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Abstract The spatial distribution of grains in a solidi-

fying igneous rock controls the physical properties of the

crystal mush, and in turn is controlled by the rate of crystal

growth and accumulation. A predominant non-spherical

habit for igneous minerals brings into question the use of

spherical particles in reference packings used for quantifi-

cation of spatial distribution. Furthermore, variations of

crystal clustering/ordering with length scale require spatial

statistics which take into account the distribution of parti-

cles beyond nearest neighbours. Using random close

packings of spherocylinders, we demonstrate the impor-

tance of aspect ratio for the aggregation index (usually

known as R) and show that packings of spherical particles

have more structure than packings of rods. The spatial

distribution functions demonstrate that the plagioclase

grains in the colonnade from the Holyoke basalt are clus-

tered on a length scale of 0.5 mm. Understanding the

controls on grain spatial distribution in igneous rocks will

depend on the application of these techniques to well-

understood environments.

Keywords Cumulates � Textural analysis �
Spatial statistics � Point patterns � Random packing

Introduction

The spatial distribution of crystals in a solidifying plu-

tonic rock exerts a major control on the distribution and

connectivity of residual liquid, with consequences for

physical properties such as permeability and rock rheo-

logy. The spatial distribution itself is a complex function

of the mechanism of crystal accumulation [whether the

crystals grew in situ in the thermal boundary layers of a

magma chamber (Campbell 1978; Maaløe 1987; Marsh

1996), or whether they accumulated from gravity-driven

crystal-rich slurries falling off the chamber roof and floor

(Irvine 1987; Tepley and Davidson 2003; Wager et al.

1960)] and the extent of deformation by compaction

(McKenzie 1984; Shirley 1986) or flow (McBirney and

Nicolas 1997). Furthermore, empirical studies have

demonstrated that the initial porosity and structure of a

crystal mush are highly sensitive to the rate at which the

crystals accumulate (Blumenfeld et al. 2005), with

immediate implications for the rheology and mass trans-

port properties of the crystal mush on the boundaries of

an open-system magma chamber in which periodic

replenishment and discharge affected the crystallisation

rate. The complexity of the interplay between external

controls and the architecture of the crystal mush is further

illustrated by the control of crystal growth rates on grain

shape, with rapid growth (for example, during degassing

episodes in hydrous magmas) resulting in elongated or

branching crystals (Donaldson 1976; Dunbar et al. 1995;

Swanson and Fenn 1986). The packing and spatial dis-

tribution characteristics of such crystals will be different
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from those of rounded crystals of the same mineral

formed during episodes of slower growth.

The first step towards understanding how these different

processes affect rock rheology and the architecture of a

crystal mush is an appropriate quantification of the spatial

distribution of the component grains, which can then be

used to compare different types of crystal mush. Quanti-

fying spatial structure is usually done by looking at the

point pattern statistics of grain centres in 2D thin sections

(e.g. Carlson 1989; Jerram and Cheadle 2000; Jerram et al.

1996, 2003; Kretz 1966, 1969, 2006; Mock et al. 2003), or

in 3D data (Hirsch et al. 2000; Ketcham et al. 2005). Such

statistics can help to quantify the complex clustering and

ordering patterns that occur in a rock. To put these statistics

into context, comparison has been made with reference

textures based on numerical, experimental, and natural

packings of spherical particles (Hirsch et al. 2000; Jerram

and Cheadle 2000; Jerram et al. 1996, 2003; Ketcham et al.

2005). Sphere models have been used to study grain size

variation, overgrowth and mechanical compaction in

igneous rocks (Jerram et al. 1996), and crystal nucleation

and growth in metamorphic rocks (Hirsch et al. 2000).

While reference textures based on spheres are appro-

priate for minerals such as olivine which generally forms

equant, sub-rounded grains, they are not representative of

microstructures formed in magmas in which the dominant

phenocrysts are tabular or elongated such as plagioclase-

dominated mafic rocks or for olivine-phyric rocks in which

crystal growth forms are dendritic (e.g. O’Driscoll et al.

