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1 Introduction

Wave phenomena arise in a wide variety of geophysical problems. Indeed, in this year’s
principal lectures a main focus was the modelling of waves in the ocean. It was in this
context that ray tracing and the geometrical theory of diffraction were introduced.

An important distinguishing feature of waves in the atmosphere and the ocean is that
they propagate through a fluid, and that fluid is often already in motion. Familiar examples
include the propagation of acoustic waves in the atmosphere in the presence of winds, or
gravity waves in the ocean in the presence of currents. Ray tracing has routinely been
used to solve such problems, and there is a large amount of current research devoted to
understanding these wave-mean interactions.

Diffraction is the apparent bending and spreading of waves when they meet an obstruc-
tion. It is a phenomenon not described by ordinary geometric optics. However, an extension
to ray tracing called the geometrical theory of diffraction (GTD) can overcome this prob-
lem. On the whole GTD has been little applied to wave-mean problems, and the focus of
this project is to understand how GTD can be used in the presence of a mean flow.

We consider a new twist on the canonical problem of scattering of a plane wave past a
circular cylinder. Scattering past a cylinder is a classical problem with a long history. A
good introduction to the ideas behind this work can be found in [5] and in particular the
application of GTD to the circular cylinder can be found in [7]. Special functions abound
in scattering problems, and [1] is an invaluable source for looking up their properties.

Our problem considers the addition of a weak circulation around the cylinder, which
could be motivated by the problem of modelling weak currents around an island. We
emphasise here that the circulation is weak as this simplifies matters considerably [3].

The geometry is shown in Figure 1. We let the radius of the circular cylinder be a and
take coordinates centred on the cylinder. We take the plane wave to be incoming from +∞
on the x-axis. The cylinder is taken to be impermeable.

2 The governing equations

Following [2], we set up our governing equations as those of 2-D compressible gas dynamics,
which have as a special case the familiar shallow water equations. The continuity equation
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Figure 1: The geometry of the problem. An incoming plane wave is incident on a cylinder
with circulation.

is
Dh

Dt
+ h∇ · u = 0, (1)

and the momentum equation is

Du

Dt
+

c20
γ − 1

∇
(

hγ−1
)

= 0. (2)

Here u is the two dimensional velocity vector of the fluid, and h is the density of the
gas, or the height of the free surface in the case of shallow water. For gas dynamics γ
is the polytropic exponent and c = c0

√
Hγ−1 is the undisturbed sound speed for a gas

of uniform density H. For shallow water γ = 2, c20 = g the acceleration due to gravity,
and the undisturbed gravity wave speed for a layer of uniform depth H is c =

√
gH . The

corresponding equation of state is

p ≡ c20
γ
hγ , (3)

where the additive constant has been neglected. The momentum equation can then be
written in momentum flux form as

∂ (hu)

∂t
+ ∇ · (huu) + ∇p = 0. (4)

We will assume that our flow is irrotational, ∇× u = 0. This implies we can write u in
terms of a velocity potential, u = ∇φ. The momentum equation can then be integrated to
give Bernoulli’s equation

∂φ

∂t
+

1

2
|∇φ|2 +

c20h
γ−1

γ − 1
= G(t), (5)

where G(t) is an arbitrary function of time alone. Note that Bernoulli’s equation determines
h as a function of the velocity potential φ.
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3 Small amplitude waves

3.1 Time averaged equations

When studying wave phenomena it is often useful to decompose fields into a time averaged
mean part and a disturbance part, namely φ = φ + φ′, where (φ′) = 0. Averaging (1), the
averaged continuity equation is

∇ ·
(

hu + h′u′
)

= 0, (6)

and averaging (5) the averaged Bernoulli equation is

c20
hγ−1

γ − 1
= constant − 1

2

(

|u|2 + |u′|2
)

. (7)

We perform a standard perturbation analysis of the governing equations in terms of a
small non-dimensional wave amplitude parameter η. We will assume the O(1) flow has no
disturbance part, and that the O(η) flow has no mean part. For the mean flow we write

φ =Φ + 0 + η2φ2 + ... , (8)

h =H + 0 + η2h2 + ... , (9)

u =U + 0 + η2u2 + ... . (10)

where capital letters are used to denote the O(1) flow. For the disturbance we write

φ′ = 0 + ηφ′1 + η2φ′2 + ... , (11)

h′ = 0 + ηh′1 + η2h′2 + ... , (12)

u′ = 0 + ηu′
1 + η2u′

2 + ... . (13)

3.2 Mean flow

The mean flow that we are applying is that of a line vortex:

Φ = εcaθ, (14)

U =
εca

r
eθ, (15)

c20
Hγ−1

γ − 1
= constant − ε2c2a2

2r2
. (16)

Here ε is a non-dimensional parameter determining the strength of the vortex. Throughout
this work will neglect terms O

(

ε2
)

. Hence (16) becomes simply H = constant. We have
non-dimensionalised on c the constant undisturbed wave speed, and a the radius of the
cylinder. Note that the maximum mean flow occurs on the cylinder where |U| = εc, so the
non-dimensionalisation is such that ε is a ratio of mean flow speed to wave speed (a Froude/
Mach number). The circulation Γ associated with the line vortex is Γ = 2πεca. Note that
the chosen mean flow is incompressible, ∇ · U = 0.
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3.3 Linear waves

