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Abstract

The double spike technique is a well established method for correcting for instrumental mass
fractionation in mass spectrometry. The precision of the technique is controlled by the choices
of double spike composition and the proportions in which the double spike and sample are
mixed. To make these choices easier, we provide software (“the double spike toolbox”) for
calculating optimal double spikes, which are chosen purely on the basis of minimising er-
ror propagation. In addition, we provide “cocktail lists” of optimal double spikes for all 33
elements that have 4 or more naturally occurring isotopes, using some sensible default param-
eters. As examples, we discuss the application of the software to Fe, Pb, and Ca isotopes.
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1. Introduction

The double spike technique is a powerful method to correct for instrumental mass frac-
tionation in mass spectrometry. It is an old and well established technique (Dodson, 1963)
that is applicable to any element that has four or more isotopes. The double spike technique
has received much recent attention due its application in non-traditional stable isotope work
(Albarède and Beard, 2004; Fantle and Bullen, 2009), where it is ideally suited to distinguish
between natural and instrumental mass fractionation. Double spiking offers a number of ad-
vantages over the alternative standard-sample bracketing technique for estimating variations
in stable isotope composition: With the double spike, the standard and sample solutions need
not be equally pure, and the mass fractionation that occurs during chemical separation can
be corrected for. If the double spike equilibrates with the sample prior to chemical separa-
tion, quantitative yields and highest purity sample separation are not necessary. However,
practical use of the double spike technique may have been slowed by the perceived difficulties
of a) obtaining pure spikes, b) determining optimal double spike compositions and double
spike-sample mixing proportions, and c) calibrating the double spike.

Key controls on the precision of the double spike technique are the choices of double spike
composition and the proportions in which the double spike and sample are mixed. The main
aim of this work is help guide these choices: to make it as easy as possible for experimenters
to calculate good double spike compositions whatever isotope system is being studied. To this
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end, we provide within the electronic appendix MATLAB codes (“the double spike toolbox”)
that can be used to easily determine optimal double spikes for any isotope system. These
codes can be tailored to suit the needs of the individual experimenter. Alongside the codes,
we also provide spreadsheets containing lists of optimal double spikes (“cocktail lists”) for
all 33 elements in the periodic table that have 4 or more naturally occurring isotopes, using
some sensible default parameters. Both hypothetical pure spikes and the spikes commercially
available from Oak Ridge National Labs, USA have been included in compiling these lists.

The mathematics behind the double spike technique is not new. Indeed, most of the
mathematical derivations contained in the appendices here can also be seen in one form
or another in the early papers on the subject by Dodson (Dodson, 1963, 1969, 1970) and
other authors (Compston and Oversby, 1969; Hofmann, 1971; Russell, 1971; Cumming, 1973;
Hamelin et al., 1985). Unfortunately, there have been some slight mistakes made in the more
recent literature, particularly regarding error propagation and the determination of optimal
double spikes, which we aim to clarify here. A lot of the previous work has focused on
particular isotope systems, but the aim here is to be more general and comprehensive.

We begin with a recap of the double spike technique, followed by a discussion of the opti-
misation. As concrete examples we look at Fe, Pb, and Ca isotopes, and make a comparison
with some preliminary experimental data in the case of Fe. Finally, we compare the optimisa-
tion approach taken here with that of other authors (Galer, 1999; Johnson and Beard, 1999;
Fantle and Bullen, 2009).

2. Overview of the double spike technique

The double spike technique involves measuring the relative amounts of four isotopes, two of
which are enhanced by the addition of enriched isotopic spikes to the sample. From knowledge
of the double spike composition it is possible to invert the measurements to obtain the true
composition of the sample corrected for instrumental mass fractionation. A schematic diagram
of the technique can be seen in Figure 1. The double spike (or tracer) T is a mixture of two
single spikes S1 and S2 (solutions concentrated in a particular isotope). The double spike T
is added to a sample N , and the resulting mixture M is measured in a mass spectrometer as
m. For isotope systems with a radiogenic isotope, or stable isotope systems which undergo
mass-independent natural fractionation, an additional mass spectrometer run is made of the
sample alone, known as the unspiked run n. However, the additional run is not necessary for
stable isotopes systems which undergo mass-dependent natural fractionation, and n is then the
composition of a standard. The mass fractionation that occurs in the mass spectrometer and
in nature will be assumed throughout this work to follow a single fractionation law, namely an
exponential law, although it should be noted that a lot of the earlier work on the subject has
used linear laws (e.g. Dodson, 1963, 1969; Hamelin et al., 1985). Different mass fractionation
laws are discussed in more detail by Young et al. (2002) and Albarède et al. (2004). Natural
variations in stable isotope ratios can be expressed in terms of a mass fractionation factor α
from a standard isotope composition n, which can be directly converted to standard δ′ notation
(Hulston and Thode (1965), Appendix E), e.g. for 56Fe/54Fe the exponential fractionation
law between sample and standard/ unspiked run is(
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where 55.9349 and 53.9396 are the atomic weights of 56Fe and 54Fe respectively. Stable isotope
variations can be quoted as δ′56Fe, which is linearly related to α by

δ′56Fe = 1000 log

(
56Fe/54Fe

)
N

(56Fe/54Fe)n

= −1000α log
55.9349
53.9396

. (2)

Similarly, a fractionation factor β describes the mass fractionation occurring in the instrument
during measurement of the double spike-sample mixture,(
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The proportions in which the double spike T and sample N are mixed to form the mixture
M can be expressed in terms of a proportion p per mole of element of double spike to 1 − p
of sample, e.g. the mixing law for 56Fe is

(56Fe)M = p(56Fe)T + (1− p)(56Fe)N , (4)

where (56Fe) denotes the molar proportion of Fe that is 56Fe. The mass fractionation laws (1)
and (3) and the mixing law (4) form the governing equations for the double spike technique.

Given the double spike composition T , measurements of the mixture m, and measure-
ments of the unspiked run/ standard composition n, it is possible to invert to find the true
composition of the sample N , the mixture M , double spike to sample proportion p, and the
fractionation factors α and β. The relative amounts of the four isotopes can be expressed in
terms of three isotopic ratios with common denominator e.g. 56Fe/54Fe, 57Fe/54Fe, 58Fe/54Fe.
The inversion involves the solution of three simultaneous nonlinear equations (one for each
isotopic ratio) for the three unknowns p, α, and β. This can be done iteratively, and the
procedure is described in detail in Appendix A. It should be particularly noted that the
results of the inversion depend only on the relative amounts of the four isotopes, and not on
how these relative amounts are expressed in the calculations: In particular, the results of the
inversion are independent of the choice of denominator isotope (Mel’nikov, 2005).