2007). Furthermore, spheres are exceptional in their

packing behaviour, compared with more general shapes

(Weitz 2004). Recently, there has been great interest in the

random packing of non-spherical particles, such as ellip-

soids (Donev et al. 2004), rods (Williams and Philipse

2003), and disks (Wouterse et al. 2007), providing us with

an opportunity to expand our understanding of the interplay

between particle packings, physical behaviour of a crystal

mush and the external physical controls on crystallisation

using more realistic particle shapes. In this contribution, we

present the results of a preliminary exploration of the

consequences of shape, specifically aspect ratio of rod-like

particles, on the spatial distribution of grains and show how

the grain distribution can be quantified. Due to the sim-

plicity of textural analysis using thin sections, we focus on

the quantitative analysis of randomly oriented 2D slices

through a 3D crystal accumulation, although it should be

noted that all the techniques described here have 3D

analogues.

The paper is organised as follows. First, we describe

various point pattern statistics for analysing textures: the

aggregation index (‘‘R’’), Ripley’s K function, pair corre-

lation function, and mark correlation function; and discuss

the importance of edge effects. An alternative to point

pattern statistics, the autocorrelation is then described.

Numerical simulations of random packings of rods are

discussed, and the various spatial statistics are applied to

planar sections through the packings. We then explore

clustered textures, illustrated with a natural example of a

clustered texture from the colonnade of the Holyoke flood

basalt. Finally, we discuss the relationship between 2D and

3D statistics.

Statistical methods for quantitative textural analysis

Point pattern statistics

Much information is recorded in the spatial distribution of

centroids of grains observed in thin section, that is a point

pattern. There are a wide range of statistical techniques for

analysing such point patterns (the theory underpinning the

generation of these patterns generally refers to point pro-

cesses). Detailed reviews of these techniques can be found

in Dixon (2002a, b); Mattfeldt (2005); Stoyan and Pentti-

nen (2000). Many software packages are available for

performing point pattern analysis: we used the freely

available ‘‘spatstat’’ package (Baddeley and Turner 2005;

R Development Core Team 2007).

At first order, a point pattern can be characterised by its

intensity k, which is defined as the number of points per

unit area. Here we focus on the second order statistics

which describe how the points are distributed relative to

each other and can be used to determine if points are

clustered (occurring close to each other) or ordered

(repelled from each other). There are several popular sec-

ond order statistics:

The aggregation index (‘‘R’’)

The main statistic used by petrologists is the aggregation

index R of Clark and Evans (1954) (also known as the

ordering index). Its use to describe rock textures was pio-

neered by Kretz (1966, 1969), and it has since been used by

many other authors (e.g. Boorman et al. 2004; Carlson

1989; Denison et al. 1997; Higgins 2006; Jerram et al.

1996, 2003; Kretz 2006). It is defined by

R ¼ rA

rE

; ð1Þ

where rA is the mean of the distances separating points

from their nearest neighbours, and rE is the expected value

of rA for complete spatial randomness. rE is given by

rE ¼
1

2
ffiffiffi

k
p ; ð2Þ

where k is the intensity.
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By definition, R = 1 for complete spatial randomness. If

the points are clustered, the distance to nearest neighbours

is shorter than that expected for complete spatial random-

ness and R \ 1. Conversely, if points are ordered (with

points further away than expected for spatial randomness)

R [ 1.

Figure 1 shows four examples of 2D point patterns with

their R values. These were generated using models built

into the ‘‘spatstat’’ package and give examples of: (a)

complete spatial randomness, (b) clustering, (c) ordering,

and (d) clustering and ordering on different scales. The

aggregation index R, clearly distinguishes between the

random, clustered, and the ordered patterns in Fig. 1a–c,

but does not distinguish between complete spatial ran-

domness (Fig. 1a) and the case with both clustering and

ordering (Fig. 1d), since R = 1.00 in both the cases. Fig-

ure 1d demonstrates a key shortcoming of the aggregation

index R: it cannot distinguish between clustering and
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Fig. 1 Four example point

patterns, with estimates of the

aggregation index R, Ripley’s

L(r) and the pair correlation

function g(r). Dashed lines
show the behaviour expected for

complete spatial randomness.