The O(η) continuity equation is found from (1) to be

∂h′1
∂t

+ U · ∇h′1 +H∇2φ′1 = 0, (17)

where we have used incompressibility of the mean flow, and that H is constant. The O(η)
Bernoulli equation is found from (5) to be

h′1 =
H

c2

(

−∂φ
′
1

∂t
−U · ∇φ′1

)

. (18)

Combining these equations we find

c2∇2φ′1 −
∂2φ′1
∂t2

− 2U ·
(

∂∇φ′1
∂t

)

−U · ∇
(

U · ∇φ′1
)

= 0. (19)

Neglecting O(ε2) terms this becomes

c2∇2φ′1 −
∂2φ′1
∂t2

− 2U ·
(

∂∇φ′1
∂t

)

= 0, (20)

or in polar coordinates

c2∇2φ′1 −
∂2φ′1
∂t2

− 2
εca

r2
∂2φ′1
∂θ∂t

= 0. (21)

In the case of no mean flow, ε = 0 and this reduces to the familiar wave equation.
We can define the local energy density E by

E =
c2h′21
2H

+
H|u′

1|2
2

. (22)

Using equations (17) and (18) the energy equation can be derived:

∂E

∂t
+ ∇ ·

(

EU + c2h′1u
′
1

)

= −Hu′
1 ·
(∇U + ∇UT

2

)

· u′
1. (23)

3.4 Terms of second order in wave amplitude

On the whole we shall not be concerned with second order terms, but they are important
when calculating the force on the cylinder. The quantity of interest is the time averaged
pressure

p =
c20
γ
hγ =

c20
γ
Hγ + η2

(

γ − 1

2
c20H

γ−2h′21 + c20H
γ−1h2

)

+O(η3). (24)

The time averaged Bernoulli equation (7) implies that to second order we have

γ − 2

2
c20H

γ−3h′21 + c20H
γ−2h2 = constant −U · u2 −

1

2
|u′

1|2. (25)
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Hence we can rewrite the averaged pressure as

p = constant + η2

(

c2

2H
h′21 − H

2
|u′

1|2 −HU · u2

)

+O(η3). (26)

Note that without a mean flow (26) gives the O(η2) pressure purely in terms of first order
quantities. With a mean flow, u2 (a second order term) must also be specified to calculate
the pressure. To O(ε) we have from (18) that

h′21 =
H2

c4

(

(

∂φ′1
∂t

)2

+ 2
∂φ′1
∂t

U · ∇φ′1

)

. (27)

Hence the time averaged pressure can be written in terms of the velocity potentials as

p = constant + η2H

(

1

2c2

(

∂φ′1
∂t

)2

− 1

2
|∇φ′1|2 +

1

c2
∂φ′1
∂t

U · ∇φ′1 −U · ∇φ2

)

+O(η3). (28)

The second order term we are interested in is φ2, and since its term in the above
expression is multiplied by U we may neglect O(ε) terms in its solution. From the time
averaged continuity equation (6) we find neglecting O(ε) terms

H∇ · u2 = −∇ ·
(

h′1u
′
1

)

. (29)

Now by time averaging the energy equation (23) we find that ∇ ·
(

h′1u
′
1

)

= O(ε). Hence,

the leading order governing equation for φ2 is simply Laplace’s equation ∇2φ2 = 0.

4 Eigenfunction solution

We will seek time harmonic solutions to (20) of the form φ′
1(x, t) = ψ(x)e−iωt, where ω is

a chosen constant angular frequency, and the real part is assumed. (20) then reduces to

c2∇2ψ + ω2ψ + 2iωU · ∇ψ = 0. (30)

Let k∞ = ω/c, the constant wavenumber at infinity where the mean flow is absent. Then
this can be written as

∇2ψ + k2
∞ψ + 2ik∞

U

c
· ∇ψ = 0, (31)

or in polar coordinates as

∇2ψ + k2
∞ψ +

2iεk∞a

r2
∂ψ

∂θ
= 0. (32)

which in the case of no mean flow is the familiar Helmholtz equation.
(32) can be solved by separation of variables. Let ψ(x) = R(r)Θ(θ). Then

r2R′′ + rR′ + (k2
∞r

2 − λ2)R = 0, (33)

Θ′′ + 2iεk∞aΘ
′ + λ2Θ = 0. (34)

161



where λ is a constant. These have solutions of the form

R(r) =H
(1,2)
λ (k∞r), (35)

Θ(θ) =ei(±λ−εk∞a)θ. (36)

where H
(1,2)
ν (z) are Hankel functions of the first and second kinds of order ν. Since we must

have a single valued function of θ, we have that λ = ±(m + εk∞a), where m ∈ Z. Also,

since H
(1,2)
−ν (z) = e−νπiH

(1,2)
ν (z), the eigenfunctions of (32) are thus just H

(1,2)
m̃ (k∞r)e

imθ,
where m̃ = m + εk∞a. As we are solving a self adjoint problem these eigenfunctions are
orthogonal and we can express the general solution in terms of these eigenfunctions as

ψ(r, θ) =
∑

m∈Z

(

AmH
(1)
m̃ (k∞r) +BmH

(2)
m̃ (k∞r)

)

eimθ (37)

for constants Am, Bm to be determined.

