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Abstract

The deformation of partially molten mantle in tectonic environments can lead to exotic
structures, which potentially affect both melt and plate-boundary focussing. Examples
of such structures are found in laboratory deformation experiments on partially molten
rocks. Simple-shear and torsion experiments demonstrate the formation of concentrated
melt bands at angles of around 20◦ to the shear plane. The melt bands form in the experi-
ments with widths between a few to tens of microns, and a band spacing roughly an order
of magnitude larger. Existing compaction theories, however, cannot predict this band width
structure, let alone any mode selection, since they infer the fastest growing instability to
occur for wavelengths or bands of vanishing width. Here, we propose that surface tension
in the mixture, especially on a diffuse interface in the limit of sharp melt-fraction gradi-
ents, can mitigate the instability at vanishing wavelength and thus permit mode selection
for finite-width bands. Indeed, the expected weak capillary forces on the diffuse interface
lead to predicted mode selection at the melt-band widths observed in the experiments.
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1. Introduction1

While mantle melting only occurs within a small volume of the Earth, it plays a dis-2

proportionate role in both geochemical evolution and plate-boundary processes (see Cox3

et al., 1993). Indeed, the unique deformation of partial melts likely controls flow and strain4
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focussing at both convergent and divergent plate boundaries (e.g., Spiegelman and McKen-5

zie, 1987; Katz, 2008; Gerya and Meilick, 2011; Gerya, 2013). In particular, sheared par-6

tial melts have been demonstrated in laboratory experiments (Daines and Kohlstedt, 1997;7

Holtzman et al., 2003; King et al., 2010; Qi et al., 2013) to develop narrow melt bands at8

shallow angles (∼ 20◦) to the direction of motion. Such melt banding may provide high-9

permeability pathways that strongly influence the transport of melt to the Earth’s surface10

(Kohlstedt and Holtzman, 2009).11

The observed shallow angle of these melt bands is enigmatic and has been the subject of12

several theoretical studies invoking two-phase compaction theory with various rheological13

mechanisms (Stevenson, 1989; Spiegelman, 2003; Katz et al., 2006; Takei and Holtzman,14

2009; Butler, 2012; Takei and Katz, 2013; Katz and Takei, 2013; Rudge and Bercovici,15

2015). An equally significant enigma is that current two-phase models cannot predict the16

basic melt band width, since they infer the fastest growing instability to have zero wave-17

length. Laboratory experiments, however, show that while the melt bands are very narrow,18

of order a few to tens of microns wide, and with band spacing roughly an order of magni-19

tude wider (Holtzman et al., 2003; Holtzman and Kohlstedt, 2007; Kohlstedt and Holtzman,20

2009), they are consistently not vanishingly small. The failure to predict mode selection21

has been a significant conundrum for understanding the physics let alone believing the22

theories, and is problematic for numerical simulations for which instabilities shrink to the23

grid-scale, and thus cannot be resolved (Katz et al., 2006; Butler, 2012; Alisic et al., 2014).24

Butler (2010) proposed that, in the finite strain limit, the rotation of bands through the25

optimal angle of growth can amplify larger wavelength bands, although as shown earlier26

by Spiegelman (2003) this effect depends on the initial conditions for the structure of the27

porosity perturbations. Takei and Hier-Majumder (2009) proposed that compaction coin-28

cident with dissolution and precipitation provides mode selection governed by a chemical29

diffusion length scale, which is indeed similar to the widest band spacing, although not the30

band widths. However, while such chemical reactions between phases are expected to be31
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important in geological settings (Aharonov et al., 1997), their role was not evident in the32

laboratory experiments, which were designed to study melt channels by stress alone and33

avoid reaction channelization (Holtzman et al., 2003).34

Here we consider two-phase compaction theory that includes capillary effects from the35

interface between phases, i.e., the melt and matrix (Stevenson, 1986; Bercovici et al., 2001;36

Bercovici and Ricard, 2003; Hier-Majumder et al., 2006), as a means for explaining mode37

selection. However, capillary effects at the microscopic (i.e., pore/grain) scale cannot give38

the necessary effect (as will be demonstrated herein). In this paper, we propose a small39

adjustment to existing theories that involves a diffuse interface effect, which occurs at very40

large gradients in melt volume fraction (e.g., Sun and Beckermann, 2004). Below we briefly41

develop the concept of the diffuse interface coincident with microscopic interfaces, and42

demonstrate how it can predict mode selection at the observed melt-band wavelengths.43