The point patterns were

generated by the following

models: a Complete spatial

randomness; b Neyman-Scott

process (shows clustering);

c Hard core Strauss process

(shows ordering); d a different

Neyman-Scott process,

additionally thinned by removal

of points closer than a particular

distance (shows small scale

ordering, large scale clustering)
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ordering that occurs on different scales. R is ‘‘short-sigh-

ted’’ and cannot take into account the behaviour further

away than the nearest neighbour.

Figure 1b shows an example generated by a Neyman-

Scott cluster process. Instead of placing individual points

randomly on the plane, the Neyman-Scott process places

clusters of points randomly with a given cluster diameter

and intensity. In Fig. 1b, the cluster diameter was chosen to

be 0.09. Figure 1c is an example of a Strauss hard core

process, in which individual points are placed at random

except that they are not permitted to come closer to each

other than a certain specified distance, known as a ‘‘hard

core’’ distance (here a distance of 0.025 was chosen). The

points can be thought of as disks in the plane with these

radii that are not allowed to overlap. The presence of a hard

core mimics the effect of finite grain size in a real rock:

grain centres in a real rock cannot approach each other

closer than their own diameter. Figure 1d is a combination

of the above two processes in which a Neyman-Scott

process with a cluster diameter of 0.075 was ‘‘thinned’’ by

removal of points closer than r = 0.015. Of all the four

example patterns, Fig. 1d is the closest to a real rock tex-

ture as it has clustering on a large scale in addition to the

hard core (see later discussion of the ‘‘Holyoke

colonnade’’).

In order to quantify the complex ordering and clustering

structure that occurs on multiple scales in a real rock, we

require a more sophisticated descriptor than R. This can be

achieved using a function rather than an index, since

functions can provide information about clustering and

ordering on a variety of scales. We focus on Ripley’s K

function, the pair correlation function, and the mark cor-

relation function. These functions have thus far been used

by only a few authors in petrology, all interested in

quantifying porphyroblast distribution in 3D in metamor-

phic rocks (Daniel and Spear 1999; Hirsch 2008; Hirsch

et al. 2000; Ketcham et al. 2005; Raeburn 1996). The

functions are very useful and straightforward to calculate.

Ripley’s K function

Ripley’s K function (Ripley 1976, 1977) is defined by

where E denotes expectation. For complete spatial ran-

domness, K(r) = pr2. For convenience, Ripley’s K

function is usually plotted in the transformed form

LðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi

KðrÞ
p

r

; ð4Þ

where L(r) = r for complete spatial randomness. Note that

alternative transformed forms are also popular, such as
~LðrÞ ¼ LðrÞ � r:

Figure 1 shows plots of L(r) for the four example point

patterns. The dashed line shows the behaviour expected for

complete spatial randomness. Regions below the line

indicate ordering of points, while those above denote

clustering. The complete spatial randomness pattern we

generated (Fig. 1a) shows no appreciable difference from

the theoretical behaviour. The clustered pattern (Fig. 1b)

lies above the line, while the ordered patten (Fig. 1c) falls

below the line, as expected. The presence of the hard core

in the ordered pattern is clearly visible in the L(r) plot

(Fig. 1c): there are no points closer than a distance of

0.025, so L(r) is zero for r \ 0.025. Finally, L(r) for the

combined pattern (Fig. 1d) demonstrates both features:

there is a hard core at small scales, followed by clustering

at a larger scale.

Pair correlation function

An alternative, and sometimes clearer, representation of the

information in Ripley’s K function is the pair correlation

function (or radial distribution function) g(r), defined by

gðrÞ ¼ 1

2pr

dKðrÞ
dr

; ð5Þ

where g(r) = 1 for complete spatial randomness. g(r)

determines how likely an interpoint distance of r is: if

g(r) [ 1 then it is more frequent than complete spatial

randomness, if g(r) \ 1 then it is less frequent than com-

plete spatial randomness. The difference between Ripley’s

K(r) and the pair correlation function, g(r) (Fig. 1) is

essentially the difference between a cumulative distribution

function and a probability density function, where g(r) is

the probability density function for interpoint distances,

appropriately normalised.

