [e.g., Broyden et al., 1973].
We successfully benchmarked our results by implementing the slower active set algorithm of Lawson
and Hanson [1974], which always converges optimally since it fulfills the Karush-Kuhn-Tucker conditions
[e.g., Kuhn and Tucker, 1951]. In practice, computational cost is reduced by a factor of ∼ 104 compared to
nonlinear optimization methods [e.g., Roberts et al., 2012].

Goren et al. [2014] and Fox et al. [2014] describe an alternative linear least squares algorithm that exploits
an empirical Bayesian approach. In their algorithm, a prior model of the uplift history is first selected. This
prior model uses a guess of the average uplift rate based upon channel elevation and upstream drainage
area observations (see paragraph following equation (21) on page 6 of Goren et al. [2014]). Then, by updat-
ing this prior model with the observations, a posterior model is calculated. This posterior model stays close
to the prior model and thus inherits some of its attributes. Goren et al. [2014] do not explicitly damp tem-
poral gradients of uplift rate. Instead, they damp departures from their prior model by setting the value of
Γ, the damping parameter. If Γ → ∞ , the posterior model converges toward the prior model (see their
equation (21)). Goren et al. [2014] damp the spatial gradients of uplift rate by imposing a functional form
on the spatial variation of uplift rate. In contrast, Fox et al. [2014] deliberately choose not to damp tempo-
ral gradients of uplift rate. They damp spatial gradients of uplift rate by specifying a correlation length scale
parameter for their prior model. Goren et al. [2014] and Fox et al. [2014] show best fit solutions which have
residual misfits of up to ±150 m and ±500 m, respectively.

4. Examples
4.1. Uplift as Function of Time
The linear inversion model can be used to fit a single river profile by allowing uplift rate to vary as a function
of time alone. In southern Africa, there is excellent geologic and geophysical evidence for Neogene uplift
of a series of three domes with diameters of ∼1000 km [Giresse et al., 1984; Burke, 1996; Partridge, 1998;
Jackson et al., 2005; Burke and Gunnell, 2008; Al-Hajri and White, 2009]. A history of rapid uplift is constrained
by emergent Plio-Pleistocene marine terraces, which suggest that in places modern uplift rates along
the coastline exceed 0.3 mm/a [Giresse et al., 1984; Partridge and Maud, 1987; Partridge, 1998; Guiraud
et al., 2010]. Offshore, erosional truncation of deltaic foreset deposits records 0.5–1 km of post-Pliocene
(i.e., 5.3–0 Ma) uplift as well as an older Oligo-Miocene (25–30 Ma) uplift event [Al-Hajri and White, 2009].
Uplift histories can be used to calibrate the values of v and m [Roberts and White, 2010].

The South African dome is drained to the west by the Orange catchment, to the east by the Limpopo
catchment, and to the south by a set of short, steep rivers [Partridge, 1998]. Figure 1b apparently shows
differences in Gilbert time across drainage divides in South Africa, which have been interpreted as evidence
that drainage divides migrate [Willett et al., 2014]. It is difficult to resolve behavior at the head of a river
since it represents a singularity and so juxtaposed Gilbert time discrepancies may be artifacts. Roberts and
White [2010] showed that these southward draining rivers have prominent knickzones and so are highly
disequilibrated. Previous inverse modeling suggests that several phases of Neogene uplift have occurred.
In Figure 2, the Orange river has been inverted using erosional parameter values of v=3.62 and m=0.35
[Paul et al., 2014]. These values were constrained using Miocene to present-day uplift rates [Partridge, 1998;
Partridge and Maud, 2000; Burke and Gunnell, 2008]. Note that if A is rewritten as A∕A◦, where A◦ is the
maximum upstream area, v has the dimensions of velocity.

RUDGE ET AL. ©2015. The Authors. 6
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Figure 2. Linear inverse model of Orange river. (a) Solid line = observed
river profile (i.e., blue line in Figure 1a); dotted line = observed upstream
drainage area, A. (b) Solid lines = characteristic paths of river profile
plotted for vAm =3.62A0.35; colored bands = uplift rate history
determined by linearized inverse model. (c) Solid line = cumulative uplift
history obtained by integrating over uplift rate history; gray band = range
of uncertainty for A ± 0.5A; encircled numbers = principal uplift events
(cf. Figure 1e).