2. Theory44

2.1. Two-phase mixture interface and diffuse interface45

Various two-phase flow theories treat the interface between phases and associated sur-46

face energy and surface tension by defining an interface area density (i.e., interface area47

per unit volume) α (see Ni and Beckerman, 1991; Bercovici et al., 2001). For exam-48

ple, if a volume δV of mixture is filled with N spherical fluid bubbles of radius r, sur-49

rounded by an opposite matrix phase, then the fluid volume fraction is φ = N 4
3
πr3/δV ,50

while α = N4πr2/δV ; in the same vein, the average curvature of this interface would be51

dα/dφ = (dα/dr)/(dφ/dr) = 2/r as expected.52

However if the mixture has sharp gradients in fluid fraction ∇φ, then the gradient53

region itself can appear as an effective or diffuse interface. Sun and Beckermann (2004)54

consider a diffuse interface in a mixture and invoke the formalism of phase-field theory55

(Anderson et al., 1998; Chen, 2002; Moelans et al., 2008) to propose an adjusted model for56
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interface density and curvature. We appeal to some of their concepts but diverge in other57

respects. One important deviation is that phase-field theory only has interfaces defined by58

gradients in the phase variable, while we have both a background interface from a more59

homogeneous distribution of phases (i.e., bubbles and grains) in addition to an effective60

diffuse interface caused by sharp gradients in the fluid volume fraction.61

Although the interface density α may be affected by a diffuse interface, only the curva-62

ture appears in the dynamics and thus we need only specify how dα/dφ is altered. Indeed63

as shown in §Appendix A, we infer an effective curvature64

dα

dφ
=
dA
dφ
− 1

A
∇2φ (1)

whereA is the microscopic (pore and grain) scale interface area, which we assume is only a65

function of porosity (see Bercovici et al., 2001; Hier-Majumder et al., 2006). The two terms66

on the right of (1) are due to microscopic scale interface curvature originally described by67

Bercovici et al. (2001) (first term), and that due to sharp coherent structures in the porosity68

field (second term). For example, a coherent structure with a sharp gradient in porosity69

can resemble a macroscopic bubble wall separating low and high porosity regions, which70

then has a net effective surface tension on it. However, there is a continuum of coherent71

structures between weak gradients for which the diffuse interface will barely register, to72

sharper ones. Indeed, since A is a large zeroth-order term, the diffuse interface curvature73

term only becomes important for sharp gradients in φ. Equation (1) is the same as the74

mean curvature inferred by Sun and Beckermann (2004), however we diverge from those75

authors by retaining (1) as the full effective interface curvature, while they argue to remove76

the microscale curvature, i.e., the first term on the right of (1). We retain this term since77

it is responsible for driving phase self-separation and/or wetting. Indeed the 2nd term78

retards self-separation once the porosity gradients get very large, and leads to a steady state79

separation rather than run-away separation. But to allow initial capillary effects on the80
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pore or grain scale, we retain the micro-scale curvature term. In the end, the new effective81

interface curvature dα/dφ can be employed in the appropriate two-phase theory (Bercovici82

et al., 2001; Bercovici and Ricard, 2003).83

2.2. Mass conservation84

Conservation of mass in two-phase continuum mechanics dictates a relation for the85

volume fraction φi of phase i (i.e., either phase), which, assuming both phases are incom-86

pressible and there is no mass exchange between phases, leads to87

∂φi
∂t

+ ∇ · (φivi) = 0 (2)

where vi is the velocity of phase i. Summing these equations and noting that
∑

i φi = 1,88

we arrive at89

∇ · v̄ = 0 (3)

where v̄ =
∑

i φivi. We can also define the unsubscripted φ = φ1 as the volume fraction90

of the minor phase, here the fluid or melt phase. We also define the unsubscripted v = v291

as the velocity of the solid or matrix phase, and ∆v = v2 − v1 as the phase separation92

velocity. We can hence recast (2) and (3) as93

Dφ

Dt
= (1− φ)∇ · v (4)

and94

∇ · v̄ = ∇ · (v − φ∆v) = 0 (5)

where D/Dt = ∂/∂t+ v ·∇ is the material derivative in the matrix frame of reference.95
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2.3. Dynamics96