3. Optimising the double spike

To judge a double spike to be optimal an objective criterion is needed that determines
how good a particular double spike is. A very natural criterion for a good double spike is one
which produces low errors (Cumming, 1973). Indeed, the whole aim of double spiking is to
get precise measurements: the more precise the better. However, there is still the question
of which error to minimise. For stable isotope work, it seems natural to minimise the error
on the fractionation factor α between standard and sample since it is the mass fractionation
processes that occur in nature that are of interest. For radiogenic isotope work, we may be
interested instead in a particular isotopic ratio, and it is the error on that particular ratio
which we wish to minimise. These different choices of which error to minimise will lead to
slightly different optimal double spikes, as we shall discuss later in the context of Pb isotopes.

To calculate the errors for a particular double spike we must first specify a model of the
errors in the inputs n, m, and T (Appendix C). By default, the error model used in the
software assesses the expected internal precision of the technique rather than its accuracy.
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For the mixture measurements m, the default error model is that of independent ion beams
whose intensities are measured with errors due to a) Johnson-Nyquist noise of the impedance
amplifiers (thermal noise of the electronic baseline) and b) counting statistics of the ion beam
intensities (shot noise). It is assumed that the mean total ion beam intensity of the element
remains constant (10 V by default [100pA on 1011 Ω resistors], but adjustable). The double
spike composition T is assumed to have no error, since its composition is fixed and does not
fluctuate during the course of a mass spectrometer run. Similarly, for stable isotope work it is
also assumed that the standard composition n has no error, but for radiogenic isotope work
it is assumed that the unspiked run n has instrumental errors similar to m.

The default error model represents a best case scenario, and applies to any isotope system
and mass spectrometer. In practice, there may be additional sources of error that depend on
the details of the particular isotope system and mass spectrometer and these must be dealt
with on a case by case basis e.g. additional errors can arise due to corrections for interferences,
acid blanks, and hydride/ oxide production. The software allows for customisation of the error
model (see Appendix C), and can be used to explore some of these additional sources of error.
All the calculations shown here use the default error model.

While the double spike and standard compositions do not fluctuate, the compositions
themselves may not be known accurately, and this can lead to systematic biases (inaccuracies)
in the results of the double spike inversion. These biases can be reduced by good calibration,
and calibration is discussed further in Appendix F. Since we are only usually interested in
the composition of the sample relative to the standard, it is not necessary to know accurately
the absolute composition of the standard, but only the mass fractionation line on which it
lies. Similarly, it is not necessary to know the absolute composition of the double spike, only
its composition relative to the chosen standard value.

Once an error model has been specified, the errors have to be propagated through the
double spike inversion procedure to get the errors on the quantities of interest, such as α.
There are two main approaches to error propagation: Monte Carlo simulation and linear
error propagation. Monte Carlo simulations are by far the easiest to code, but are slower and
give answers that vary slightly each time the code is run. Linear error propagation is more
involved to code as it requires calculating various partial derivatives and performing matrix
manipulations (Appendix B), but once coded it is much faster and there is no variability in
the answer. Linear error propagation is only valid for small errors, but this holds true here.
For optimisation of the double spike, linear error propagation is much preferred for its speed
and the fact that the estimated error varies smoothly with changes in parameters. However,
Monte Carlo simulations are still useful to verify that the linear error propagation is accurate,
and a routine for performing Monte-Carlo simulations is available in the software.

We calculate the expected errors using linear error propagation. The errors are given
as the theoretical standard deviation for repeated measurements (each measurement is an 8
second integration by default). Given 100 repeated measurements the analytical precision
should thus be 5 times smaller than this if given as 2 standard errors of the mean. If the
errors are doubled, 4 times as many repeat measurements are required to obtain the same
internal analytical precision. Note that typically thermal noise is much less than shot noise
(thermal noise has a standard deviation of 0.01 mV by default), and so the default errors
scale approximately with the square root of mean total beam intensity provided this intensity
is not too low.

Given the 4 isotopes used in the inversion, there are 6 possible double spikes. Once one
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of these possibilities is chosen, there are then two parameters we can vary: the proportion q
(by mole of element) in which the two single spikes are mixed to form the double spike, and
the proportion p in which the double spike is mixed with the sample (Figure 1). q describes
a mixing law similar to that for p in (4), e.g.

(56Fe)T = q(56Fe)S1 + (1− q)(56Fe)S2 . (5)

The single spikes S1 and S2 may be hypothetical pure spikes, or real spikes which contain
small amounts of the other isotopes, such as those commercially available from Oak Ridge
National Labs (ORNL). The optimisation works identically in both cases. We will denote the
ORNL spikes by an asterix (*) to distinguish them from the hypothetical pure spikes.

An example of this is shown in Figure 2, where a contour plot of the error in α is shown for
a 57Fe∗-58Fe∗ ORNL double spike as a function of p and q. The error surface is bowl-shaped
with a single minimum. Finding the optimal double spike is simply a matter of locating this
minimum, which is done effectively with gradient methods (Appendix D). The contour plot
is useful not only because it shows the optimal double spike, but also because it gives an idea
of how robust the optimal double spike is: Often we cannot mix in exactly the proportions we
would like as the sample concentration is not well known, and so it is important to understand
how the error varies in the vicinity of the optimum. In the particular example of Figure 2,
the optimum is quite robust as the error surface is very flat there. Indeed, for this example
there are a wide range of values of p and q that are within 25% of the optimum error on α. It
should be noted that the optimal values of p and q depend only slightly on the actual sample
composition and mass fractionation factors. Thus once the optimal double spike composition
and double spike-sample mixing proportions have been determined for a standard composition,
they can then be used effectively for measurement of all samples.

4. Examples

4.1. Fe
As a concrete example, we now consider Fe in more detail, which has four naturally

occurring isotopes: 54Fe, 56Fe, 57Fe, and 58Fe. The 6 possible double spikes are 54Fe-56Fe,
54Fe-57Fe, 54Fe-58Fe, 56Fe-57Fe, 56Fe-58Fe, and 57Fe-58Fe. The results of optimising the error
on α for each of these pairs for pure spikes is shown in Table 1. The different choices of double
spike have been ranked in order of increasing error. A 56Fe-58Fe double spike appears to be
best, with an optimal composition of 77.28% 56Fe to 22.72% 58Fe and 55.40% double spike to
44.60% sample. The 57Fe-58Fe double spike is a close second.

Lower down the table in fourth place is the 54Fe-58Fe double spike, which has been used
by a number of researchers (Johnson and Beard, 1999). The proportions found optimal by
Johnson and Beard (1999) have ∼ 90% 54Fe to ∼ 10% 58Fe, which is not too dissimilar to the
79.96% 54Fe to 20.04% 58Fe given in Table 1. However, the calculations suggest that three
times greater precision could be gained by moving to either the 56Fe-58Fe or 57Fe-58Fe double
spikes, which have been used in more recent work (Konter et al., 2008b,a; Lacan et al., 2008).