Bearing in mind that uplift is per-
mitted to vary as a function of time
alone, our results suggest that peak
uplift rates occurred between 20 Ma
and the present day at rates which
exceed 0.05 mm/a. The tail of
cumulative uplift between 80 and
20 Ma is a consequence of assuming
that uplift rate does not spatially vary.
The results of linearized inversion are
compatible with those obtained by
Pritchard et al. [2009], Roberts and White
[2010], and Paul et al. [2014].

4.2. Uplift as Function of Time
and Space
Regional uplift varies as a function
of time and space, which means that
modeling individual river profiles by
varying uplift rate as a function of
time alone is of limited practical use.
Furthermore, a single profile on its
own cannot be used to determine the
spatial variation of uplift rate. How-
ever, Roberts et al. [2012] showed
that large inventories of river profiles
could be jointly inverted by varying

uplift through time and space. The linear inverse model can be used in a similar way. Here we show how
continent-wide inventories of river profiles can be used, subject to appropriate calibration, to determine the
spatial and temporal pattern of uplift of large regions. We chose to analyze Africa and Australia, which have
previously been modeled using a general optimization approach [Paul et al., 2014; Czarnota et al., 2014].
4.2.1. Africa
The African continent is surrounded by passive margins [Burke, 1996]. Its physiography is strongly bimodal:
subequatorial Africa is characterized by a broad ∼104 × 104 km superswell; northern Africa is generally low
lying. Superimposed on this bimodal framework are smaller ∼1000×1000 km domal swells [e.g., Holmes,
1944, Figure 3]. The oldest oceanic lithosphere that abuts the African continent has residual depths of
a few hundred meters [Winterbourne et al., 2014]. These depth anomalies suggest that the domal swells
intersecting the margins of Africa are dynamically supported by hundreds of meters (Figure 3a). Onshore,
admittance studies of the relationship between gravity and topography suggest that the “egg-box”
physiography of Africa is a response to the pattern of convective circulation beneath the plate [e.g., Jones
et al., 2012]. Simulations of mantle convection suggest that dynamic topography grew rapidly during the
last 30 Ma [e.g., Gurnis et al., 2000; Moucha and Forte, 2011]. However, these simulations fail to predict the
present-day basin and swell morphology of African topography. Three lines of evidence indicate that prior
to ∼ 35 Ma, the African continent was low lying. First, the distribution of post-Albian marine deposits shows
that large portions of North and East Africa were below sea level [e.g., Sahagian, 1988, Figure 3c]. Second,
Paleogene laterites and lateritic gravels indicate that topographic gradients were low [Burke and Gunnell,
2008]. Finally, carbonate reef deposits fringed several African deltas in Paleogene times, which is consistent
with negligible clastic efflux (Figure 3c). Since Oligocene times, sedimentary flux to Africa’s deltas has
dramatically increased; there has been widespread basaltic magmatism, and peneplains have been warped
[e.g., Burke, 1996; Partridge, 1998; Walford et al., 2005, Figure 3d]. Here we jointly invert an inventory of river
profiles to estimate the spatial and temporal patterns of topographic growth.

Seven hundred and four river profiles were extracted from a 3 arc sec (∼ 90 × 90 m) SRTM digital elevation
model using Esri flow routing algorithms. Rivers which drain domal swells (e.g., Bié, Namibia, and southern
Africa) form radial patterns (Figure 3a). Their longitudinal profiles are strongly convex upward. Broad
knickzones occur, which are tens of kilometers long and hundreds of meters high and traverse different

RUDGE ET AL. ©2015. The Authors. 7
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Figure 3. Independent geologic constraints for Africa. (a) Present-day dynamic support and drainage. Onshore red and blue pattern = positive and negative
long-wavelength free-air gravity anomalies filtered to remove wavelengths <800 km, with 10 mGal interval; offshore circles/triangles/filigree = residual
bathymetric measurements [Winterbourne et al., 2014]. Black drainage network = 704 rivers extracted from Shuttle Radar Topography Mission (SRTM) data set.
(b) Major drainage basins. Se = Senegal, V = Volta, Ng = Niger, Og = Ogooue, C = Congo, O = Orange, L = Limpopo, Z = Zambezi, Sh = Shebelle, N = Nile. Domal
swells: H = Hoggar, T = Tibesti, B = Bié, N = Namibia, S = South Africa, Af = Afar. (c) Pre-Oligocene paleogeography of Africa. Blue lobes = deltas with Paleogene
reef deposits; light-blue shading = Cretaceous marine sedimentary rocks; gray/black circles = distribution of Cretaceous-Neogene laterites [Sahagian, 1988; Burke,
1996; Burke and Gunnell, 2008; Paul et al., 2014]. (d) Neogene paleogeography; pink polygons = basaltic magmatism; yellow polygons = clastic deltaic deposition;
numbered red arrows = observed Neogene-Recent uplift rates where height is proportional to rate in mm/a [Burke, 1996; Paul et al., 2014].
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Figure 4. Inverse modeling of African river profiles arranged by catchment, which yields spatial and temporal patterns
of cumulative uplift shown in Figure 5. Gray lines = observed river profiles; red-dotted lines = best fit theoretical river
profiles generated using uplift history shown in Figure 5. Residual RMS misfit = 2.4.