The conservation of momentum in a creeping two-phase medium is generally pre-97

scribed (following Bercovici and Ricard, 2003, 2012)98

0 = −φi∇Πi + ∇ · (φiτ i)± c∆v + ωi
(
∆Π∇φ+ ∇(γα)

)
(6)

where we neglect gravity for the application at hand, and where the internal pressure on99

phase i is Πi, τ i is the deviatoric stress tensor in phase i, phase density is ρi, c is the100

coefficient of drag between phases, ∆Π = Π2−Π1, γ is the surface tension on the interface101

between phases, α is again the interface density, and ωi is a weighting factor (such that102 ∑
i ωi = 1) that accounts for how much surface tension is embedded in one phase relative103

to the other.104

2.3.1. Constitutive laws and rheology105

Since phase 1 is a melt we assume τ 1 ≈ 0 and ω1 = 0 (Bercovici and Ricard, 2003).106

The matrix deviatoric stress is thus denoted as τ = τ 2 and given by107

τ = 2µε̇ = µ

(
∇v + [∇v]t − 2

3
∇ · vI

)
(7)

where µ is the matrix viscosity, and ε̇ is the matrix deviatoric strain-rate tensor, [..]t implies108

tensor transpose and I is the identity tensor. In keeping with prior analysis (Katz et al.,109

2006), we allow that (1− φ)µ is an effective viscosity given generally by110

µeff = (1− φ)µ = µ0Λ(φ, ε̇2) = µ0e
−b(φ−φ0)

(
ε̇2

ε̇2
0

) 1−n
2n

(8)

where n is a true or effective power-law index, b is a constant, φ0 is a reference melt fraction,111

and ε̇2 = 1
2
ε̇ : ε̇ is the 2nd strain-rate invariant, which has a reference or imposed value112

ε̇2
0. This rheology allows for either a dislocation creep power-law rheology where n ≈ 3113
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(Katz et al., 2006), or an effective power-law rheology from grain-damage in which n can114

be larger than 3 (Rudge and Bercovici, 2015). Finally, significant banding instabilities115

appear to require a strongly nonlinear porosity-dependent viscosity, e.g., with b ≈ 25/n116

(Mei et al., 2002; Katz et al., 2006; Takei and Holtzman, 2009).117

The constitutive law for the pressure difference across the interface is given by (Bercovici118

and Ricard, 2003)119

∆Π = −γ dα
dφ
−B(φ)

Dφ

Dt
(9)

where the 2nd term on the right accounts for viscous resistance to matrix compaction, thus120

B is akin to the effective bulk viscosity invoked by McKenzie (1984), and is in general a121

function of φ.122

The interface drag coefficient is denoted by c and is typically proportional to the ratio of123

melt viscosity to matrix permeability; however, for the sake of simplicity there is no need124

to introduce a new variable yet, and we merely need to note that c is also a function of φ.125

2.4. Final synthesized force balance equations126

Given the assumption of inviscid melt, the force balance equation (6) for the melt (phase127

1) essentially becomes Darcy’s law:128

0 = −∇P + c∆v/φ (10)

where we define Π1 = P is the fluid (melt) pressure. The weighted difference of the two129

momentum equations (i.e., φ1 = φ times the equation for phase 2 minus φ2 = 1− φ times130

the equation for phase 1) leads to131

0 = ∇ (B∇ · v) + 2µ0∇ · (Λε̇)− c∆v/φ+ γ∇
(
α + (1− φ)

dα

dφ

)
(11)
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where we define B = (1−φ)2B(φ). Using the arguments outlined in §2.1, the last term on132

the right of (11) is133

γ∇
(
α + (1− φ)

dα

dφ

)
= γ(1− φ)

(
d2A
dφ2

∇φ− 1

A
∇(∇2φ) +

1

A2

dA
dφ

(∇2φ)∇φ

)
(12)

The first term on the right side of (12) provides an effective pressure gradient due to vari-134

ations in microscopic interface curvature, which can, depending on the sign of d2A/dφ2,135

either lead to self-separation of phases (if the sign is negative; see Ricard et al., 2001;136