4.1 Green’s function for a point source

Consider a point source at x0 = (r0, θ0) in polar coordinates. The governing equation for
the Green’s function G(x,x0) is

∇2G+ k2
∞G+

2iεk∞a

r2
∂G

∂θ
= δ(x − x0). (38)

Using the eigenfunction expansion (37) it can be shown that

G(x,x0) =
1

8i

∑

m∈Z

H
(2)
m̃ (k∞rmin)H

′(1)
m̃ (k∞a) −H

(1)
m̃ (k∞rmin)H

′(2)
m̃ (k∞a)

H
′(1)
m̃ (k∞a)

H
(1)
m̃ (k∞rmax)e

im(θ−θ0),

(39)
where rmax = max(r, r0), rmin = min(r, r0). An alternative expression for G(x,x0), easier
to compute numerically, is

G(x,x0) =
1

4

∑

m∈Z

Jm̃(k∞rmin)Y
′
m̃(k∞a) − Ym̃(k∞rmin)J

′
m̃(k∞a)

H
′(1)
m̃ (k∞a)

H
(1)
m̃ (k∞rmax)e

im(θ−θ0),

(40)
where Jν(z) and Yν(z) are Bessel functions of first and second order respectively.

Note that since the problem is self-adjoint, the Green’s function satisfies a reciprocity
relation G(x,x0) = G∗(x0,x), where ∗ denotes complex conjugation. Since G∗(x,x0) satis-
fies

∇2G∗ + k2
∞G

∗ − 2iεk∞a

r2
∂G∗

∂θ
= δ(x − x0), (41)

then the reciprocity relation can be simply stated as: the field at x due to a point source at
x0 is the same as the field at x0 due to a point source at x with the direction of the vortex
reversed.
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4.2 Eigenfunction solution for an incoming plane wave

We want to find the field due to scattering of an incoming plane wave on the cylinder. The
potential ψi for a plane wave incident from +∞ on the x-axis is

ψi = e−ik∞r cos θ−iεk∞aθ. (42)

Note that the above expression satisfies (32) neglecting terms of O(ε2). Note also that this
expression has a branch, and so θ has to be defined so that −π < θ < π. Unless εk∞a is an
integer, ψi will be discontinuous. ψi can be expanded in terms of Bessel functions as

ψi =
∑

m∈Z

Jm̃(kr)e−im̃π/2eimθ (43)

=
1

2

∑

m∈Z

(

H
(1)
m̃ (k∞r) +H

(2)
m̃ (k∞r)

)

e−im̃π/2eimθ. (44)

To solve the problem of scattering on the cylinder by the incident wave we propose a solution
of the form ψ = ψi + ψs, where ψs is an outgoing scattered wave of the form

ψs =
∑

m∈Z

AmH
(1)
m̃ (k∞r)e

imθ. (45)

Applying the boundary condition ∂ψ
∂r = 0 on r = a yields

ψs = −1

2

∑

m∈Z

H
′(1)
m̃ (k∞a) +H

′(2)
m̃ (k∞a)

H
′(1)
m̃ (k∞a)

H
(1)
m̃ (k∞r)e

−im̃π/2eimθ, (46)

ψ =
1

2

∑

m∈Z

H
(2)
m̃ (k∞r)H

′(1)
m̃ (k∞a) −H

(1)
m̃ (k∞r)H

′(2)
m̃ (k∞a)

H
′(1)
m̃ (k∞a)

e−im̃π/2eimθ. (47)

The expression for ψ can be rewritten as

ψ = i
∑

m∈Z

Jm̃(k∞r)Y
′
m̃(k∞a) − Ym̃(k∞r)J

′
m̃(k∞a)

H
′(1)
m̃ (k∞a)

e−im̃π/2eimθ (48)

which is easier to compute numerically.
The eigenfunction solutions are useful for plotting for moderate k∞a. However for large

k∞a a large number of modes m must be taken to provide an accurate approximation. Ray
tracing overcomes this restriction by providing an asymptotic theory for large k∞a.

5 Ray Tracing

Ray tracing can be used to provide an asymptotic solution to (21) for a slowly varying
wavetrain embedded in a slowly varying background environment. Let

φ′1 ∼ z(x)eiΘ(x,t), (49)
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where we will suppose the phase Θ is rapidly varying, and the wave amplitude z slowly
varying. The local wavenumber k and local frequency ω are defined by

k = ∇Θ, ω = −∂Θ

∂t
. (50)

The standard ray tracing equations are then given in terms of the dispersion relation

ω = Ω(x,k) = ck + U · k, (51)

where k = |k|, as Hamilton’s equations

dx

dt
= +

∂Ω

∂k
,

dk

dt
= −∂Ω

∂x
. (52)

The ray tracing equations imply that dω/dt = 0, i.e. that absolute frequency is conserved
along a ray, and we will consider ω a global constant along all rays. The group velocity cg
is given by

cg =
dx

dt
= ck̂ + U, (53)

where k̂ = k/k. Another important consequence of the ray tracing approximation is the
conservation of wave action. Define the intrinsic frequency by ω̃ = ck, the frequency of the
wave in a frame moving with the fluid. Then the wave action A = E/ω̃, where E is energy
density defined in (22), satisfies

∂A

∂t
+ ∇ · (Acg) = 0. (54)

Note also that the energy density satisfies equipartition in the ray tracing approximation,
namely

c2h′21
2H

=
H|u′

1|2
2

. (55)

5.1 Consequences of the weak mean flow

For an irrotational mean flow there is a curious result which states that to order ε the ray
paths are straight [3, 6]. However, there is still refraction of the wave due to the O(ε)
variation in k given by

k = k∞ − k∞
U

c
= k∞ − εk∞a

r
eθ, (56)

where k∞ is the wavenumber vector at infinity for the ray in question, and k∞ = |k∞|
(Figure 2).