RUDGE ET AL. ©2015. The Authors. 9
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Figure 5. (a) Spatial and temporal pattern of cumulative uplift history for Africa from 55 Ma to present day at
5 Ma intervals. Red circles overlying left-hand panel = spatial regularization grid where triangular mesh = .
(b) Selected panels at four different times, which show number of nonzero entries in model matrix, M, corresponding to
a given uplift node.
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Figure 6. Comparison of observed and calculated uplift rates
for Africa. Circles = weighted mean values of uplift rate where
color indicates age (Table 1); vertical/horizontal lines with
bars/arrows = uncertainties.

lithologies. In contrast, profiles of rivers
draining North African swells (e.g., Hoggar,
Tibesti, and Afar) are smoothly concave
upward (Figure 4).

Most African river profiles can be accu-
rately fitted (Figure 4). The largest dis-
crepancies are mainly a result of coarse
spatial and temporal gridding. Elsewhere,
minor differences arise since our calcu-
lated rivers are smoother than observed
ones. The predicted spatial and tem-
poral patterns of cumulative uplift are
shown in Figure 5a. These calibrated
maps suggest that African topography
grew rapidly over the last 30–40 Ma, in
agreement with Burke [1996] and Burke
and Gunnell [2008]. Domal uplift started in
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Table 1. Observed and Calculated Uplift Rates for South Africaa

Locality Latitude Longitude Age (Ma) Elevation (m) Uplift Rate (mm/a) Constraints