Bercovici and Ricard, 2003) or dispersal of phases via wetting of grain-boundaries (if the137

sign is positive; see Hier-Majumder et al., 2006) as generally happens in low-melt fraction138

partial melts (e.g., Parsons et al., 2008; King et al., 2011, and references therein). The139

second two terms on the right of (12) together represent a pressure gradient caused by vari-140

ations in the surface tension on effective macroscopic (diffuse) interfaces associated with141

sharp gradients in φ. In particular, high pressure zones are caused by the surface tension142

around porosity anomalies with large functional curvature ∇2φ (which thus act, for ex-143

ample, like effective bubbles of high porosity), and the resulting pressure gradient acts to144

smooth out the porosity anomalies and mitigate the development of sharp porosity features.145

However the nonlinear contributions to this effect, in particular the third term on the right146

of (12), do not influence the linear stability analysis presented herein.147

3. Linear analysis of simple shear experiments148

As a representation of the shear-band experiments (Holtzman et al., 2003; Kohlstedt149

and Holtzman, 2009), we assume the model system is in simple shear in the x direction150

with steady velocity given by151

v0 = u(y)x̂ = 2yε̇0x̂ (13)
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where ε̇0 is an imposed shear strain-rate. The basic steady state is assumed uniform and152

constant, with no phase separation (i.e., both phases move at velocity v0). We consider153

two-dimensional (2-D) infinitesimal perturbations to the basic state in the horizontal x-y154

plane, in which case, the dependent variables become155

φ = φ0 + εϕ1 (14a)156

v = v0(y) + ε(∇ϑ1 + ∇× (ψ1ẑ)) (14b)157

∆v = ε∆v1 (14c)158

Λ = Λ0 + εΛ1 = 1− ε
(
bϕ1 + q

ε̇1xy

ε̇0

)
(14d)159

160

where ε � 1, ϑ1 is a flow potential, ψ1 is a stream function, and q = 1 − 1/n. All zeroth161

order variables are uniform and constant except for v0 which is a function of y, and all first162

order variables are functions of x, y and time t. We first substitute (14) into (4), and into163

both ∇· and ẑ ·∇× of (11), using (5) and (10) to eliminate ∆v. This yields governing164

equations for the perturbations of O(ε1), which we then non-dimensionalize by scaling165

time by (2ε̇0)−1, and distance by the compaction length166

δ =
√
φ2

0(B0 + 4
3
µ0)/c0 (15)
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where B0 = B(φ0) and c0 = c(φ0). The dimensionless governing perturbation equations167

become, after some algebra168

D0ϕ1

Dt
= (1− φ0)∇2ϑ1 (16a)169

(∇4 −∇2)ϑ1 = ν

(
Γ
(
D∇4 −∇2

)
ϕ1 − 2

∂2Λ1

∂x∂y

)
(16b)170

∇4ψ1 = 4∗Λ1 (16c)171

Λ1 = −bϕ1 + q

(
4∗ψ1 − 2

∂2ϑ1

∂x∂y

)
(16d)172

173

where4∗ = ∂2

∂x2
− ∂2

∂y2
, and174

ν =
µ0

B0 + 4
3
µ0

(17a)175

Γ =
γ(1− φ0)A′′0

2ε̇0µ0

(17b)176

D = (A′′0A0δ
2)−1 (17c)177

178

in which A0 = A(φ0) and A′′0 = [d2A/dφ2]φ0 .179

3.1. Normal mode analysis and dispersion relation180

In the usual method of normal mode analysis, we assume all dependent variables go as181

e−ik·x+st where k = (kx, ky) = k(cos θ, sin θ) is the wave vector in which θ is the wave-182

vector angle, x = (x, y) is the position vector, and s is the growth rate. Substituting this183

relation into (16), and solving for s leads to the dispersion relation184

s = (1− φ0)νΓk2 · Q sin(2θ)− (1 +Dk2) (1− q cos2(2θ))

(1 + k2)(1− q cos2(2θ))− qνk2 sin2(2θ)
(18)

where we define Q = b/Γ (see Figure 1). Here we have neglected the advection term185

in (16a); inclusion of advection does not change the basic results but simply breaks the186
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degeneracy of mode selection in θ in favor of shallow-angled bands (Spiegelman, 2003;187

Katz et al., 2006; Rudge and Bercovici, 2015).188

The influence of shear deformation is represented in the numerator of (18) by the term189

that goes as ΓQ = b, modulated by non-Newtonian effects in the denominator, but which190

is then always positive. The effect of surface tension is contained in the factor that goes as191