The phase progression along the ray is given by

Θ =

∫

k · dx =

∫

(k∞ − εk∞a∇θ) · dx (57)

= constant + (k∞ · x− εk∞aθ) (58)

Since k∞ is in the direction of the ray, this can be written as

Θ = Θ0 + k∞ (s− s0 − εa(θ − θ0)) (59)
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Figure 2: A cartoon of refraction of the incident wave. Two incident rays are shown, one
above the cylinder and one below. The arrows along the rays indicate the direction and
magnitude of the wavenumber vector at various points along the ray. The rays themselves
are straight, but there is refraction from the changing wavenumber vector given by (56). Far
away from the cylinder the wavenumber vector aligns with the ray direction. Note that the
wavenumber becomes larger as the ray passes the cylinder for the bottom ray, but smaller
for the top ray.

where s− s0 is the distance travelled along the ray, and θ − θ0 is the angular change along
the ray.

The wave action is given by

A =
E

ω̃
=
Hkz2

c
. (60)

(54) implies that ∇ · (Acg) = 0, which to O(ε) implies simply

∇ ·
(

z2k∞
)

= 0. (61)

Consider an infinitesimal ray tube R with ends E1, E2 orthogonal to the ray. Note that k∞
is parallel to the sides of the ray tube and orthogonal to its ends. Then by applying the
divergence theorem to (61)

0 =

∫

R
∇ ·
(

z2k∞
)

dV =

∫

E2

z2k∞ · n dS −
∫

E1

z2k∞ · n dS. (62)

Since k∞ · n is a constant this leads to the simple result that z2dS is constant along a ray
tube.

For a plane wave incident from x = ∞ it follows that the incident wave field is φi =
e−ik∞(x+εaθ), where we have prescribed that the incident wave has unit amplitude.
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Figure 3: Close up of reflection at the cylinder, where it can be considered locally as a flat
wall. Note that the wavenumber vectors (the small arrows) are not in the same direction
as the rays as they hit the wall.

5.2 Reflected Wave

We now consider reflection of a ray on the cylinder. Locally we can consider the cylinder
as a flat wall (Figure 3). Define new coordinates with x perpendicular to the wall and y
parallel. Let the mean flow along the wall be U = (0, εc). Let the incident ray hit the
wall at (0, 0) with angle of incidence α and the reflected ray leave with angle of reflection
β. Far from the wall the wavenumber vector of each ray is in the same direction as the
ray. Moreover, since ω/c is constant everywhere, both incident and reflected wavenumber
vectors must have same magnitude far from the wall. Hence we may write

ki∞ = k∞ (− cosα, sinα) , (63)

kr∞ = k∞ (cosβ, sin β) , (64)

for the incident and reflected wavenumbers at infinity respectively. From (56) we see that
the incident and reflected wavenumbers at the wall are given by

ki0 = k∞ (− cosα, sinα− ε) , (65)

kr0 = k∞ (cos β, sinβ − ε) . (66)

Hence locally we have that

ψ = ψi + ψr = zie
iki

0
·x+Θi

0 + zre
ikr

0
·x+Θr

0 . (67)
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Using the boundary condition ∂ψ
∂x = 0 at x = 0 we find

−zi cosα+ zr cosβ = 0, (68)

−Θi
0 + Θr

0 = 0. (69)

From this it follows that zi = zr and α = β. Hence the angle of incidence is equal to the
angle of reflection, and the reflected wave has the same amplitude and phase as the incident
wave as it leaves the wall.

Figure 4: Reflection on the cylinder with an incident ray of angle of incidence β/2.

We now return to the global view (Figure 4). Consider a ray hitting the cylinder at an
angle of incidence β/2. Then it hits the cylinder at (x, y) = a(cos β/2, sin β/2). At that
point the incident ray has phase

Θi
0 = −k∞(a cos β/2 + εaβ/2). (70)

The phase progression along the reflected ray is given from (59) as

Θr = Θr
0 + k∞ (s− s0 − εa(θ − β/2)) , (71)

where s is the distance along the ray from the focus, and s0 is the distance from the focus
to the point at which the incident ray hits. The focus is the point inside the cylinder from
which rays locally spread out from. Geometrically s0 is found to be s0 = a/2 cos β/2. Hence
combining (69), (70), and (71) we find the phase progression along the reflected ray as

Θr = k∞

(

s− 3a

2
cos β/2 − εaθ

)

. (72)

Rays spread out radially from the focus. z2dS = constant along a ray tube, and the
incident wave has unit amplitude. Hence we have that the amplitude of the reflected ray is
given by

zr =

√

s0
s

=

√

a cos β/2

2s
. (73)
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Hence the reflected field takes the form

ψr =

√

a cos β/2

2s
eik∞(s−3a/2 cos β/2−εaθ). (74)

5.3 Diffracted Wave

To calculated the diffracted field we first go back to the problem of a point source rather
than an incoming plane wave, as we will find diffraction coefficients by comparison with the
Green’s function of a point source. We apply the geometrical theory of diffraction (GTD)
to the problem (Figure 5).