Figure 1 shows plots of g(r) for the four example point

patterns. These are obtained by smoothing over a chosen

length scale (analogous to the choice of bin size in a

histogram, a technique known formally as kernel density

estimation). The simulation of complete spatial randomness

KðrÞ ¼ Eðnumber of extra points within radius r of a randomly chosen pointÞ
k

; ð3Þ
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again shows no appreciable difference from that expected

theoretically (except perhaps at small scales, but this is an

artifact of small sample size). For the clustered pattern

(Fig.1b), g(r) is initially much greater than 1, and decreases

with increasing r until around r = 0.09 where it is then flat,

lying on the dotted line g(r) = 1. r = 0.09 is a length scale

characterising the clustering: until r = 0.09, interpoint

distances are more common than they would be for com-

plete spatial randomness. In this particular example, the

characterstic length scale reflects the average size of clus-

ters in the point pattern, which were chosen to have a

diameter of 0.09.

The pair correlation for the ordered pattern (Fig. 1c) is

zero for r \ 0.025, but increases abruptly to 1 for

r = 0.025, again demonstrating the hard core effect. Note

that the sharp jump in gradient in the L(r) plot has been

smoothed out in the g(r) plot, as a result of kernel density

estimation. g(r) for the combined clustered and ordered

pattern (Fig. 1d) again shows both the features: there is a

small-scale hard core up to r = 0.015, followed by clus-

tering up to a length scale of r = 0.075.

It should be noted that two point patterns can have the

same pair correlation function whilst having quite differ-

ent structures. For example, a pattern of isolated clusters

can have the same pair correlation function as a pattern of

linked chains. As such, the interpretion of pair correlation

length scales requires some care, as the length scales will

relate to different aspects of different patterns, for

example, the clustering length scale could relate to the

size of isolated clusters or to the spacing between the

chains. Despite this limitation, the pair correlation func-

tion still provides a useful summary of the point pattern

and the characteristic length scales for clustering and

ordering.

Mark correlation function

There is more information in a thin section than simply the

location of the centroids: the areas, orientations, long and

short axes, etc. can also be calculated for each grain cross-

section. One way of including such information in the point

pattern statistics is to consider a marked point pattern. This

is a point pattern in which each point has an associated

numerical value (a mark). For example, the marks could be

the effective radius of each grain cross-section ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

area=p
p

Þ:
The correlation of these marks can be expressed in terms of

the mark correlation function, which depends on the

interpoint distance r. The mark correlation function is

defined in terms of a suitable test function h(m1,m2) of two

marks. A typical choice is the product

hðm1;m2Þ ¼ m1m2: ð6Þ

The mark correlation function is loosely defined by

mðrÞ ¼ Eðhðm1;m2ÞÞ
K

ð7Þ

where m1 and m2 are marks separated by a distance r, E

denotes expectation, and K is a normalisation such that

m(r):1 if the marks were independently distributed

amongst the points. For the function in (6), K ¼ m2 where m

is the mean mark. Values of m(r) = 1 indicate some degree

of correlation. For example, for thin sections it is expected

that close pairs of points will correspond to small grains

adjacent to other small grains and thus we expect m(r) \ 1

at small scales for the radii mark correlation function. Note

that, unlike the pair correlation function and Ripley’s L

function, the mark correlation function does not directly

describe the clustering or ordering of the point pattern.

The mark correlation function using particle radius as

the mark is sensitive to interactions due to crystal size. It is

therefore useful in studies of the relative rates of growth of

adjacent crystals in metamorphic rocks [i.e. the size iso-

lation effect for porphyroblast growth (Hirsch et al. 2000)

for which the radii mark correlation coefficient falls below

unity at scales over which crystal growth is significantly

retarded by diffusion], studies of competing crystals

growing in situ from a liquid, or to the extent of mixing of

different sized crystals in the context of a cumulate.

Ripley’s L function, the pair correlation function, and

the mark correlation function are most effectively used in

combination with each other: A notable example of this is

that the part of the clustering or ordering of a point pattern

due to crystal size interactions can be distinguished from

that due to other factors by comparing the pair correlation

with the radii mark correlation.