Γ + ΓDk2, whose two terms represent microscopic and diffuse-interface capillary effects,192

respectively. Only the microscopic capillary term depends on microscopic interface curva-193

ture A′′0, which can either be negative for self-separation (Ricard et al., 2001) (that would194

then accelerate the banding instability), or positive for wetting and melt dispersal (Hier-195

Majumder et al., 2006) (that then, like the diffuse-interface effect, retards the instability).196

Here we assumeA′′0 > for the wetting case, which is typical of partial melts (Parsons et al.,197

2008; King et al., 2011). However, only the diffuse interface effect permits mode selection.198

For example, in the limits of k2 → 0 and k2 → ∞, s → 0 and s → −∞, respectively,199

but has positive values in between these limits, and thus a least-stable mode exists at some200

finite k. If there is no diffuse interface effect such that D = 0, then s goes to a positive201

asymptote as k2 →∞ and there is no selected mode (Figure 1). Thus only the introduction202

of diffuse interface surface tension allows for mode selection at finite wavelength; micro-203

scopic capillary forces (even if causing wetting and melt dispersal) by themselves will not204

allow for mode selection. Although the mode selection is very broad for expected param-205

eter values, in which Q � 1 and D � 1 (Figure 1) these same parameters lead to a very206

high wavenumber k, or small wavelength, selection, as discussed next.207

3.1.1. Least stable mode208

We can gain some immediate intuition about mode selection if we first consider the209

simplest case of a Newtonian matrix rheology, whence q = 0, in which case the growth210
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Figure 1: Growth s vs wave-number k and wave-vector angle θ from (18). The left and middle panels are for
D = 0 andD = 10−8, respectively, and both haveQ = b/Γ = 104 (the left panel is also arbitrarily truncated
at k = 1010); the right panel is for Q = 103 and D = 10−2. The case for D = 0 (left panel) does not have
peak growth at a finite k and thus does not allow mode selection, unlike the cases for D > 0. All three cases
have the same values of φ0 = 0.05, n = 4, ν = 3φ0/4.

rate is necessarily maximum at θ = π/4 (i.e., bands at 45◦ angles), and thus211

s = (1− φ0)νΓk2 · Q − (1 +Dk2)

1 + k2
(19)

Marginal stability occurs for s = 0, which implies a critical value of Q = 1 + Dk2 above212

which perturbations are unstable. The least stable mode, for which ds/dk2 = 0, occurs at213

a wave-number given by214

k2
m =

√
1 + (Q− 1) /D − 1 (20)

However, as discussed in §4.1, typical experimental conditions and properties lead toQ �215

1 and D � 1 and thus km ≈ (Q/D)1/4, which, while not infinite, is intrinsically a large216

number and thus leads to small wavelengths. At this wavenumber, the approximate growth217

rate from (19) (noting that typically QD � 1 such that Dk2 � 1) is sm ≈ (1 − φ0)bν,218

which is typically O(1) (again see §4.1), and thus the dimensional growth rate is roughly219

equal to the imposed strain-rate. These simple scaling results for the least stable mode and220

associated growth rate hold for the general case except for an angular dependence as well221

as influence of q 6= 0, for which the least stable mode does not occur at θ = π/4.222
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For the general case of q 6= 0 and arbitrary fixed θ, the least stable mode is given by223

k2
m =

√
1 + 1

D

(QS
C2 − 1

) (
1− qνS2

C2

)
− 1

1− qνS2

C2

(21)

where we have defined224

S = sin(2θ) and C2 = 1− q cos2(2θ) (22)

(see Figure 2). Again, taking the asymptotic limits Q � 1 and D � 1, and in addition225

qνS2/C2 � 1 (since ν ∼ φ0 � 1; see §4.1), the least-stable wave-number and associated226

growth rate are227

km ≈
(
QS
DC2

)1/4

and sm ≈ (1− φ0)
bνS

C2
(23)

(see Figure 2).228

The dependences on θ and q = 1 − 1/n for both km and sm are contained in the ratio229

S/C2. Thus the angle θ at which maximum growth occurs is given by d(SC−2)/dθ = 0230

which leads to θm = 1
2

sin−1(±
√

1/(n− 1)), which is effectively the same result as found231

by Katz et al. (2006). At this value of θm, S/C2 = n/(2
√
n− 1), which is typically O(1).232