1 Pato’s Kop −33.34 27.37 44.85 ± 10.95 130 0.003 ± 0.001 Partridge and Maud [1987]b

2 Birbury −33.19 27.62 44.85 ± 10.95 200 0.005 ± 0.001 Partridge and Maud [1987]b

3 Need’s Camp −33.09 27.73 44.85 ± 10.95 400 0.096 ± 0.002 Partridge and Maud [1987]b

Weighted mean 0.014 ± 0.001

Predicted rate 0.034 ± 0.020

4 S.W. of Maputo −27.35 31.17 15.5 ± 5.5 900 0.057 ± 0.018 Partridge [1998]b and Partridge and Maud [2000]c

5 Durban −30.02 29.52 15.5 ± 5.5 1150 0.073 ± 0.023 Partridge [1998]b and Partridge and Maud [2000]c

6 East London −32.05 28.28 15.5 ± 5.5 1100 0.070 ± 0.022 Partridge [1998]b and Partridge and Maud [2000]c

7 E. of George −33.76 22.48 15.5 ± 5.5 400 0.025 ± 0.008 Partridge [1998]b and Partridge and Maud [2000]c

Weighted mean 0.037 ± 0.007

Predicted rate 0.029 ± 0.015

8 S.W. of Maputo 3.57 ± 1.76 600 0.222 ± 0.109 Partridge [1998]b and Partridge and Maud [2000]c

9 Durban 3.57 ± 1.76 900 0.334 ± 0.165 Partridge [1998]b and Partridge and Maud [2000]c

10 East London 3.57 ± 1.76 850 0.314 ± 0.156 Partridge [1998]b and Partridge and Maud [2000]c

11 E. of George 3.57 ± 1.76 200 0.074 ± 0.036 Partridge [1998]b and Partridge and Maud [2000]c

12 Greenwood Park −29.79 31.02 4.26 ± 0.68 65 0.016 ± 0.003 Erlanger et al. [2012]d

13 Bathurst −33.74 26.46 4.47 ± 0.87 400 0.093 ± 0.018 Partridge [1998]b

Weighted mean 0.019 ± 0.003

Predicted rate 0.047 ± 0.019

14 S. of P. Nolloth −30.40 18.48 15.5 ± 5.5 250 0.016 ± 0.005 Partridge [1998]b and Partridge and Maud [2000]c

15 Saldanha bay −32.99 17.96 13 ± 5 ∼ 150 0.020 ± 0.010 Roberts and Brink [2002]e

16 Hondeklip bay −30.31 17.27 13 ± 5 ∼ 90 0.008 ± 0.003 Roberts and Brink [2002]e

Weighted mean 0.011 ± 0.002

Predicted rate 0.051 ± 0.029

17 S. of P. Nolloth −30.40 18.48 3.57 ± 1.76 100 0.037 ± 0.018 Partridge [1998]b and Partridge and Maud [2000]c

Predicted rate 0.077 ± 0.077

18 Kuiseb R. −23.34 15.74 1.6 ± 1.2 175 ± 75 0.100 ± 0.060 Van der Wateren and Dunai [2001]f

Predicted rate 0.074 ± 0.063

19 AN40-2 −15.20 12.13 0.133 ± 0.010 15 0.114 ± 0.010 Giresse et al. [1984] and Guiraud et al. [2010]g

20 AN57-1 −12.56 13.42 0.091 ± 0.006 11 ± 1 0.120 ± 0.020 Giresse et al. [1984] and Guiraud et al. [2010]g

21 AN27 −12.56 13.42 0.071 ± 0.007 28 ± 3 0.390 ± 0.080 Giresse et al. [1984] and Guiraud et al. [2010]g

22 AN47 −12.56 13.42 0.036 ± 0.003 9 ± 1 0.250 ± 0.050 Giresse et al. [1984] and Guiraud et al. [2010]g

Weighted mean 0.123 ± 0.009

Predicted rate 0.124 ± 0.062

23 Tafoli 18.82 −15.05 0.099 ± 0.016 5 ± 1 0.054 ± 0.019 Giresse et al. [2000]h

24 Tafoli 18.82 −15.05 0.258 ± 0.014 8 ± 2 0.032 ± 0.011 Giresse et al. [2000]h

25 Tin Oueich 18.05 −15.83 0.122 ± 0.005 5 ± 1 0.041 ± 0.099 Giresse et al. [2000]h

26 Tin Oueich 18.05 −15.83 0.241 ± 0.015 8 ± 2 0.034 ± 0.010 Giresse et al. [2000]h

Weighted mean 0.036 ± 0.007

Predicted rate 0.036 ± 0.018
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Table 1. (continued)

Locality Latitude Longitude Age (Ma) Elevation (m) Uplift Rate (mm/a) Constraints

27 Agadir 30.52 −9.69 0.115+0.075
−0.07 18 ± 0.5 0.160 ± 0.010 Meghraoui et al. [1998]h

Predicted rate 0.287 ± 0.286
28 Somaâ 36.54 10.78 0.45 ± 0.113 96 ± 2 0.240 ± 0.110 Elmejdoub and Jedoui [2009]i

29 Somaâ 36.54 10.78 0.27 ± 0.029 54 ± 4 0.200 ± 0.040 Elmejdoub and Jedoui [2009]i

30 Somaâ 36.54 10.78 ∼ 0.123 23 ± 17 0.190 ± 0.140 Elmejdoub and Jedoui [2009]i

Weighted mean 0.204 ± 0.036
Predicted rate 0.091 ± 0.053

31 Similani −4.29 39.58 0.0265+0.0013
−0.0015 4 ± 2 0.160 ± 0.090 Hori [1970] and Odada [1996]j

Predicted rate 0.214 ± 0.214

aBold type indicates average observed and predicted rates.
bBiostratigraphic dating of marine terraces and correlation with warped peneplains.
cBiostratigraphic dating of river incision and 40Ar/39Ar dating of pedogenic rock.
d26Al and 10Be dating of marine terrace.
eBiostratigraphic dating of strandlines.
f 21Ne dating of fluvial incision rate between 2.8 and 0.4 Ma.
g230Th/234U, 231Pa/231U and 14C dating of marine terraces.
hU-Th dating of marine terraces.
iOxygen isotope stage (OIS) correlation of marine terraces, with U-series calibration from Jedoui et al. [2003].
j14C dating of marine terraces.

Figure 7. Model regularization. (a) Misfit, normalized by
maximum misfit, as function of spatial smoothing for series of
inverse models of 704 river profiles from Africa. Colored circles =
individual inverse models for different values of 𝜆S ; black arrow
= optimal inverse model. (b) Normalized misfit as function of
temporal smoothing. Colored circles = individual inverse models
for different values of 𝜆T .