Alternative statistics

An alternative method for studying the clustering and

ordering of 2D point patterns of centroids was proposed by

Jerram and Cheadle (2000). This method was based on

cluster analysis, which has a different aim to that of the

spatial statistics described above. Cluster analysis is pri-

marily a classification technique, and assigns points to

groups based on their closeness to each other. It is parti-

cularly useful for identifying well separated groups of

points. By contrast, Ripley’s K function and the pair cor-

relation function describe the overall clustering or ordering

of a point pattern, rather than identifying the individual

clusters. As such, we believe the functions discussed above

provide a better description of the overall texture. An

earlier study by Jerram et al. (1996) studied overall clus-

tering and ordering on different length scales using inter-

point distances and a technique called ‘‘pair analysis’’. This

technique is closely related to, but different from, the pair

correlation function used here.
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There are two subtle assumptions that are implicit in the

spatial statistics used here. Note that L(r), g(r) and m(r) are

functions of distance r alone, and thus there is an implicit

assumption of isotropy (no preferred direction in the tex-

ture). The random packings we discuss are isotropic, but a

real rock texture may not be so. A second implicit

assumption is stationarity (or homogeneity): loosely, that

the point pattern is invariant to translation in a statistical

sense. Only if a point pattern is assumed to be stationary

does it make sense to describe it by a single intensity k
rather than by an intensity k(x) as a function of position.

There are generalisations of the point pattern statistics that

do not assume isotropy and stationarity. For example, the

reduced second moment measure (Stoyan et al. 1995; Sto-

yan and Stoyan 1994) generalises Ripley’s K function to use

a vector displacement rather than distance, and thus does

not assume isotropy. Such generalised statistics and more

can be found in ‘‘spatstat’’ (Baddeley and Turner 2005).

Edge effects

In practice, point patterns are only observed over a finite

region. When studying a point pattern, it is therefore

important to specify not only the locations of the points,

but also the window in which the points are observed. It is

important to understand, and correct for, the edge effects

that arise from having a limited observation window.

Edge effects arise in two main ways in the point pattern

analysis of thin sections. The first edge effect arises in

going from the 2D slice to the point pattern. On the edge of

the window there may be incomplete grains where a part of

the grain lies outside the window. However, the centroid of

this incomplete grain may lie within the window. Hence, if

incomplete grains are omitted, then the point pattern will

have fewer points near the edge than it should have, and all

the statistics will be biased (e.g. Baddeley and Jensen 2004,

Ch. 3).

An example of this first kind of edge effect is shown in

Fig. 2. Here a slice through the experimental random close

packing of spheres of Finney (1970) has been taken, fol-

lowing the method of Jerram et al. (1996). The slice contains

complete grains only. If the point pattern of centroids is

chosen to have the same observation window as the original

2D slice, then there is a notable lack of points near the edge

of the domain (solid box, middle figure). This leads to an

underestimation of the intensity of the point pattern, and thus

to an underestimation of the aggregation index R (since rE

will be overestimated). The simplest way of correcting this

bias is to reduce the size of the observation window appro-

priately (‘minus sampling’), and ignore any points outside

the new window (solid box, right figure). The intensity of the

point pattern is then estimated by the number of points per

unit area inside the new window, and rE follows from Eq. 2.

The second kind of edge effect is common to all point

pattern analyses. When calculating statistics involving

neighbouring points, a bias is introduced because nothing is

known about the points outside the observation window.

For example, it may be that the true nearest neighbour of a

point lies outside the observation window, and so a naive

calculation of rA will be an overestimate, and thus R will be

overestimated. The simplest correction for this is to intro-

duce a ‘‘guard region’’ or ‘‘buffer zone’’ (Fig. 2, dashed
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Fig. 2 An example of edge effects. Left figure shows a slice through

a experimental random close packing of spheres by Finney (1970) (as

used by Jerram et al. 1996). Middle figure shows the point pattern

generated by the centroids, with observation window (solid line) the

same as that enclosing the original image. Arrows between points

indicate their nearest neighbour. Right figure is the same point pattern,

but with a smaller observation window, points outside of which are

completely ignored. In calculating the mean nearest neighbour, only

those points within the dashed box are considered, although the

nearest neighbours are allowed to be found outside this dashed region.