For example, using n = 4, θm ≈ 18◦ and 72◦ (e.g., see Figure 2) and S/C2 = 2/
√

3 ≈ 1.233

(Note, however, for n ≤ 2 the only real angle allowed is θm = 45◦; see Katz et al. (2006).)234

In general the angular and rheological power-law dependence of the least-stable mode does235

not change with the introduction of the diffuse interface effect, which itself simply allows236

for a finite wavelength 2π/km to be selected. Thus for the least stable angle θ, the least237

stable mode is still given by km ≈ (Q/D)1/4 � 1, and the associated growth rate is238

sm ≈ (1− φ0)bν ≈ O(1/n) (since b ≈ 25/n).239
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Figure 2: Least stable wavenumber km from (21) (top) and associated growth rate sm from (18) (bottom)
versus wave-vector angle θ, for the same cases as in Fig 1 for D 6= 0, shown as green and blue symbols.
The thin black curves are the asymptotic relations given in (23); given the proper scaling these relations are
sufficient to describe the least stable modes.

4. Discussion and Conclusion: Application to Melt Band experiments240

4.1. Scales and numbers for mode selection241

The dimensionless numbers for the governing equations depend on various experimen-242

tal parameters. We consider two cases in the shear-banding experiments of Holtzman et al.243

(2003, see Table 1) (see also Kohlstedt and Holtzman, 2009): (1) an anorthosite matrix244

with a low-viscosity MORB (mid-ocean ridge basalt) melt, and (2) an olivine matrix with245

a high viscosity albite melt, both of which led to shallow shear bands with 15-20◦ angles,246

but with significantly different band widths and spacing. For the anorthosite+MORB case,247

the imposed strain-rate was ε̇0 = 3 × 10−4s−1, the matrix viscosity (which we assume to248

be the same as the basic-state viscosity) was µ0 = 6 × 1011Pa s, the melt viscosity was249

µf = 10Pa s, the mean melt volume fraction was φ0 = 0.03, the matrix permeability250

was k = 10−17m2 and the grain-size radius was r = 2µ. In the olivine+albite-melt case,251
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ε̇0 = 3× 10−3s−1, µ0 = 5× 1012Pa s, µf = 3.3× 105Pa s, φ0 = 0.03, k = 4× 10−17m2,252

and r = 4µ.253

To evaluate our model dimensionless parameters, we use B0 = (1−φ0)2B0 = 4
3
µ0(1−254

φ0)/φ0 (see Bercovici et al., 2001; Bercovici and Ricard, 2003); thus B0 + 4
3
µ0 = 4

3
µ0/φ0255

in which case (17) leads to ν = 3
4
φ0. (Note that our estimates of ν and compaction length256

δ differ from that used by Holtzman et al. (2003) who effectively assumed B0 � µ0.)257

For the parameters Q = b/Γ and D, we use a typical surface tension γ ≈ 1Pa m,258

b = 25/n (Mei et al., 2002; Takei and Holtzman, 2009), and c0 = µfφ
2
0/k. We can259

approximate the microscopic interface area density A0 for a mixture of simple spherical or260

regular-polyhedral grains of mean size r embedded in a small amount of melt, in which case261

A0 ≈ 3/r (Bercovici et al., 2001; Bercovici and Ricard, 2012; Ricard and Bercovici, 2009).262

As noted already, the microscopic curvature A′′0 can be positive or negative depending263

on whether the mixture self-separates (Ricard et al., 2001) or undergoes grain-boundary264

wetting (Hier-Majumder et al., 2006), although its sign has no impact on this analysis, since265

neither the maximum growth rate sm nor least stable mode km, as given in (23), depend on266

A′′0. However, the magnitude of A′′0 is important for estimating the dimensionless numbers267