North and East Africa. For example, the Hoggar,
Tibesti, and Afar swells appear early on, which
is consistent with their magmatic histories
[e.g., Wilson and Guiraud, 1992; Permenter and
Oppenheimer, 2007]. After 30 Ma, the Afar
Swell appears to extend southward along
the East African Rift. Subequatorial topogra-
phy grew more rapidly during the last 20 Ma,
culminating in the appearance of the Bié,
Namibian, and South African swells. This
predicted diachronous growth of topogra-
phy during Neogene times is largely coeval
with the onset of mafic magmatism in North
Africa and with increased sedimentary flux into
coastal deltas [e.g., Burke, 1996; Walford et al.,
2005; Guillocheau et al., 2012; Paul et al., 2014].
Figure 6 compares our predicted rates with
observed uplift rates based upon emergent
marine terraces and uplifted surfaces (Table 1).
The inverse algorithm is highly damped which
means that rapid, short-wavelength, uplift rates
along the West and southern Africa tend to be
underestimated. Nonetheless, calculated rates
are consistent with the long-term pattern of
uplift determined from Pliocene marine ter-
races along the West African margin where a
broad axis of uplift decays away from the Bié
dome (Figure 5) [Giresse et al., 1984; Guiraud
et al., 2010]. In southern Africa, stratigraphic
evidence suggests that rapid Miocene and late
Pliocene uplift events occurred at rates which
are consistent with predicted values (Figure 6)
[Partridge and Maud, 1987, 2000; Roberts and
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Figure 8. Systematic error analysis for Africa. (a) Difference between calculated uplift rates at all spatial and temporal
nodes for original and modified (i.e., all elevations increased by 100 m) drainage inventories. (b) Difference between
calculated cumulative uplift for original and modified drainage inventories.

Figure 9. Independent geologic constraints for Australia. (a) Present-day dynamic support. Red and blue pattern onshore = positive and negative
long-wavelength free-air gravity anomalies filtered to remove wavelengths < 800 km, at 10 mGal intervals; circles/triangles/filigree offshore = residual bathymet-
ric measurements [Winterbourne et al., 2014; Czarnota et al., 2014]; black drainage network = 253 rivers extracted from SRTM data set. (b) Major drainage basins.
V = Victoria, Fz = Fitzroy, A = Ashburton/Robe, G = Greenough, Mu = Murchison, Mo = Moore, S = Swan, Lo = Lort/Brandy Creek, M = Murray-Darling, Sn = Snowy,
So = Shoalhaven, G = Grose, O = Oban, F = Fitzroy, B = Burdekin, Mi = Mitchell, L = Leichhardt, R = Roper. (c) Colored polygons = youngest marine and coastal
strata [Langford et al., 1995]. Black circles = distribution of Mesozoic and Cenozoic laterite deposits [Raymond et al., 2012]. (d) Circles/triangles = mafic/bimodal
magmatism; squares = regional uplift where color and number indicate magnitude and age in Ma [Czarnota et al., 2014]. Numbered red arrows = uplift rates from
emergent marine terraces where height is proportional to rate in mm/a [Wellman, 1987; Langford et al., 1995; Haig and Mory, 2003; Sandiford, 2007].
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Figure 10. Inverse modeling of Australian river profiles arranged by catchment. Gray lines = observed river profiles;
red-dotted lines = best fit theoretical river profiles generated using uplift history shown in Figure 11a; RMS misfit = 1.8.
(bottom right) Four panels: O = Oban, G = Grose, So = Shoalhaven, and Sn = Snowy.

Brink, 2002]. In North and East Africa, calculated cumulative uplift rates are consistent with the emergence
of Pleistocene-Recent marine terraces with elevations <100 m [Hori, 1970; Elmejdoub and Jedoui, 2009].

The spatial and temporal resolutions of cumulative uplift are determined by a combination of drainage
density and river length. Longer rivers can record older uplift events, and in general, uplift events within
the lower reaches of a drainage network are better resolved than those which occur further upstream.
Figure 5b shows the number of drainage loci that constrain the uplift history of each cell within the mesh at
different time intervals. Thus, African drainage networks appear capable of resolving the principal Cenozoic
uplift events.