As remarked earlier, the commercially available spikes contain impurities, and the corre-
sponding optimal double spikes for the Fe spikes sold by ORNL are shown in Table 2. Note
that this table has extra columns, distinguishing the proportions in which the impure ORNL
spikes are mixed from the actual isotopic proportions in the double spike. Spike purity has
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only a small impact here: the optimal ORNL 57Fe∗−58Fe∗ double spike contains 10.84% im-
purities as 54Fe and 56Fe, and yet the error on α is only 4% worse than for the pure 57Fe-58Fe
double spike. It has been found that in many isotope systems spike purity has only a negli-
gible effect (Russell, 1971), but it is easy to explore the effects of spike purity in detail with
the software we provide.

A useful plot for comparing the different double spikes is shown in Figure 3, where the
error in each of the optimal double spikes given in Table 2 is shown as a function of the
proportion p of double spike in the mixture. The fact that these curves are fairly flat around
the minimum for the 56Fe∗-58Fe∗ and 57Fe∗-58Fe∗ double spikes demonstrates their robustness
to changes in the double spike-sample mix. Indeed the fact that the 57Fe∗-58Fe∗ curve is flatter
than the 56Fe∗-58Fe∗ curve may be one reason to prefer the 57Fe∗-58Fe∗ double spike despite
its slightly greater error.

The theoretical error estimates can be tested experimentally, and an example of this is
shown in Figure 4. A double spike consisting of 50% 57Fe∗ and 50% 58Fe∗ (ORNL) was added
to a standard in a range of different proportions. The resulting mixtures were measured by
MC-ICP-MS, and the within run error on α calculated (for further experimental details, see
Appendix G). These preliminary experimental results lie fairly close to the theoretical curves,
providing some good validation for the theory. For this particular example the default error
model successfully accounts for most of the error that is observed, but in other situations
there may well be additional sources of error (e.g. from interference corrections) that are not
accounted for in the default error model. Work on the practical development of the Fe double
spike using MC-ICP-MS is ongoing, and is a topic for a future manuscript. For practical
details on the implementation of Fe isotope mass spectrometry the reader is referred to the
literature (e.g. Johnson and Beard, 1999; Kehm et al., 2003; Fantle and Bullen, 2009).

4.2. Pb
The Pb double spike has been much studied (e.g. Dodson, 1969; Compston and Oversby,

1969; Dallwitz, 1970; Hofmann, 1971; Cumming, 1973; Hamelin et al., 1985; Galer, 1999;
Mel’nikov, 2005). Like Fe, there are just four naturally occurring isotopes of Pb: 204Pb,
206Pb, 207Pb, 208Pb; but unlike Fe, Pb is a radiogenic system. As such, n now represents an
additional mass spectrometer run (the unspiked run), and α is the instrumental fractionation
associated with this run. In choosing the optimal double spike for radiogenic systems it is
more natural to minimise the error on a particular isotopic ratio rather than α (Cumming,
1973). Which ratio to choose depends on the particular application.

An example is shown in Table 3, where optimal pure double spikes are shown which min-
imise the error on three different isotopic ratios: 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb.
In each case, the much used 204Pb-207Pb double spike is optimal, with the 204Pb-206Pb double
spike a close second. The optimal proportions vary slightly with the different choices of ratio,
but all have fairly equal amounts of 204Pb to 207Pb. Minimising the error on α gives a fairly
similar result, with 49.12% 204Pb to 50.88% 207Pb. These optimal proportions are not too
dissimilar to those originally proposed by Dodson (1969) and Cumming (1973) (∼ 33% 204Pb
to ∼ 67% 207Pb), although all have slightly more 204Pb. If instead the error on the sample
207Pb/206Pb ratio is minimised, the optimal double spike is much closer to that proposed by
Dodson (1969) and Cumming (1973), with 35.24% 204Pb to 64.76% 207Pb.
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4.3. Ca
Ca is a stable isotope system with six naturally occurring isotopes: 40Ca, 42Ca, 43Ca,

44Ca, 46Ca, 48Ca. For elements with more than four isotopes an additional choice must be
made: which four isotopes to use in the inversion. An example is shown in Table 4, where
the optimal double spikes for all possible choices of the four isotopes have been calculated. In
this case, the optimal choice of isotopes for the inversion is 40Ca, 42Ca, 44Ca, 48Ca using a
42Ca-48Ca double spike. The error surface for this double spike is shown in Figure 5. In fact,
this double spike is exactly what was used in the pioneering work on Ca isotopes by Russell
et al. (Russell et al., 1978; Russell and Papanastassiou, 1978), although the proportions
chosen were somewhat different. More recent work has used double spike compositions with
roughly equal amounts of 42Ca to 48Ca, very close to the optimum calculated here (see review
by DePaolo (2004) for more details). The use of 40Ca as an inversion isotope is sometimes
problematic because of the existence of radiogenic anomalies from the decay of 40K, but in
many stable isotope studies (e.g. carbonate systems) such radiogenic anomalies are negligible.
For cosmochemistry applications there may also be variations in the amount of natural 48Ca
due to s-process nuclides.

Since the error estimates are based on comparing the same total amount of Ca ions, but
only some of the ions are used in the inversion, there is a bias towards using the more abundant
natural isotopes in the inversion. In Table 4, over 97% of the total Ca ions are used in the
inversions which include 40Ca (the most abundant natural isotope), but less than 14% of the
Ca ions are used in the inversions without 40Ca. When the total beam intensities are scaled
so that the sum of the ion beams used in the inversion is kept constant instead, the lowest
error estimates are for inversions without 40Ca. In fact, the lowest error is for a 43Ca-46Ca
double spike, using 42Ca, 43Ca, 46Ca, and 48Ca in the inversion. This is important for the
applicability of double spike techniques to the measurement of Ca stable isotope variations by
MC-ICP-MS, where the 40Ca ion beam cannot be accurately measured due to the interference
of 40Ar.

Unlike Fe and Pb, spike purity has a noticeable effect for Ca, particularly for those double
spikes which use a 46Ca spike. The ORNL 46Ca∗ spike is notably impure, with less than a
third of the total Ca isotopes in the spike being 46Ca. The effect this impurity has on the
error on α is shown in Figure 6 for the 42Ca-46Ca double spikes. While the 42Ca-46Ca double
spike ranks second amongst the pure double spikes (Table 4), the 42Ca∗-46Ca∗ ranks only
sixth amongst the ORNL double spikes (electronic appendix). As a result of the impurity,
the error on α increases by 28%.

There has been considerable discussion in the literature about which double spikes provide
the lowest errors for Ca (Gopalan et al., 2006, 2007; Fantle and Bullen, 2009; Feineman et al.,
2009). However, the choice of double spike is but one factor of many that go into generating
precise and accurate measurements. In particular, since internal precisions are typically much
better than external reproducibility for Ca, errors are not ultimately limited by the chosen
double spike composition, but by the instrumentation (Fantle and Bullen, 2009). Potentially
this problem could be minimised in several ways that are dependent upon the source of the
additional error: For example, by choosing inversion isotopes of limited dynamic range to
minimise ion-optic effects within the mass-spectrometer (e.g. a 42Ca-43Ca double spike with
a 40Ca, 42Ca, 43Ca, 44Ca inversion, Holmden (2005)), or by neglecting 40Ca which requires a
large dynamic range of measured currents if non-linearity in amplifier response is problematic.
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5. Double spike cocktail lists

The methods that have been described above can be applied to any of the 33 elements that
have four or more naturally occurring isotopes. For each element we have produced tables
of optimum double spikes that minimise the error on α (as in Tables 1, 2, and 4). These
are available as two spreadsheets in the electronic supplement. One spreadsheet provides the
optimal pure double spikes, and the other provides the optimal ORNL double spikes.