Q and D; in this case we approximate this quantity for that of a spherical grain, in which268

case A′′0 = 2/r. Thus using (17),269

Q =
b

Γ
=

bµ0ε̇0r

γ(1− φ0)
≈ 104 and 106 (24a)270

D =
µfφ0r

2

8µ0k
≈ 3× 10−8 and 10−4 (24b)271

272

where the two values of each parameter are for the anorthosite+MORB and olivine+albite-273

melt experiments, respectively. In estimating Q, we have assumed diffusion creep, hence274

n = 1, for lack of any information to the contrary in the experiments. Values of n > 1275

allow for shallow angled melt bands (i.e., θ < 45◦), but only influence mode selection276
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through the relation b = 25/n, which would reduce Q and the growth rate sm by a factor277

of n, and the least stable wavenumber km by n1/4.278

4.2. Mode selection and comparison to experiments279

With the dimensionless numbers inferred above, we indeed see thatQ � 1 andD � 1;280

thus the least stable mode and associated growth rate are given by (23). The dimension-281

less growth rate for both experimental cases of anorthosite+MORB and olivine+albite-282

melt is the same (since b and φ0 are the same for each) and yields sm ≈ 0.5. For the283

anorthosite+MORB case, the dimensionless least-stable mode wavenumber is km ≈ 800;284

thus, given a compaction length δ ≈ 5000µ, the dimensional least-stable mode wavelength285

is λm = 2πδ/km ≈ 40µ. For the olivine+albite-melt case, km ≈ 350 and δ ≈ 200µ, thus286

λm ≈ 4µ.287

The melt bands for the anorthosite+MORB experiments were of order 20µ wide, but288

separated by about 100µ; for the olivine+albite-melt experiments, the melt bands were a289

few grains or microns wide, and spaced by about 20µ (Holtzman et al., 2003; Kohlstedt and290

Holtzman, 2009). The melt-band widths compare favorably with the model predictions for291

which the band-widths would be λm/2; however, the band spacing is considerably wider292

than λm.293

The difference between the melt band widths and their spacing in each case indicates294

two dominant length scales of the instability; this cannot be explained by our linear stability295

theory, which only predicts one least-stable mode. That the spacing is wider than the band296

width possibly reflects a nonlinear effect whereby the melt-rich bands drain melt from297

the surrounding matrix, but only as far away as some larger fraction of the compaction298

length; however, this assumption needs testing with nonlinear models with our proposed299

mechanism. Alternatively, the wide spacing could reflect the chemical-diffusion limited300

instability proposed by Takei and Hier-Majumder (2009) or the effect of finite strain and301

rotation (e.g., Butler, 2010).302
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The dependence of melt-band width on shear stress indicated in the experiments of303

Holtzman and Kohlstedt (2007) also corresponds at least qualitatively to our model pre-304

dictions. The relation for the least-stable mode, e.g., (23), implies that band width goes305

as (stress)−1/4, which is roughly borne out for the “constant rate” (CR) cases – which306

are most appropriate for our model – discussed by Holtzman and Kohlstedt (2007), al-307

though the data is sparse. Holtzman and Kohlstedt (2007); Kohlstedt and Holtzman (2009)308

also documented the relation between melt-band spacing and compaction length, which309

is qualitatively in line with our model predictions assuming band spacing and width are310

proportional.311

In the end, the very small experimental melt-band length scales are predicted by our312

model to be due to a weak diffuse-interface capillary effect (represented by the dimension-313

less number D), which does not damp growth of the shear-band instability until very large314

wave numbers or small wavelengths. Our predictions closely match the narrow experimen-315

tal melt-band widths, but more work is needed to understand the wider spacing between316

melt bands.317

Appendix A. Distribution function and effective curvature near a diffuse interface318

In a two-phase mixture, the volume fraction of each phase and the interface between319

them is fundamentally described by a distribution, or existence, function Θ which is effec-320

tively a spacial box-car function that is unity in one phase and zero in the other. In our321

two-phase model, if Θ = 1 for phase 1, then volume fractions and interface density are322

(e.g., Ni and Beckerman, 1991; Bercovici et al., 2001)323

φ1 =
1

δV

∫
δV

ΘdV, φ2 =
1

δV

∫
δV

(1−Θ)dV and A =
1

δV

∫
δV

|∇Θ|dV (A.1)

where δV is pseudo-infinitesimal volume (i.e., small enough to resolve spatial gradients324

but big enough to enclose a statistically meaningful sample of drops, pores and/or grains of325
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microscopic(interface(diffuse(interface(

Figure A.1: Simple sketch of an abrupt transition in porosity from packed to dispersed spherical grains (grey
circles) in partial melt, to illustrate both microscopic and diffuse interfaces.