Finally, different degrees of spatial and temporal smoothing were systematically investigated by running
suites of inverse models (Figures 7a and 7b). These models reveal an expected trade-off between model
smoothness and misfit [Parker, 1994]. Acceptable models are smooth with small residual misfits. The effect
of systematic error on calculated uplift was investigated by inverting a drainage inventory in which eleva-
tion along each river profile was everywhere increased by +100 m. Compared to the original inverse model
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Figure 11. (a) Spatial and temporal pattern of cumulative uplift history for Australia from 110 Ma to present day at 10 Ma intervals. Red circles overlying left-hand
panel = spatial regularization grid where triangular mesh = . (b) Selected panels at four different times, which show number of nonzero entries in model matrix,
M, corresponding to a given uplift node. (c and d) Inverse model with higher spatial resolution.

shown in Figure 5a, recovered uplift rates vary by less than ±0.01 mm/a and cumulative uplift by less than
±200 m at 89% of spatial and temporal nodes (Figure 8).
4.2.2. Australia
The physiography of Australia can be divided into four distinct regions: Eastern Highlands, Western Plateau,
Central Lowlands, and Coastal Plains [e.g., Quigley et al., 2010]. The Eastern Highlands, which reach eleva-
tions of 1–2 km, occupy the length of eastern Australia, which has been a passive margin since Jurassic
times. At long wavelengths (>1000 km) free-air gravity data in eastern Australia are positive (+15–30 mGal;
Figure 9a). Admittance studies of the spectral relationship between free-air gravity and topography suggest
that the Eastern Highlands are dynamically supported by 0.5–1 km, which approximately coincides with
the elevation of knickzones in eastern Australia (Shoalhaven and Snowy rivers of Figure 10) [McKenzie and

Fairhead, 1997; Czarnota et al., 2014]. Topography of the Western Plateau is more subdued than that of
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Figure 12. Comparison of observed and calculated uplift rates for
Australia. Large circles = weighted mean values of uplift rate where color
indicates age (Table 2) [Wellman, 1987; Langford et al., 1995; Haig and Mory,
2003; Sandiford, 2007]. Small circles with error bars = rates calculated from
gridded heights and ages of uplifted marine deposits with uncertainties of
5 × 10−4 mm/a [Langford et al., 1995] (Figure 9c and Table 2); vertical/
horizontal lines with bars/arrows = uncertainties.

the Eastern Highlands. However,
substantial (tens of kilometers long,
hundreds of meters high) knickzones
occur close to the coastline, which
suggests an actively eroding land-
scape (Figure 10: Swan, Moore, and
Greenough). The Central Lowlands
and Coastal Plains typically have
elevations <100 m.

Offshore, the evolution of dynamic
support is constrained by rapid
Neogene subsidence of shallow water
carbonate reef deposits (Figure 9d)
[Czarnota et al., 2014]. Onshore, uplift
of southern Australia is recorded by
Eocene (∼50 Ma), Miocene (∼15 Ma),
and Pliocene (∼5 Ma) marine terraces,
which have elevations of ∼0.5 km,
0.3 km, and 0.2 km, respectively
[Sandiford, 2007]. The existence of
Cretaceous coastal and marine strata
indicate that most of Australia was

at, or below, sea level until ∼90 Ma. Uplift mainly occurred during the Cenozoic era (Figures 9c and 9d)
[Langford et al., 1995; Haig and Mory, 2003]. Cenozoic basaltic and intermediate magmatism peppers the
eastern margin [see Vasconcelos et al., 2009, and references therein]. Oligocene and younger igneous rocks
in eastern Australia are deeply incised by rivers and record the growth of relief [Young and McDougall, 1993].
These data help to calibrate the erosional model. In southeastern Australia, 21 Ma old basalt flows have
preserved the shapes of ancient river profiles [Young and McDougall, 1993].

Since river profiles at two different times are known, best fitting values of v and m can be identified [e.g.,
Stock and Montgomery, 1999; Czarnota et al., 2014]. In southeastern Australia, v = 5.96 m0.4/Ma and
m = 0.3. We have used these values of v and m (Table 3) to invert an inventory of 253 Australian river

Table 2. Observed and Predicted Uplift Rates in Australiaa

Locality Latitude Longitude Age (Ma) Elevation (m) Uplift Rate (mm/a) Constraints