The recipes in these “cocktail lists” should prove very useful in choosing good double
spikes, but as with all good recipes they should be taken with a pinch of salt: As has been
pointed out in the examples, there are a number of other factors that are important in choosing
a good double spike that have not been taken into account in producing the cocktail lists.
For example, if it is difficult to mix in the desired proportions, then the flatness of the error
surface near the optimum is important. Often there are interferences on certain isotopes, or
the mass spectrometer may only be able to measure a particular mass range, excluding some
isotopes from consideration. The cocktail list double spike compositions minimise the error
on α rather than on particular isotopic ratios, and so may not be as well suited to radiogenic
systems. Problems such as these need to be dealt with on a case by case basis, and the “double
spike toolbox” software is provided to help with this.

It should be noted that the whole double spike technique is reliant on the chosen mass
fractionation law being an accurate description of the processes occurring in nature and in the
mass spectrometer - if this is not so (Vance and Thirlwall, 2002; Thirlwall, 2002; Thirlwall
and Anczkiewicz, 2004), e.g. due to mass independent fractionations, or due to different
mass dependent fractionations occurring than expected, then the whole method breaks down.
Large interferences are also particularly troublesome for the double spike technique if they
cannot be corrected for, and can cause spurious results to be produced on inversion. It should
also be reiterated that the accuracy of the technique is dependent on good calibration of the
double spike, without which systematic biases can occur (Appendix F).

6. Alternative approaches

The methodology of this work is largely based on the algebraic approach of Dodson (1969),
Cumming (1973), and Hamelin et al. (1985). Alternative geometrical methods for double
spike optimisation have been proposed by Galer (1999, 2007, 2008) and Johnson and Beard
(1999). One geometrical idea proposed by these authors is that an optimal double spike should
maximise the angle θ between the planes defined by N −n−T and M −m−T in a particular
isotope ratio space (Hofmann, 1971; Russell, 1971). While it is certainly true that double
spikes with angles of θ near zero are poor (which corresponds to the formation of a singular
matrix in the linear algebraic approach), it is not clear that the maximum θ corresponds
to the optimum double spike. It seems more natural to us to directly consider the errors
rather than focus on intermediate geometrical quantities such as θ. Geometrical quantities
have a further disadvantage, in that they can be coordinate dependent: different values of
θ arise from different choices of denominator isotope. The transformation from one isotope
denominator to another does not preserve θ (transformations between isotope ratio spaces
with different denominators are often approximately linear, but they are not orthogonal), and
so results can depend on which denominator is used. The physical processes of mixing and
mass fractionation are coordinate independent, and thus any scheme for choosing optimal
double spikes should also be coordinate independent (Mel’nikov, 2005).
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Both Galer (1999) and Johnson and Beard (1999) also consider linear error propagation,
but both find results which again depend on which isotope is used in the denominator e.g. it is
argued that lower errors are found in 206Pb denominatored space than in 204Pb denominatored
space (Galer, 1999), and lower errors in 57Fe denominatored space than in 54Fe denominatored
space (Johnson and Beard, 1999). However, error propagation should be no better or worse in
one isotopic ratio space than another (Mel’nikov, 2005). The reason for coordinate dependent
results by both these authors is likely the same: the assumption of uncorrelated isotopic ratios
when performing linear error propagation (neglecting the off-diagonal terms in the covariance
matrix). Uncorrelated isotopic ratios in one isotopic ratio space will be correlated in another
isotopic ratio space. Assuming uncorrelated isotopic ratios in each isotopic ratio space leads
to different answers for different isotopic ratio spaces. In our opinion, it is more appropriate to
assume an error model based on independent ion beams (Dodson, 1969) than on a set of fixed
errors on independent isotopic ratios. However, this criticism aside, methods that assume
independent isotopic ratios still produce reasonable estimates of optimal double spikes with
only slightly different results with different denominators.

The problem of assuming fixed errors on independent isotopic ratios affects a number of
other studies, including those using Monte Carlo simulations (e.g. Fantle and Bullen, 2009).
The approach of Fantle and Bullen (2009) also differs to that taken here in where errors are
assumed to occur: Fantle and Bullen (2009) place errors on the standard and double spike
composition and propagate these errors through the inversion, whereas we assume errors only
on the mass spectrometer measurements. Propagating errors on the standard and double
spike compositions essentially provides information about the accuracy of the technique i.e.
the potential systematic bias, as the true standard and double spike compositions do not
fluctuate. However, mass spectrometer measurements fluctuate, and propagating the mea-
surement errors provides information on the precision of the technique. Both of these errors
can be studied with the software we provide, but by default it is the precision we focus on. We
agree with Fantle and Bullen (2009) that the error in Ca is minimised “using a [42Ca∗-48Ca∗]
double spike composed of anywhere from 10 to 90% of the 42Ca∗ ORNL single spike” (Fig-
ure 5), but find that the optimum has slightly less double spike in the double spike-sample
mix (more like 5% to 40% double spike rather than 25% to 55%).

An intriguing suggestion made by Galer (1999) is that of a “triple spike”, a combination
of three single spikes rather than two. Indeed, one can consider optimising for an arbitrary
tracer composition rather than just a mixture of two particular single spikes. To do this is a
little more demanding as the optimisation problem becomes higher dimensional, and multiple
minima occur in the objective function. However, in our searching we have not found a
scenario where a pure triple spike has a lower error than a pure double spike (and nor could
Mel’nikov (2005)), but we cannot yet rule out such a possibility. The particular Pb triple
spike suggested by Galer (1999) does produce low errors, but there are still double spikes with
slightly lower error.

7. Conclusions

The main outcome of this work is the “double spike toolbox” software found in the elec-
tronic appendix. The software should make picking a good double spike easier for all experi-
menters. The optimal double spikes are decided purely on the basis of minimising error, and
the software makes it easy to produce plots of error curves and surfaces to assess robustness
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to varying mixing proportions. While we have focused in this manuscript on the examples of
Fe, Pb, and Ca, the software is completely general. In addition to the software, the “cocktail
lists” provide a useful reference for quickly obtaining good double spike compositions. The
source code to the software is freely available, and thus can be readily modified to satisfy the
needs of individual users.
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Appendix

A. The double spike inversion

The double spike inversion is based on the relative amounts of four isotopes, which can be
conveniently expressed in terms of vectors of three isotopic ratios with a common denominator
e.g. (56Fe/54Fe, 57Fe/54Fe, 58Fe/54Fe). Generally, it does not matter which isotope of the four
is chosen as the common denominator: all choices will produce the same answer. The only
exception to this is when one of the compositions contains none or almost none of a certain
isotope, in which case that isotope should not be chosen as the denominator to avoid the
numerical problems of dividing by very small quantities.