All points within the solid box are used for estimating the intensity
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box, right figure) near the edge of the observation window

where nearest neighbour distances are not calculated, but

the points are available as neighbours for the points in the

inner region (Clark and Evans 1954). The buffer zone

should be large enough so that the nearest neighbours of

points in the inner region can always be found either in the

inner region or in the buffer zone. Choosing the size of the

buffer zone optimally is difficult: if it is too large, valuable

data is discarded; if it is too small, edge effects will remain

(Pommerening and Stoyan 2006). It should be noted that

the buffer zone is ignored in the calculation of rE, as there

is no bias in estimating the intensity using the whole

observation window (solid box, right figure).

The particular example in Fig. 2 shows that the edge

effects can be significant. For the slice shown, a naive

calculation leads to an aggregation index R = 1.64. When

the first edge effect is corrected, this rises to 1.74, and is

reduced only slightly by correcting for the second effect, to

1.73. On averaging the results from 1,000 random slices,

the new estimate for the Finney (1970) sphere packing is

R = 1.73, 5% larger than R = 1.65 originally quoted by

Jerram et al. (1996).

All the statistics described in the previous section have

been edge corrected using routines built in to the ‘‘spatstat’’

package (Baddeley and Turner 2005), and this should

usually be done. The main disadvantage of edge correction

is that the variability of the result will increase if points are

neglected (as in ‘‘minus sampling’’), resulting in less rep-

resentative values of the statistical measures. This may be a

problem if there are only very few points in the sample.

Autocorrelation

As an alternative to point pattern statistics, there are a

number of image processing techniques that directly yield

information about spatial structure from raw 2D slice

images. One of the simplest techniques is the calculation of

the autocorrelation function C(r) [also known as the two-

point correlation function (Berryman and Blair 1986; Blair

et al. 1996) or the covariance (Stoyan et al. 1995)]. C(r) is

defined by

CðrÞ ¼ hf ðxÞf ðxþ rÞi ð8Þ

where r is a given vector, and h�i denotes an average over

all points x in the image. f(x) is an indicator function,

defined by

f ðxÞ ¼ 1 if x is in a grain;
0 otherwise:

�

ð9Þ

The autocorrelation measures how well an image matches a

spatially shifted version of itself. Autocorrelations are

efficiently calculated using Fast Fourier Transforms, and

are available in standard image processing packages such

as ImageJ (Rasband 1997–2007). For isotropic textures,

C(r) = C(r), a function of distance alone (indeed,

examining whether C(r) satisfies this condition is a good

way of identifying anisotropy). The autocorrelation function

satisfies

Cð0Þ ¼ 1� /; ð10Þ

CðrÞ ! 1� /ð Þ2 as r !1; ð11Þ

where / is the porosity and 1-/ is the volume fraction of

grains. As such, some authors work with a rescaled version

(Morishita 1998; Morishita and Obata 1995)

rðrÞ ¼ CðrÞ � 1� /ð Þ2

/ 1� /ð Þ ; ð12Þ

which satisfies

rð0Þ ¼ 1; ð13Þ
rðrÞ ! 0 as r !1: ð14Þ

For a closer comparison with what is typically found in the

packing literature, we use the unscaled version.

The autocorrelation function provides a compact

description of the microstructure of the packing. The length

scale over which it decays can provide insight into the

grain scale and length scale of clustering. It can also be

used to calculate the specific surface area of the micro-

structure, which is proportional to C0(0) (Berryman and

Blair 1986). However, unlike point pattern statistics, the

autocorrelation does not identify individual grains: it sim-

ply deals with the group of grains as a whole. It should be

noted that there are other techniques that have been used

for analysing 2D slice images (e.g. Gaillot et al. 1997), but

for simplicity we consider only the autocorrelation.

Random packings of rods

In order to develop an understanding of real rock micro-

structures, comparison must be made between natural

samples and reference textures. There are many different

ways to generate a random packing of particles, and the

packing that results is highly dependent on the scheme used

(Stoyan 2002). We concentrate on random close packing

[more formally known as maximally random jammed

packing (Torquato et al. 2000)] which is loosely defined as

the maximum density state for a random collection of

particles. A random close packing of identical spheres has

a porosity / = 0.36. Remarkably, particles with a slightly

larger aspect ratio can pack more densely than spheres,

with a minimum porosity of 0.30 achieved for rods

(Williams and Philipse 2003) and / = 0.26 for ellipsoids

(Donev et al. 2004). This improvement in packing density

might be due to the extra rotational degrees of freedom
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associated with non-spherical particles (a sphere is invari-

ant under any rotation, a rod is not) (Weitz 2004).