32 Nullabor −28.70 127.00 ∼36 310 ± 23 0.0086 ± 0.0006 Sandiford [2007]b

Predicted rate 0.0073 ± 0.0037

33 Nullabor −31.00 127.00 ∼15 227 ± 34 0.0151 ± 0.0022 Sandiford [2007]b

Predicted rate 0.0114 ± 0.0039

34 Nullabor −32.20 127.00 ∼3 23 ± 8 0.0095 ± 0.0045 Sandiford [2007]b

Predicted rate 0.0165 ± 0.0015

35 Pilbara −24.00 115.00 39 ± 2 ∼190 0.0054 ± 0.0045 Haig and Mory [2003]c

Predicted rate 0.0046 ± 0.0016

36 MacLeay R. −31.00 152.00 120 ± 5 ∼1400 0.0117 ± 0.0005 Wellman [1987] and Langford et al. [1995]d

Predicted rate 0.0113 ± 0.0111

37 Herbert R. −19.00 146.00 103 ± 5 ∼1000 0.0098 ± 0.0005 Wellman [1987] and Langford et al. [1995]d

Predicted rate 0.0091 ± 0.0039

aBold type indicates average observed and predicted rates.
bUplifted marine terraces.
cMarine sedimentary rocks.
dYoungest marine deposits.
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Figure 13. Model regularization. (a) Normalized misfit as function of spatial
smoothing for series of inverse models of 253 river profiles from Australia
(see Figure 7 for misfit calculation). Colored circles = individual inverse
models for different values of 𝜆S; black arrow = optimal inverse model.
(b) Normalized misfit as function of temporal smoothing. Colored circles =
individual inverse models for different values of 𝜆T .

profiles as a function of the spatial
and temporal uplift rate history. As
before, river profiles were extracted
from the 3 arc sec SRTM data set
(Figures 9a and 9b) [Czarnota et al.,
2014]. These data were compared
to satellite imagery, spot measure-
ments of elevation, and published
longitudinal profiles [e.g., van der Beek
and Bishop, 2003; Brown et al., 2011].
Apart from internally drained central
regions, the fidelity of the extracted
network is high.

Fits between observed and calculated
river profiles are shown in Figure 10.
The resultant spatial and temporal
pattern of cumulative uplift is shown
in Figure 11. Figures 11c and 11d
show that shorter wavelength uplift
can be resolved when a finer spatial
grid is employed. However, using a
finer resolution uplift grid increases
the model’s null space (Figure 11d).
Our results suggest that the growth
of Australian topography took place
over the last 70–80 Ma. Eastern
Australia has been uplifted by
1–1.5 km since ∼70 Ma at maximum
rates of 0.05–0.1 mm/a (Figure 11a).
Western and central Australia have
been uplift by 0.5–1 km since ∼90 Ma.
In Figure 12 we compare observed
and predicted uplift rates. Predicted
rates are consistent with ages of
emergent marine terraces in southern

Australia [e.g., Sandiford, 2007], and with the growth of relief recorded by river incision along the east coast
[Young and McDougall, 1993] (Table 2). Our calculations are in broad agreement with those of Czarnota et al.
[2014]. Figures 13a and 13b show the choice of smoothing parameter values used.

Table 3. Parameters Used for Inverse Modeling

Symbol Description Value Units

z Elevation m

x Distance along river m

A Upstream drainage area m2

t Time Ma

𝜏G Gilbert time Ma

U Uplift rate mm a−1

v Advective coefficient of erosion 3.5–200 m1−2m Ma−1

v◦ Advective coefficient of erosion 0.5–25 m1−3m Mam−1

m Erosional constant 0.2–0.35 dimensionless

𝜅 Diffusivity 1–107 m2 Ma−1

5. Conclusions

By building upon the nonlinear
optimization approach developed
by Pritchard et al. [2009], Roberts and
White [2010], and Roberts et al. [2012],
we have described and applied a
linear inverse model that can be used
to fit substantial inventories of river
profiles and determine spatial and
temporal patterns of uplift rate (see
also Goren et al. [2014] and Fox et al.
[2014]). We show how this scheme is
used to calculate uplift rate histories
for single or multiple river profiles.

RUDGE ET AL. ©2015. The Authors. 17



Journal of Geophysical Research: Earth Surface 10.1002/2014JF003297

Figure A1. Diagram showing characteristic paths and notation for
Ngunza River profile, Bié dome, West Africa.

The erosional model is a simplified version of
the well-known stream power law that has
a linear advective formulation. The govern-
ing equation is solved using the method of
characteristics. Smooth uplift rate histories,
which minimize the misfit between observed
and theoretical river profiles are sought
using a nonnegative least squares approach.

Our results suggest that Africa has largely
been uplifted during the last 30 Ma. Its
domal swells have a diachronous history of
uplift, which is consistent with spot mea-
surements of uplift estimated from subaerial
exposed marine rocks and from truncated
deltaic stratigraphy on the coastal shelf
of West Africa (Figures 3c, 3d, and 5a).
The Australian continent also underwent
Cenozoic uplift. Eastern Australia was ele-
vated by 1–1.5 km over the last 70 Ma. In
southwest and southern Australia, our results
are consistent with hundreds of meters of
post 40 Ma uplift inferred from the elevation
of Eocene and younger marine terraces
(Figures 9c, 9d, and 10a).