The key variables in the double spike inversion are shown in Figure 1. The inversion is
based on the following simple equations,

ni = NieαPi , (6)

mi = MieβPi , (7)
Mi = λTi + (1− λ)Ni. (8)

Ni refers to the ith isotopic ratio of the sample (i = 1, 2, 3), e.g. N1 = (56Fe/54Fe)sample.
Mi, mi, and Ti are defined similarly (see Figure 1). Pi is the natural log of the ratio of the
atomic masses e.g. P1 = log(55.9349/53.9396). (6) and (7) are exponential mass fractionation
laws for the sample and the double spike-sample mixture, with mass fractionation factors α
and β. (8) is the mixing relationship in isotope ratio space between double spike and sample
(which is linear in the isotopic ratios as they have a common denominator). λ is related to
the proportion p by mole in which the double spike and sample mix (4),

p =
(

1 +
1− λ

λ

(
1 +

∑
k Nk

1 +
∑

k Tk

))−1

, (9)

where
∑

k represents the sum over all isotope ratios for the element, not just the three ratios
used in the inversion. Note that λ depends on which isotope is used to denominator, unlike
α and β which are coordinate independent.
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(6), (7), and (8) can be combined to give

Fi(λ, α, β,n,m,T) = λTi + (1− λ)nie−αPi −mie−βPi = 0, (10)

where n = (n1, n2, n3) etc. This is a set of three non-linear equations, which can be solved to
find the three unknowns λ, α, and β.

If α and β are small (α, β ¿ 1), these equations can be linearised,

Fi(λ, α, β,n,m,T) ≈ ni −mi + λ (Ti − ni)− (1− λ) αniPi + βmiPi, (11)

and written in matrix form as

F (x,n,m,T) ≈ −b + Ax, (12)

where

A =

 T1 − n1 −n1P1 m1P1

T2 − n2 −n2P2 m2P2

T3 − n3 −n3P3 m3P3

 ,

b =

 m1 − n1

m2 − n2

m3 − n3

 , x =

 λ
(1− λ) α

β

 . (13)

Thus for small fractionations, the double spike inversion is simply a matter of solving the linear
equations Ax = b for x, and then obtaining λ, α, and β from x (Dodson, 1970; Dallwitz,
1970).

For larger α and β, we must solve the full non-linear equations

F (x,n,m,T) = 0. (14)

This can be done effectively by iterative methods (e.g. Newton-Raphson) (Albarède and
Beard, 2004). A good starting point for the iteration is provided by the linear solution, and
the following analytical Jacobian can be used to aid the iteration

∂F
∂x

=

 T1 − n1e−αP1(1 + αP1) −n1P1e−αP1 m1P1e−βP1

T2 − n2e−αP2(1 + αP2) −n2P2e−αP2 m2P2e−βP2

T3 − n3e−αP3(1 + αP3) −n3P3e−αP3 m3P3e−βP3

 . (15)

The iteration is performed in the software using fsolve, MATLAB’s nonlinear equation
solving routine. An alternative geometrically motivated way of performing the iteration can
be found in Siebert et al. (2001).

B. Error propagation

Standard linear error propagation can be used to calculate the errors in x given the errors
in n, m, and T (Hamelin et al., 1985). Let Vx, Vn, Vm and VT be the corresponding covariance
matrices. Assuming the errors in n, m and T are independent of one another, the covariance
matrix Vx is given by

Vx =
∂x
∂n

· Vn ·
∂x
∂n

T

+
∂x
∂m

· Vm · ∂x
∂m

T

+
∂x
∂T

· VT ·
∂x
∂T

T

, (16)
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where

∂x
∂n

= −
(

∂F
∂x

)−1 ∂F
∂n

, (17)

∂x
∂m

= −
(

∂F
∂x

)−1 ∂F
∂m

, (18)

∂x
∂T

= −
(

∂F
∂x

)−1 ∂F
∂T

, (19)

and
∂Fi

∂nj
= (1− λ) e−αPiδij ,

∂Fi

∂mj
= −e−βPiδij ,

∂Fi

∂Tj
= λδij , (20)

where δij is the Kronecker delta. The covariance matrix for y = (λ, α, β)T can be calculated
from the covariance matrix of x = (λ, (1− λ)α, β)T by

Vy =
∂y
∂x

· Vx ·
∂y
∂x

T

, (21)

where

∂y
∂x

=

 1 0 0
α/(1− λ) 1/(1− λ) 0

0 0 1

 . (22)

The error propagation for N can be done in a similar fashion,

VN =
∂N
∂n

· Vn ·
∂N
∂n

T

+
∂N
∂m

· Vm · ∂N
∂m

T

+
∂N
∂T

· VT ·
∂N
∂T

T

, (23)

where the partial derivatives of N can be calculated from (6) as

∂Ni

∂nj
= δije−αPi − Pinie−αPi

∂α

∂nj
, (24)

∂Ni

∂mj
= −Pinie−αPi

∂α

∂mj
, (25)

∂Ni

∂Tj
= −Pinie−αPi

∂α

∂Tj
. (26)

The partial derivatives of α in the above can be found from the second rows of ∂y/∂n, ∂y/∂m
and ∂y/∂T, given by (17), (18), (19), and (22) as

∂y
∂n

=
∂y
∂x

· ∂x
∂n

, (27)

∂y
∂m

=
∂y
∂x

· ∂x
∂m

, (28)

∂y
∂T

=
∂y
∂x

· ∂x
∂T

. (29)

Finally, the covariance matrix VM is given by

VM =
∂M
∂n

· Vn ·
∂M
∂n

T

+
∂M
∂m

· Vm · ∂M
∂m

T

+
∂M
∂T

· VT ·
∂M
∂T

T

, (30)
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where the partial derivatives of M can be calculated from (7) as

∂Mi

∂nj
= −Pimie−βPi

∂β

∂nj
, (31)

∂Mi

∂mj
= δije−βPi − Pimie−βPi

∂β

∂mj
, (32)

∂Mi

∂Tj
= −Pimie−βPi

∂β

∂Tj
, (33)

and the partial derivatives of β can be found from the third rows of ∂y/∂n, ∂y/∂m and
∂y/∂T.

C. Error model

Consider n ion beams with intensities in volts given by the random variables I1, I2, . . . , In.
We will assume each beam intensity is independent and normally distributed, with means µj

and variances
σ2

j = aj + bjµj + cjµ
2
j , (34)

for some specified error parameters aj , bj , and cj (Dodson, 1969). The relative values of the
means µj are determined by the isotopic composition of the substance being measured. We
will assume the mean total intensity

∑
j µj is set at some fixed value (10 V by default, but

this can be adjusted in the software). For the variances, we use a simple model of an ion beam
that incorporates Johnson-Nyquist noise in the amplifiers (for aj) and counting statistics (for
bj):

aj =
4kTR

∆t
, bj =

eR

∆t
, cj = 0, (35)

where k is the Boltzmann constant 1.3806504× 10−23 J K−1 and e is the elementary charge
1.602176487 × 10−19 C. The remaining constants are properties of the mass spectrometer,
which we have chosen defaults as follows: the resistance R = 1011 Ω, the temperature T = 300
K, and the integration time ∆t = 8 s.