Figure 5: Cartoon of the geometrical theory of diffraction. The grazing ray hits normal
to the cylinder and produces a surface ray. This surface ray travels around the cylinder
constantly shedding diffracted rays normal to the cylinder.

5.3.1 Incident rays

Consider a point source located at the point (r0, 0) in Cartesian coordinates (Figure 6).
Consider the two rays which leave this point and hit the cylinder at right angles. Let α be
the angle between the point at which the rays hit the cylinder and the horizontal. Then the
wavenumber at infinity for this ray is given by k∞ = (− sinα,± cosα) where + is the top
ray and − is the bottom ray. At the points at which the rays hit, U = ±εc(− sinα,± cosα),
so that the top ray hits going with the flow, and the bottom ray hits going against the flow.
The wavenumber vector at the points the rays hit are then given by (56) as

k = k∞(1 ∓ ε)(− sinα,± cosα), (75)

or in terms of the unit vector eθ as

ktop = k∞(1 − ε)eθ, kbot = −k∞(1 + ε)eθ. (76)
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Figure 6: Geometrical theory of diffraction construction for a point source. There is a
point source at Q and we are observing the field at a point P in the shadow region. Two
rays paths are shown, one which involves an anticlockwise surface ray from Q1 to P1, and
another which involves a clockwise surface ray from Q2 to P2.

Hence as these incident rays hit the cylinder their wavenumber vectors are tangent to the
cylinder. The phase progression along these two rays is given by (59) as

Θ(Q1) = k∞

(

√

r20 − a2 − εaα

)

, (77)

Θ(Q2) = k∞

(

√

r20 − a2 + εaα

)

. (78)

The field due to a point source in free space with no mean flow has the form

ψi =
i

4
H

(1)
0 (k∞r

′) ∼ eiπ/4eik∞r′

√
8πk∞r′

, (79)

where r′ is the distance from the point source. Hence the amplitude of the rays as they hit
the cylinder is given by

zi(Q1) =
eiπ/4

√

8πk∞
√

r20 − a2
. (80)

5.3.2 Surface rays

In the geometrical theory of diffraction, a ray hitting the cylinder at right angles causes
the production of a surface ray. This ray is contrained to go around the cylinder, and
sheds diffracted rays tangent to the cylinder as it progresses around. On the surface ray
k = ±keθ. The surface dispersion relation is then

ω = Ωs(x,k) = ck(1 ± ε) (81)

which is a constant independent of position. Hence the magnitude of the wavenumber vector
is a constant along the surface ray, and depends only on the direction of travel. For a surface
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ray travelling with the flow k = k∞(1− ε)eθ, and against the flow k = −k∞(1 + ε)eθ. Thus
the corresponding phase progression along the with flow surface ray is

Θ(P1) = Θ(Q1) + k∞(1 − ε)aγ1, (82)

where γ1 is the angle travelled around the cylinder. Similarly for the against flow surface
ray

Θ(P2) = Θ(Q2) + k∞(1 + ε)aγ2, (83)

where γ2 is measured in the opposite direction.
Using the GTD we assume the amplitude of the surface ray is proportional to the

amplitude of the incident ray that created it. Namely, that

zs(Q1) = d1(Q1)z
i(Q1), (84)

where d1(Q1) is a diffraction coefficient depending only on the curvature of the surface. In
the GTD it is proposed that the rate of decay of wave action A travelling along the ray is
proportional to the wave action. Namely, that

dA

dσ
= −2αA, (85)

where σ is arc length along the ray and α is a constant depending solely on the curvature
of the surface. The wave action of the surface ray is proportional to the square of the
amplitude and hence the surface ray decays exponentially in amplitude as

zs(P1) = e−αaγzs(Q1). (86)

5.3.3 Diffracted rays

As the surface ray travels around the cylinder it sheds diffracted rays. A diffracted ray
leaves tangent to the cylinder, so the phase progression along the diffracted rays is given by
a similar equation to the incident rays, namely

Θ(P ) = Θ(P1) + k∞
(

√

r2 − a2 − εaβ
)

, (87)

Θ(P ) = Θ(P1) + k∞
(

√

r2 − a2 + εaβ
)

, (88)

where β is the appropriate angular progression after leaving the cylinder. We assume the
amplitude of the diffracted ray is proportional to the amplitude of the surface ray which
shed it. As diffracted rays leave the cylinder they spread out, and so the amplitude is
inversely proportional to the square root of the distance from the cylinder. Hence

zd(P ) =
d2(P1)

(k∞
√
r2 − a2)1/2

zs(P1). (89)

where d2(P1) is a further diffraction coefficient dependent only on curvature, and k∞ is
an appropriate non-dimensionalisation factor. By the reciprocity relation of the Green’s
function we must have that d1(Q1) = d2(P1) = d, a constant. However there is still a
possibility that the diffraction coefficient d and decay coefficient α may depend on the
direction of travel around the cylinder, whether going with or against flow. However, when
considering an asymptotic evaluation of the Green’s function later it will turn out that they
do not.
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5.3.4 The diffracted field

Diffracted rays are simply ordinary geometric optics rays. Combining the phase progression
equations we find that for the top travelling rays the phase at P is

Θ(P ) = k∞

(

√

r20 − a2 + aγ1 +
√

r2 − a2 − εaθ

)