In the examples shown, the erosional parameters, v and m, were calibrated using independently estimated
incision or uplift rate histories. Parameters v and m trade off negatively with each other, and the values we
use for Africa are approximately equivalent to v = 200 m0.6 Ma−1 and m = 0.2 proposed by Roberts et al.
[2012]. For Australia, v is a factor of 2 smaller. It is unclear why v and m vary from continent to continent.

Our results are encouraging since they suggest that drainage networks contain coherent patterns of knick-
zones that might not be caused by short-wavelength (<10 km) lithologic changes or by temporal discharge
variations. Instead, it is conceivable that the evolution of these networks is controlled by spatial and tempo-
ral patterns of regional uplift. We propose that drainage networks might contain useful, albeit indirect, clues
about topographic evolution and that a global analysis of drainage inventories might be a fruitful endeavor.

Appendix A: Discretization

Figure A2. Barycentric coordinates
x(ti) = 𝛼xa + 𝛽xb + 𝛾xc , where
𝛼 + 𝛽 + 𝛾 = 1.

Consider the example shown in Figure A1 where uplift
rate is permitted to vary as a function of space and
time. Three steps are used to determine an uplift rate
history using the approach outlined in section 3. First,
dx∕dt = −vAm is integrated once. Second, the matrix,
M, is constructed. Finally, inversion is carried out using a
nonnegative linear least squares approach.

The time taken for a knickzone to travel along a charac-
teristic path is given by equation (10) as

𝜏Gj
= ∫

x∗n−1

x∗n

dx
vAm

+ ∫
x∗n−2

x∗n−1

…+ ∫
x∗j

x∗j+1

dx
vAm

. (A1)

This equation is discretized using the trapezoidal
rule where

𝜏Gj
=

n∑
k=j

(
x∗k − x∗k+1

)
2

(
1

vA
(

x∗n
)m + 1

vA
(

x∗n+1

)m

)
, (A2)
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where x∗n = 0 at the river mouth and 𝜏Gn
= 0 at the present day. In a similar way, equation (11) is approxi-

mated by

𝜏Gj
− Tij = ∫

x∗i

0

dx
vAm

= 𝜏Gi
(A3)

so that

Tij = 𝜏Gj
− 𝜏Gi

, i = j, j + 1,… n. (A4)

Tij are values of time along the characteristic curve that is located at x = 0 and t = 𝜏Gj
where distances and

elevations along the river are known (i.e., x(Tij)=xi). Uplift rate, U, is defined at discrete times (e.g., t1, t2, …, t6)
and at discrete positions. At intermediate times and positions, U is obtained by linear interpolation.
Elevations are determined by integrating uplift rates along characteristic paths using the trapezoidal rule.
Uplift rate histories are integrated between nodes whose loci are defined by t and x (e.g., black dots in
Figure A1). Equation (12) is given by

zj = ∫
S2j

S1j

U(x(t), t) dt + ∫
S3j

S2j

… , (A5)

where x(t) is the position in space along the characteristic curve at time t. This equation is approximated by

z∗j =
m( j)∑
k=1

(
Sk+1,j − Skj

)
2

[
U
(

x(Sk+1,j), Sk+1,j

)
+ U(x(Sk,j), Sk,j)

]
, (A6)

where Sij consists of dividing the integral up, both by times Tij , at which the position of the river is known,
and by times t1, t2, …, at which uplift times are discretized. The number of points on characteristic curve j
(i.e., 12 points on 𝜏G1

) is m( j). At time Tij , linear interpolation in time is carried out so that

U
(

Tij, x(Tij)
)
= U

(
Tij, xi

)
=

[
T+

ij − Tij

]
U
(

T+
ij , xi

)
+
[

Tij − T−
ij

]
U
(

T−
ij , xi

)
T+

ij − T−
ij

, (A7)

where T+
ij and T−

ij are time nodes which bracket Tij . At a time ti , a linear interpolation in space is carried out
so that

U(ti, x(ti)) = 𝛼U(ti, xa) + 𝛽U(ti, xb) + 𝛾U(ti, xc), (A8)

where 𝛼, 𝛽 , and 𝛾 are the barycentric weights for position x(ti) (Figure A2). The mesh nodes of the triangle
containing x(ti) are xa, xb, and xc.

There is now a linear relationship between each river elevation, z∗j , and uplift rate at each space and time
node which can be cast in matrix form as

z = MU. (A9)
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