the two phases). Typically Θ is assumed to be comprised of fine scale 3-D boxcars whose326

distribution varies smoothly over δV . Moreover, the effective mean curvature of the fine327

scale interface is dA/dφ (e.g., Ni and Beckerman, 1991; Bercovici et al., 2001).328

However in the melt-band experiments, the final band instabilities are several tens of329

melt pores and grains wide and that structure is small enough to affect the shape of Θ at an330

intermediate scale (i.e., between the pore/grain scale and the larger spatial scales resolved331

by δV ). In particular we consider that at this intermediate scale, Θ is influenced by sharp332

gradients in φ, i.e., where the length scale of the gradients becomes comparable to that333

of the control volume δV and not much bigger than the bubble or grain sizes. Thus, we334

consider Θ in the vicinity of a mean structure or coherent diffuse-interface imposed by a335

sharp gradient in φ and seek the effective interface curvature near this structure (see Figure336

A.1).337

Curvature of an interface with unit normal n̂ is simply ∇ · n̂; here we define n̂ to338

point away from the fluid (where Θ = 1) into the solid matrix (where Θ = 0) and thus339

n̂ = −∇Θ/|∇Θ| such that the curvature is340

κ = ∇ · n̂ = − 1

|∇Θ|

(
∇2Θ− ∂2Θ

∂n2

)
where

∂2Θ

∂n2
= n̂ ·∇(n̂ ·∇Θ) (A.2)
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Following Sun and Beckermann (2004), we next define the mean curvature along the341

interface as κ̄ = 〈κ|∇Θ|〉 / 〈|∇Θ|〉 where 〈q〉 is the volume average of any quantity q over342

a control volume δV , as described in (A.1). The mean curvature is thus343

κ̄ = − 1

〈|∇Θ|〉

〈
∇2Θ− ∂2Θ

∂n2

〉
= − 1

A

(〈
∇2Θ

〉
−
〈
∂2Θ

∂n2

〉)
(A.3)

where we have used (A.1) to introduce the factor of 1/A. We now consider the two terms344

on the far right of (A.3) separately for both a uniform (within a control volume) medium345

of dispersed (i.e., non-contacting) identical spherical fluid bubbles, and then also for the346

influence of the coherent structure with a sharp porosity gradient. For one bubble of radius347

a, Θ = 1 for r < a, and Θ = 0 for r > a, where r is the radial position from the bubble’s348

center. In this case349

∇Θ = −δ(r − a)r̂, ∇2Θ = −2

r
δ(r − a)− δ′(r − a), and

∂2Θ

∂n2
=
∂2Θ

∂r2
= −δ′(r − a)

(A.4)

If we have N such bubbles dispersed in the control volume, it can be readily shown that350

〈|∇Θ|〉 = A = N4πa2/δV as expected, and 〈∇2Θ〉 = 0 while 〈∂2Θ/∂n2〉 = N8πa/δV .351

In total, the microscopic contribution to the mean curvature κ̄ is simply 2/a, but only the352

second term on the far right of (A.3) contributes to the mean microscopic curvature.353

In the vicinity of a coherent structure with a sharp gradient in φ, 〈∇2Θ〉 = ∇2φ (pro-354

vided that ∇Θ averaged over any surface element of the control volume δV varies no355

more than linearly perpendicular to that element; see Bercovici et al., 2001). Moreover, the356

control volume can be chosen small enough to render the coherent structure a flat diffuse357

surface or boundary layer inside that volume; since ∂2Θ/∂n2 is an odd function centered358

on that structure, then 〈∂2Θ/∂n2〉 = 0.359

Summing the effects of the microscopic and coherent structures together, we see that360

only the coherent structure contributes to the first term on the far right side of (A.3), while361
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only the microscopic structure contributes to the second term. Therefore, the final average362

curvature (A.3) associated with both the microscopic background value and that due to the363

coherent structure is364

dα

dφ
= κ̄ =

dA
dφ
− 1

A
∇2φ (A.5)

where we have associated dA/dφ with the mean microscopic cuvature 2/a, and we note365

that (A.5) is the same as that derived by Sun and Beckermann (2004). In the end, we infer366

that with both finer and coarse scale structures in the distribution function Θ, the effective367

interface curvature is given by (A.5), which is the starting point for our model with equation368

(1).369
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