, (90)

and for the bottom travelling rays the phase at P is

Θ(P ) = k∞

(

√

r20 − a2 + aγ2 +
√

r2 − a2 + εa (2π − θ)

)

, (91)

where

γ1 = θ − cos−1 a

r0
− cos−1 a

r
, (92)

γ2 = 2π − θ − cos−1 a

r0
− cos−1 a

r
. (93)

Combining the amplitude equations we find

z(P ) =
eiπ/4e−αaγd2

(8πk2
∞
√

r20 − a2
√
r2 − a2)1/2

(94)

Hence

φd(P ) =
eiπ/4d2

(8πk2
∞
√

r20 − a2
√
r2 − a2)1/2

e
ik∞

“√
r2
0
−a2+

√
r2−a2

”

−(ik∞−αj)a
“

cos−1 a
r0

+cos−1 a
r

”

×
(

e(ik∞(1−ε)−α)aθ + e(ik∞(1+ε)−α)a(2π−θ)
)

. (95)

However, note also that there are also further rays due to multiple orbits of the cylinder by
the surface ray. These rays just give additional factors of 2mπ added to θ and 2π− θ where
m ∈ N. These extra terms are easily summed as they form geometric series. Furthermore,
when the ray hits it excites numerous surface rays with different αj and dj . This leads to
the final expression

φd(P ) =
∑

j

eiπ/4d2
j

(8πk2
∞
√

r20 − a2
√
r2 − a2)1/2

e
ik∞

“√
r2
0
−a2+

√
r2−a2

”

−(ik∞−αj)a
“

cos−1 a
r0

+cos−1 a
r

”

×
(

e(ik∞(1−ε)−αj)aθ

1 − e2πa(ik∞(1−ε)−αj)
+

e(ik∞(1+ε)−αj)a(2π−θ)

1 − e2πa(ik∞(1+ε)−αj)

)

. (96)

Unfortunately, to obtain the coefficients αj and dj we must look back to the eigenfunction
solution.

171



5.3.5 Asymptotics of the eigenfunction solution

We return to the Green’s function solution for a point source (39). Write this as

G(x,x0) =
∑

ν∈Z

Fν+εk∞ae
iνθ (97)

where

Fν =
1

8i

H
(2)
ν (k∞rmin)H

′(1)
ν (k∞a) −H

(1)
ν (k∞rmin)H

′(2)
ν (k∞a)

H
′(1)
ν (k∞a)

H(1)
ν (k∞rmax). (98)

Let F (ν) be the function which gives analytic continuation of Fν to all complex ν. Then
by performing a Watson transform we may write

G(x,x0) = − i

2

∮

Γ

eiν(θ−π)

sin νπ
F (ν + εk∞a) dν, (99)

where Γ is a contour around the real axis. Exploiting the fact F (ν) = F (−ν) this integral
can then be rewritten as

G(x,x0) =
i

2

∫ ∞+iδ

−∞+iδ

eiν(θ−π)

sin νπ
F (ν + εk∞a) +

e−iν(θ−π)

sin νπ
F (ν − εk∞a) dν. (100)

where δ > 0, with the contour being just above the real axis. Consider the integral I±

defined by

I± =

∫ ∞+iδ

−∞+iδ

e±iν(θ−π)

sin νπ
F (ν ± εk∞a) dν. (101)

We close the contour in the upper half plane. Note that this can only be done in the
diffracted region. The only contribution to the integral comes from residues in the upper

half plane. We get residue contributions whereverH
′(1)
ν̃ (k∞a) has zeros, where ν̃ = ν±εk∞a.

For large ν̃, k∞a the zeros of Hν̃(k∞a) are given by

ν̃j ∼ k∞a−
(

k∞a

2

)1/3

eiπ/3q′j, (102)

where q′j are the roots of the derivative of the Airy function, Ai′(q′j) = 0. Hence

ν±j = ν̃j ∓ εk∞a ∼ k∞a(1 ∓ ε) −
(

k∞a

2

)1/3

eiπ/3q′j. (103)

The poles are in the upper half plane, and are all simple so we find

I± ∼ −π
4

∑

j

e±iν
±

j
(θ−π)

sin ν±j π
H

(1)
ν̃j

(k∞r0)H
(1)
ν̃j

(k∞r)
H

′(2)
ν̃j

(k∞a)

∂
∂ν̃j

H
′(1)
ν̃j

(k∞a)
. (104)

The factors in front can be rewritten as

e+iν+

j
(θ−π)

sin ν+
j π

=
2ieiν

+

j
θ

e2πiν+

j − 1
,

e−iν
−

j
(θ−π)

sin ν−j π
=

2ieiν
−

j
(2π−θ)

e2πiν−
j − 1

. (105)

172



Since ν̃ ∼ k∞a, for large ν̃, k∞r the Hankel function has asymptotic form

H
(1)
ν̃j

(k∞r) ∼
√

2

πk∞
√
r2 − a2

eik∞
√
r2−a2−iν̃j cos−1 a

r
−iπ/4, (106)

and H
(1)
ν̃j

(k∞r0) will have a similar asymptotic expression. It can be shown that

H
′(2)
ν̃j

(k∞a)

∂
∂ν̃j

H
′(1)
ν̃j

(k∞a)
=

e5iπ/6

2π(−q′j)
(

Ai(q′j)
)2

(

k∞a

2

)1/3

. (107)

Combining all these expressions, and comparing with GTD solution (96) eventually yields
the diffraction coefficients as

αj =
e5iπ/6

a

(

k∞a

2

)1/3

q′j, (108)

dj =
−eiπ/24

(2π)1/4(−q′j)1/2|Ai(q′j)|

(

k∞a

2

)1/6

. (109)

Note that q′j is real and negative, and Ai(q′j) is real.