The beam covariance matrix is diagonal,

VI =


σ2

1 0 · · · 0
0 σ2

2 · · · 0

0 0
. . .

...
0 0 · · · σ2

n

 . (36)

In order to perform the error propagation of the previous section, the covariance matrix of
the ratios is needed. Suppose we denominator with the last isotope, taking ratios R1 =
I1/In, R2 = I2/In, . . . , Rn−1 = In−1/In. Then the covariance matrix of the ratios is

VR =
∂R
∂I

· VI ·
∂R
∂I

T

, (37)

where

∂R
∂I

=


1/In 0 · · · 0 −I1/I2

n

0 1/In · · · 0 −I2/I2
n

...
. . .

...
...

0 0 · · · 1/In −In−1/I2
n

 . (38)
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Note that the covariance matrix of the ratios is certainly not diagonal. The software uses the
above error model by default, but can be customised if needed e.g. it is possible to manually
adjust the error parameters aj , bj , and cj , which can be used to incorporate some types of
additional error.

An important source of additional error that can affect the internal precision arises from
the corrections that are made to account for interferences. For example, corrections are often
made for interfering isotopes of the same mass (isobaric interferences) e.g. the interference
of 58Ni during measurement of 58Fe. This interference is usually corrected for by measuring
neighbouring masses (in this case, 60Ni) and applying an approximate correction factor based
on an assumed 58Ni/60Ni ratio and an assumed mass fractionation. The additional noise this
correction induces on the 58Fe measurement depends on the strength of the 60Ni ion beam,
and taking this into account requires a more sophisticated error model than that described
above. However, an approximate treatment is to simply increase the value of aj corresponding
to the 58Fe beam by an appropriate amount. For example, a typical correction formula is

I58c = I58 −
(

58Ni
60Ni

)
std

(
57.9353
59.9308

)βNi

I60, (39)

where I58 and I60 are the measured beam intensities at masses 58 and 60, and I58c is the mass
58 beam intensity corrected for Ni interference. 57.9353 and 59.9308 are the atomic masses
of 58Ni and 60Ni respectively. With an assumed standard value

(
58Ni/60Ni

)
std

= 2.596 and
assumed mass bias βNi = 1.6, the correction is

I58c = I58 − 2.459I60, (40)

and thus the noise on the corrected intensity is

σ2
58c = σ2

58 + 6.047σ2
60. (41)

Typically, the magnitude of the mass 60 beam is quite small, and so its error is dominated by
thermal noise rather than counting statistics, i.e.

σ2
60 ≈

4kTR

∆t
. (42)

Thus an approximate method for modelling the noise due to the interference correction is to
change the coefficient aj on the 58 mass to

a58 = 7.047× 4kTR

∆t
. (43)

A commonly encountered issue in MC-ICP-MS work is the effect of the acid “blank”
that is used to dissolve the sample. The blank can form a large part of the baseline, but
can corrected for by measuring an “on-peak zero”, a measurement of the acid excluding the
sample (Nelms, 2005). By subtracting the on-peak zero measurement from the measurement
of the spike-sample mixture, an additional source of noise is introduced due to the additional
measurement. This can similarly be included in the error model by increasing the coefficients
aj appropriately.

There are many other kinds of interferences that occur in different situations, and each
must be dealt with on a case by case basis. It should be noted that not all interferences
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can be corrected for, and that some of the corrections applied are only approximate e.g. the
correction formula in (39) is only approximate as the standard value and mass bias take
assumed values and not actual values. Uncorrected interferences can lead to serious biases
and inaccuracies in any isotopic measurements and must be avoided where possible.

D. Optimal double spikes

The most natural criterion for a good double spike is one which minimises the error on a
quantity of interest. However, different quantities are of interest in different situations. For
stable isotope work, the most natural quantity to focus on is α, the fractionation factor which
describes the mass fractionation between the sample N and the standard composition n. The
error on α can be obtained from the middle element of the matrix Vy in (21). However, for
radiogenic isotope work, where the composition n is a measured quantity (the unspiked run),
it is not clear that α is the appropriate quantity of interest. Instead, a more natural quantity
to minimise could be the error on a particular ratio, i.e. Nj for some choice of j, which can
be obtained from the diagonal entries of the matrix VN in (23). The different choices of error
to minimise will lead to different optimal double spikes.

A double spike consists of a mixture of two single spikes which may or may not have
impurities. We mix a proportion q (by mole of element) of the first spike to 1 − q of the
second spike to make the double spike (Figure 1). The double spike is added to the sample in
proportion p of spike to 1−p of sample. Finding the optimal double spike is simply a matter of
finding the values of the proportions p and q that minimise the appropriate error. This is a 2D
optimisation problem that can be solved quickly and efficiently by gradient based methods. As
can be seen in Figure 2, the objective function appears to be convex with a single minimum (it
is bowl-shaped), which makes optimisation particularly straightforward. It should be noted
that error estimates also depend on α and β (and hence the sample composition). By default
α and β are set to zero in the software during optimisation. However, the error estimates
vary very little for reasonable values of α and β (between -2 and 2), and thus this dependence
on α and β can be neglected.

E. δ and parts per million notation

For stable isotope work, the main quantity of interest is α, the natural mass fractionation
factor. However, α is not usually quoted in experimental results. Instead, results are usually
presented in terms of the isotopic ratios, either as δ values, as parts per million (ppm), or as
part per million per atomic mass unit (ppm per amu). These are defined by

δi = 103

(
Ni

ni
− 1

)
, (44)

ppmi = 106

(
Ni

ni
− 1

)
, (45)

ppm per amui =
106

∆iA

(
Ni

ni
− 1

)
, (46)

where ∆iA is the difference in atomic masses between the two isotopes e.g. ∆1A = 55.9349−
53.9396. The ratios Ni/ni (sample over standard) are related to α through the exponential
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mass fractionation law (6),

− αPi = log
Ni

ni
. (47)

The above equation has prompted some authors to report their results using the logarithm
of the ratios (Hulston and Thode, 1965; Young et al., 2002), which is much more convenient
when comparing with α,

δ′i = 103 log
Ni

ni
= −103αPi, (48)

ppm′i = 106 log
Ni

ni
= −106αPi, (49)

ppm per amu′i =
106

∆iA
log

Ni

ni
= −106 αPi

∆iA
. (50)

These quantities are simple linear rescalings of α, and thus minimising the error on α is
equivalent to minimising the error on any of these quantities. In most practical cases, the
logarithmic quantities (48-50) differ little from the original quantities (44-46), as they are
related by linear approximation about Ni/ni = 1. Also, since the differences in atomic masses
of the isotopes is usually small compared to the atomic masses themselves, we can make an
approximation to (50) as

ppm per amu′ ≈ −106 α

Ā
(51)

where Ā is a mean or typical atomic mass for the element under consideration. The above
rescaling is used in Tables 1, 2, and 4.