5.4 The diffracted field of an incident plane wave

Now the diffraction coefficients have been found, the case of an incident plane wave can be
solved by a similar construction. The corresponding solution is

φd =
∑

j

d2
j

(k∞
√
r2 − a2)1/2

eik∞
√
r2−a2−(ik∞−αj)a(π/2+cos−1 a

r )

×
(

e(ik∞(1−ε)−αj)aθ

1 − e2πa(ik∞(1−ε)−αj)
+

e(ik∞(1+ε)−αj)a(2π−θ)

1 − e2πa(ik∞(1+ε)−αj)

)

. (110)

6 Fresnel Region

We return to our governing equation

∇2ψ + k2
∞ψ +

2iεk∞a

r2
∂ψ

∂θ
= 0. (111)

Note the substitution ψ = ϕe−iεk∞aθ yields simply

∇2ϕ+ k2
∞ϕ = 0, (112)

the Helmholtz equation for ϕ to O(ε2). This reflects what we have been seeing in our ray
calculations so far: the effect of the O(ε) mean flow is simply a phase shift determined by
the angular procession of rays around the cylinder.

173



Figure 7: Cartoon of the different asymptotic regions. There is a further asymptotic region
in the neighbourhood of the point at which the grazing ray hits (the Fock-Leontovich region)
which we have not solved for.

At the shadow boundary the geometric optics field is discontinuous. Moreover, the GTD
solution blows up at the shadow boundary. On the shadow boundary the solution takes the
form of a Fresnel integral which we now derive (Figure 7). Solving for the Fresnel region is
equivalent to solving for the field due to an incident wave past a flat screen. It is important
to note that the Fresnel solution has no knowledge of the curvature of the surface.

Consider the ray which hits the top of the cylinder defining the shadow boundary. Far
above this shadow boundary the field is dominated by the incident field, which takes the
form ψi = e−ik∞x−iεk∞aθ. This motivates searching for solutions to (111) of the form

φ = ve−ik∞x−iεk∞aθ (113)

along the shadow boundary. We are solving in the left half plane for a wave coming from
the top, so θ must be defined so that π/2 < θ < 3π/2. Substituting in to (111) yields

vxx − 2ik∞vx + vyy = 0. (114)

Introduce boundary layer variables x′ = −x, y′ = k
1/2
∞ (y − a). This boundary layer scaling

implies that far away enough from the cylinder the Fresnel regions fill in the shadow region.
(114) becomes

vx′x′ + 2ik∞vx′ + k∞vy′y′ = 0. (115)

Hence expanding for large k∞ we find the leading order term v0 is given by

2iv0x′ + v0y′y′ = 0. (116)

This is the paraxial wave equation. We introduce a similarity variable η = y ′/x′1/2 and let
v0 = f(η). The above then reduces to

f ′′ − iηf ′ = 0. (117)
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As we go out from the boundary layer we want the solution to match on to the incident
field for y > a and to go to zero for y < a in the shadow region. This allows us to give the
final solution for the top Fresnel region as

ψftop = e−ik∞x−iεk∞aθ

(

1

2
+

e−iπ/4√
2

Fr

(

k
1/2
∞ (y − a)√

−πx

))

, (118)

where π/2 < θ < 3π/2 and Fr is the Fresnel integral defined by

Fr(z) =

∫ z

0
eiπt

2/2 dt. (119)

A similar derivation for the bottom shadow boundary leads to

ψfbot = e−ik∞x−iεk∞aθ

(

1

2
+

e−iπ/4√
2

Fr

(

k
1/2
∞ (−a− y)√−πx

))

, (120)

where it is important to note that θ is defined in this expression so that −3π/2 < θ < −π/2.
We now have three asymptotic expansions which are valid in three different regions:

the geometric optics solution is valid outside the shadow region, the GTD solution is valid
inside the shadow region, and the Fresnel solution is valid in a neighbourhood of the shadow
boundary. From these we can construct a uniformly valid solution by forming a composite
expansion, and such a solution is plotted in Figures 8 and 9.

Figure 8: Plot of potential φ with ε = 0, k∞a = 10. Left picture shows the eigenfunction
solution, right the ray tracing solution. The two plots are remarkably similar, demonstrating
the effectiveness of the ray tracing approximation. In the ray tracing solution there is a
small numerical problem along the shadow boundary.
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Figure 9: Plot of potential φ with ε = 0.25 (left picture) and ε = 0.3 (right picture) and
k∞a = 10. Notice that refraction causes wavefronts to be out of phase on the left of the
cylinder on the left picture, but in phase on the right picture.

7 Force on the cylinder

We are interested in calculating the time averaged force F on the cylinder. This is simply
given by integrating the time averaged pressure around the cylinder

F = −
∫

Sa

pn dS = −
∫ π

−π
p(cos θ, sin θ)a dθ. (121)

where p is given by (28). The previous sections were devoted to solving for φ ′
1, but to find

the force at second order in wave amplitude η we must also specify φ2. To the order we
are concerned with φ2 is the solution to Laplace’s equation. The boundary condition on
r = a is simply u2 · n = 0, but the question of what boundary condition to apply at ∞ is
harder to answer. We could apply u2 = 0 at ∞, i.e. no Eulerian mean velocity at second
order. However, this would imply that there is still an O(η2) mass flux past the cylinder
given by η2h′1u

′
1; the Lagrangian mean velocity is non-zero. This phenomenon of net mass

flux is known as Stokes drift. A perfectly acceptable alternative way of setting the problem
up would be to demand no mass flux past the cylinder, i.e. no Lagrangian mean velocity at
second order. There is no single “right way” of choosing the boundary condition on u2 at
∞. Once we are given the constant velocity at infinity, u2 ∼ u2∞(cosα, sinα) as r → ∞,
Laplace’s equation has the classical solution

φ2 = u2∞

(

r +
a2

r

)

cos (θ − α) . (122)
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7.1 Force calculation by ray tracing

It is straightforward to calculate the force from the ray tracing solution. The dominant
contribution to ψ comes from the side of the cylinder on which the wave is incident (“the
bright side”), and there the field is given by geometric optics as the sum of the reflected field
and the incident field. On the cylinder the reflected field has the same phase and amplitude
as the incident field. Hence on the bright side of the cylinder

ψ = 2
c2

ω
e−ik∞a(cos θ+εθ), (123)

where we have inserted c2/ω, an appropriate dimensional factor. We calculate each term in
the time averaged pressure (28) from (122) and (123):

1

2c2

(

∂φ′1
∂t

)2

=
1

4c2
Re

(

∂φ′1
∂t

∗ ∂φ′1
∂t

)

=
ω2

4c2
|ψ|2 = c2, (124)

−1

2
|∇φ′1|2 = −1

4
Re
(

∇φ′∗1 · ∇φ′1
)

= −1

4
|∇ψ|2 = c2

(

− sin2 θ + 2ε sin θ
)

, (125)

1

c2
∂φ′1
∂t

U · ∇φ′1 =
1

2c2
Re

(

∂φ′∗1
∂t

U · ∇φ′1
)

=
1

2c2
Re (iωψ∗U · ∇ψ) = −2c2ε sin θ, (126)

−U · ∇φ2 = 2εcu2∞ sin (θ − α) , (127)

where we have used the identity AB = Re(A∗B)/2. Thus the time averaged pressure on
the bright side of the cylinder is

p = constant + η2Hc2
(

cos2 θ + 2ε
u2∞
c

sin (θ − α)

)

+O(η3), −π/2 < θ < π/2. (128)

On the dark side of the cylinder there is no leading order contribution from the linear waves,
but there is still a contribution from the U · ∇φ2 term:

p = constant + η2Hc2
(

0 + 2ε
u2∞
c

sin (θ − α)

)

+O(η3),
−π < θ < −π/2,
π/2 < θ < π.

(129)

Integrating the time averaged pressure around the cylinder we find the O(η2) time averaged
force is given by

F = −
∫ π

−π
p(cos θ, sin θ)a dθ = η2Hc2a

(

(−4/3, 0) − 2επ
u2∞
c

(− sinα, cosα)

)

, (130)

or in terms of the circulation Γ = 2πεca,

F = η2
(

Hc2a(−4/3, 0) −Hu2∞Γ(− sinα, cosα)
)

, (131)

where the last term can be recognised as the usual expression for the Magnus force due to
flow past a cylinder.
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7.2 Force calculation by eigenfunction solution

We can also calculate the force using the eigenfunction solution (48). After some algebra,
we find

F = η2
(

Hc2a(S(k∞a), 0) −Hu2∞Γ(− sinα, cosα)
)

, (132)

where S(z) is a real valued function defined by

S(z) =
2i

πz4

∑

m∈Z

z2 −m(m− 1)

H
′(1)
m (z)H

′(2)
m−1(z)

. (133)

Note that S(z) is independent of ε so that the only O(ε) contribution to the force is still the
Magnus force term. Also, by comparison with the ray tracing solution we have S(z) → −4/3
as z → ∞. The form of S(z) agrees with a similar calculation for the acoustic force on an
elastic cylinder given by [4].

8 Conclusions

To O(ε) we have found expressions for the field resulting from the scattering useful for
both small k∞a (the eigenfunction solution) and for large k∞a (the ray tracing solution).
The effect of the O(ε) circulation is simply to add phase shifts in appropriate places in the
calculation, and importantly it does not change the diffraction coefficients.

The O(ε) force has been calculated. It is important to note that we now have to specify
parts of the O(η2) problem which we didn’t have to consider in the no mean flow case.
However, the only O(ε) contribution to the force turns out to be a Magnus force due to the
mean Eulerian flow η2u2∞ past the cylinder.

To solve the O(ε2) irrotational problem requires a lot more work. Firstly the governing
partial differential equation is no longer separable. When calculating diffraction coefficients
comparison with the eigenfunction solution was essential, and so this is an important stum-
bling block for application of the geometrical theory of diffraction. To O(ε2) the rays are
no longer straight, and so also we lose a lot of the geometrical considerations which made
the O(ε) mean flow problem so similar to the no mean flow problem.

A probably tractable generalisation of this problem would be to look at the case of a
rotational mean flow at O(ε). Here the rays are still no longer straight, but the ray curvature
can be expressed simply in terms of the vorticity of the mean flow [3, 6].
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