F. Calibration

F.1. Standard calibration
It is vital for the accuracy of the double spike technique that the double spike and stan-

dard be well calibrated. For standard calibration, it is only important to know the mass
fractionation line the standard lies on, rather than the absolute composition of the standard,
since all results are generally quoted relative to the standard value. This can be clearly seen
from the governing equations. The double spike equations (10) are

λTi + (1− λ)nie−αPi −mie−βPi = 0. (52)

Suppose instead of the true standard composition n, we use an alternate standard composition
n′ in the inversion, which lies at a different point along the mass fractionation line, given by
a mass fractionation factor α0,

n′i = nieα0Pi . (53)

Multiplying (52) by eα0Pi , we have

λTieα0Pi + (1− λ)nie(α0−α)Pi −mie(α0−β)Pi = 0, (54)

which can be rewritten in exactly the same form as (52),

λ′T ′
i + (1− λ′)n′ie

−α′Pi −mie−β′Pi = 0, (55)

16



where

T ′
i = Tieα0Pi , (56)

λ′ = λ, (57)
α′ = α, (58)

β′ = β − α0. (59)

Thus provided the double spike T′ is calibrated relative to the alternate standard value n′,
the only difference in the inversion will be in the values of β. α is unchanged, and thus the
composition of the sample relative to the standard can be determined even if the absolute
composition of the standard is not known.

F.2. Double spike calibration
One way of performing the double spike calibration is by measuring a series of double

spike-standard mixtures in different proportions (Dodson, 1963). Suppose J different double
spike-standard mixtures are measured as the set of isotopic ratios mj

i ; i = 1, 2, 3; j = 1, . . . , J .
These measurements satisfy the double spike equations (10)

λjTi +
(
1− λj

)
ni −mj

i e
−βjPi = 0, (60)

where λj are the J mixing proportions and βj are the J instrumental fractionation factors.
Note that α does not appear in the above expression because it is the standard itself that is
used in the mixtures. It is convenient to rewrite the double spike composition T in terms of
its difference from the standard value n (assumed known),

Ti = ni + ζui, (61)

where u is a unit vector along the double-spike sample mixing line, and ζ is a scalar. (60)
can be rewritten as

ni + ζλjui −mj
i e
−βjPi = 0. (62)

Letting µj = ζλj , this becomes

ni + µjui −mj
i e
−βjPi = 0. (63)

This a set of 3J equations in 2J + 2 unknowns: the J unknown values of βj , the J unknown
values of µj , and the 2 unknown independent components of the unit vector u (e.g. as specified
by two angles θ and φ in spherical co-ordinates). At least two different mixing proportions
(J = 2) are required to solve these equations. If further mixtures are measured (J > 2) then
the above system of equations is overdetermined and can be solved in a least squares sense,
potentially improving the precision of the double spike calibration.

While solution of the equations above determines the double spike-sample mixing line
(the unit vector u can be calculated), the position of the double spike along this line is not
determined: There is a trade off between ζ and the λj , as only their product µj = ζλj can
be determined. There are two main ways to determine the actual position of the double
spike along the double-spike sample mixing line. One way is to use very careful weighing
to determine the mixing proportions accurately. The other way is to use a second standard
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material (ideally with a composition quite different to the first standard) and perform another
series of standard-double spike mixtures with this second standard. The intersection of the
two standard-double spike mixing lines should then provide an accurate calibration of the
double spike composition.

It is possible estimate to the bias that arises from using a double spike composition which
lies at the wrong point along the double spike-standard mixing line. For example, suppose
that instead of using the true double spike composition T in the inversion, we use a different
double spike composition T′ that lies at a different point along the double spike-standard
mixing line, namely

T ′
i = ρTi + (1− ρ)ni, (64)

for some ρ. If ρ = 1, the double spike has been calibrated perfectly, otherwise there is a bias.
If we look at the corresponding linear equations (13) for the miscalibrated double spike T′ we
have

A′ =

 ρ(T1 − n1) −n1P1 m1P1

ρ(T2 − n2) −n2P2 m2P2

ρ(T3 − n3) −n3P3 m3P3

 ,

b′ =

 m1 − n1

m2 − n2

m3 − n3

 , x′ =

 λ′

(1− λ′) α′

β′

 . (65)

Thus the linear inversion solutions with the true double spike T and the miscalibrated double
spike T′ are related through

λ′

λ
− 1 =

1− ρ

ρ
, (66)

α′

α
− 1 =

λ(1− ρ)
ρ− λ

, (67)

β′

β
− 1 = 0. (68)

The above can also be expressed using proportion by mole of element instead of in ratio space
as

p′

p
− 1 =

1− r

r
, (69)

α′

α
− 1 =

p(1− r)
r − p

, (70)

β′

β
− 1 = 0, (71)

where p is the proportion per mole of double spike in the double spike-sample mix (related to
λ by (9)), and r is the proportion per mole of true double spike in the miscalibrated double
spike (related to ρ). As an example, suppose the miscalibrated double spike had r = 0.99 (i.e.
has a composition per mole of 99% of the true double spike value, with a contamination of
1% of the standard), and that the double spike-sample mixing proportion p = 0.5. Then the
resulting bias in α from (70) is 0.0102 (i.e. a 1.02% relative bias). The potential biases for
the full nonlinear inversion can be explored in more detail using the software, but the above
equations give a good approximation.
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G. Experimental details

The Fe isotope analyses were carried out on the Nu Plasma 1700 high-resolution MC-
ICP-MS (at ETH Zürich) in normal dry plasma mode. The Nu Plasma 1700 provides true
mass-resolution (defined by the peak width, m/∆m) from an adjustable source defining slit
and individual adjustable collector slits widths, which allow the complete resolution of the
polyatomic isobaric interferences, including ArO+, ArN+, CaO+. The four Fe ion beams
were collected simultaneously on Faraday collectors, equipment with 1011 Ω resistors, but
with a dynamic range of 20 V. The direct interferences of 54Cr+ and 58Ni+ were assessed and
corrected for by the simultaneous measurement of 52Cr, 53Cr, 60Ni, and 61Ni. The ∼ 200
ppb Fe solutions in 0.1 M HCl were introduced into the plasma via an Aridus II desolvator
equipped with a PFA nebuliser and using a 60-80 µl/min uptake rate. Analyses consisted of
100×4 s integrations and a 5 minute wash cycle between spiked standards. Background levels
are reduced to < 10−13 A for 56Fe+ between measurements.
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Table 1: Optimal double spikes for Fe isotopes using pure spikes. All 6 possible double spikes have been
considered. Errors are for a 10 V mean total beam intensity with 8 second integrations. The ppm/amu column
gives a rescaling of the error in α to give an approximate estimate of parts per million per atomic mass unit
errors on the isotope ratios (the scaling factor is 106/mean atomic mass, see Appendix E). The 56Fe-58Fe
double spike has the lowest error, closely followed by the 57Fe-58Fe double spike. The Fe standard compsition
is (5.85%, 91.75%, 2.12%, 0.28%) (Rosman and Taylor, 1998).

Double spike composition Mixture composition Error estimates (1SD)
54Fe 56Fe 57Fe 58Fe double spike sample error in α ppm/amu

77.28% 22.72% 55.40% 44.60% 0.0032 57
47.65% 52.35% 44.86% 55.14% 0.0035 62

75.31% 24.69% 69.16% 30.84% 0.0045 80
79.96% 20.04% 21.48% 78.52% 0.0093 166
44.87% 55.13% 39.82% 60.18% 0.0109 193
70.23% 29.77% 23.06% 76.94% 0.0263 469
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Table 3: Optimal double spikes for Pb isotopes using pure spikes. Errors are for a 10 V mean total beam
intensity with 8 second integrations for both the spiked and unspiked runs. The optimal double spikes in these
three tables minimise the error in the sample 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios respectively.
In all cases, the 204Pb-207Pb double spike has the lowest error, although the optimal proportions vary slightly.
The Pb standard compsition is (1.40%, 24.10%, 22.10%, 52.40%) (Rosman and Taylor, 1998).

Double spike composition Mixture composition Error estimate (1SD)
204Pb 206Pb 207Pb 208Pb double spike sample error in 206Pb/204Pb
63.44% 36.56% 51.24% 48.76% 0.0031
72.90% 27.10% 50.73% 49.27% 0.0032

71.83% 28.17% 52.74% 47.26% 0.0034
22.19% 77.81% 56.29% 43.71% 0.0045

10.93% 89.07% 61.50% 38.50% 0.0048
37.68% 62.32% 53.37% 46.63% 0.0056

Double spike composition Mixture composition Error estimate (1SD)
204Pb 206Pb 207Pb 208Pb double spike sample error in 207Pb/204Pb
53.85% 46.15% 52.92% 47.08% 0.0031
72.97% 27.03% 47.01% 52.99% 0.0032

76.04% 23.96% 56.48% 43.52% 0.0044
21.50% 78.50% 54.49% 45.51% 0.0052

10.10% 89.90% 62.70% 37.30% 0.0060
38.60% 61.40% 54.91% 45.09% 0.0077

Double spike composition Mixture composition Error estimate (1SD)
204Pb 206Pb 207Pb 208Pb double spike sample error in 208Pb/204Pb
56.63% 43.37% 48.94% 51.06% 0.0079
69.94% 30.06% 46.74% 53.26% 0.0083

78.04% 21.96% 56.77% 43.23% 0.0131
20.62% 79.38% 55.16% 44.84% 0.0159

9.62% 90.38% 64.11% 35.89% 0.0192
38.27% 61.73% 55.79% 44.21% 0.0250
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Figure 1: A schematic diagram of the double spike technique. Lines with arrows represent mass fractionation,
lines without arrows represent mixing. The single spikes S1 and S2 are mixed in proportions q to 1 − q (per
mole of element) to form the double spike (or tracer) T . N is the natural sample under consideration, which
is mixed with the double spike T to form the mixture M . The mixture consists of a proportion p (per mole
of element) of double spike to 1 − p of natural sample. In the mass spectrometer, the mixture M undergoes
instrumental mass fractionation with some fractionation factor β so that a different composition m is measured.
Similarly, the composition n reflects a mass fractionation from N with a fractionation factor α. For radiogenic
isotope work, n is measured in the mass spectrometer from an unspiked run, and so α is another instrumental
fractionation factor. For stable isotope work, n is the composition of a standard material, and α reflects the
mass fractionation that has occurred in nature. The double spike inversion takes the circled compositions n,
m, and T as inputs to determine the unknown α, β, p, N and M .
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Figure 2: Contour plot of error in α for the 57Fe∗−58Fe∗ ORNL double spike. Horizontal axis gives the
proportion p of double spike in the double spike-sample mixture, and vertical axis gives the proportion q of
57Fe∗ in the double spike. The optimum is marked by a cross, with 45.74% double spike to 54.26% sample with
a double spike of 46.80% 57Fe∗ to 53.20% 58Fe∗ (see Table 2). The plot is thresholded so that only contours
within 25% of the optimal error are shown, and contours are evenly spaced with interval 1% of the optimal
error on α. Note that there is quite a broad region around the optimum where low errors are found.
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Figure 4: Comparison of theoretical curves with MC-ICP-MS data for Fe. The double spike consists of
50% 57Fe∗ and 50% 58Fe∗, near the calculated optimum composition. The solid line is a theoretical curve
for a total mean beam intensity of 15.3 V with four second integrations. In the experiments the total beam
intensity was not precisely controlled, but varied from 12.7 to 17.1 V over the different runs, and the theoretical
curves for these intensities are shown as dashed lines. Each data point on the plot (crosses) is based on
experimental results from 100 four-second integrations. The general agreement between theory and experiment
is encouraging, although the match is not perfect. The right hand side y-axis re-expresses the standard
deviation on α as the 2 standard error on δ′56Fe, which is more typically reported (the scaling factor is
1000 log(55.9349/53.9396)× 2/

√
100, Appendix E).
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Figure 5: Contour plot of error in α for the 42Ca∗−48Ca∗ ORNL double spike using 40Ca, 42Ca, 44Ca, and 48Ca
in the inversion. Horizontal axis gives the proportion p of double spike in the double spike-sample mixture,
and vertical axis gives the proportion q of 42Ca∗ in the double spike. The optimum is marked by a cross, with
14.17% double spike to 85.83% sample with a double spike of 38.92% 42Ca∗ to 61.08% 48Ca∗. The plot is
thresholded so that only contours within 25% of the optimal error are shown, and contours are evenly spaced
with interval 1% of the optimal error on α. Again there is quite a broad region around the optimum where
low errors are found. The ORNL spike compositions are 42Ca∗ = (4.88%, 94.48%, 0.07%, 0.55%, 0.01%, 0.01%)
and 48Ca∗ = (2.10%, 0.02%, 0.01%, 0.07%, 0.01%, 97.78%).
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Figure 6: An example of the effect of spike purity. Shown is the error in α for the optimal pure 42Ca-46Ca
double spike (46.42% to 53.58%) and the optimal ORNL 42Ca∗−46Ca∗ double spike (32.99% to 67.01%) as a
function of the proportion of double spike in the double spike-sample mix. 40Ca, 42Ca, 44Ca, and 46Ca are
used in the inversion. The ORNL 46Ca∗ spike is not very pure, and is less than a third 46Ca: the composition
is 46Ca∗ = (60.79%, 0.76%, 0.19%, 5.69%, 30.91%, 1.65%). The impurity leads to a 28% larger error at the
optimum.
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