Here we use identical rods as a simple analogue for

elongate crystals. The rods are actually spherocylinders,

which are cylinders with spherical caps, specified by the

diameter D and length L of the cylinder (Fig. 3), described

by an aspect ratio a = L/D. Note that the true aspect ratio

of spherocylinders is 1 + a, and that a = 0 corresponds to

a sphere. We use the rod packings generated by Williams

and Philipse (2003) who performed numerical simulations

using a mechanical contraction algorithm inside a periodic

box to generate 3-dimensional packings. We re-examine

their rod packings in thin section by slicing through the 3D

packings at random orientations. Figure 4 shows 3D plots

of the spherocylinder packings along with a representive

thin section for different values of a.

Figure 5 shows the variation in porosity with a found by

Williams and Philipse (2003). As a increases, the porosity

decreases down to a minimum around a = 0.5, after which

it monotonically increases. For large a, the porosity is

thought to increase as /*1-5.4/a (Philipse 1996a, b). This

result has important implications for the solidification of

igneous rocks as the initial porosity of a crystal mush on a

chamber floor, accumulating by gravitational settling, will

be highly sensitive to grain shape (assuming that no pre-

ferred orientation of elongate grains develops during either

the settling process or subsequent compaction). Comparison

of cumulates thought to have formed by gravitational set-

tling, and with only insignificant, post-accumulation over-

growth of the cumulus grains, demonstrate this first-order

control on mush architecture. The initial porosity of a

cumulate formed predominantly of rounded equant olivine

grains, such as that common in the peridotite horizons of the

Rum Layered Suite (Fig. 6a), will generally be much less

than that in a cumulate formed of elongate crystals with

large aspect ratio ( [ rsim3:5 : 1; Fig. 6b), if orientation

effects and early clustering are ignored.

Analysis of rod packings

The spatial statistics described earlier were calculated from

1,000 random slices through each of the rod packings and

are shown in Figs. 7, 8 and 9. To generate the random

slices, the packings were first rotated or reflected by one of

the 48 symmetries of the cube. A high resolution digital

slice (4096 9 4096 pixels) was then taken at a random

height uniformly distributed in the z-direction. The pac-

kings are periodic, and this was exploited in calculating the

spatial statistics of the 2D slices.

R versus porosity

The aggregation index R compares the mean nearest

neighbour distance to that of complete spatial randomness.

However, complete spatial randomness is not a good ref-

erence for point patterns created by centroids of real

particles. Due to the finite grain size, two centroids cannot

approach closely, and this produces larger than expected

nearest neighbour distances. This discrepancy increases

with decreasing porosity and is also affected by a spread

in the population of grain diameters. To avoid these

problems, Jerram et al. (1996) proposed that R for cen-

troids should be compared to a value generated from a

reference texture.

The reference textures that Jerram et al. (1996) pro-

posed were based on random packings of monodisperse

spheres (i.e. spheres of a single size). The general idea was

to compare a given R to that produced by a random packing

of spheres with equal porosity. This was expressed in terms

of the R against porosity plot (Fig. 7). Jerram et al. (1996)

proposed a reference line for this plot called the ‘‘Random

Sphere Distribution Line (RSDL)’’. All but one of the

points on the RSDL were generated by numerical simula-

tions of sphere packings with various porosities, by random

sequential addition of spheres. The final point on the RSDL

(the one with lowest porosity / = 0.36) was that of the

experimental random close packing of spheres by Finney

(1970). If a sample lay below the RSDL, its grains were

said to be clustered; if above, ordered (Jerram et al. 1996).

An important first observation is that the sphere packing

used here (/ = 0.36, R = 1.73) does not lie on the RSDL

proposed by Jerram et al. (1996). The discrepancy is

probably caused by edge effects. When Jerram’s analysis

of the Finney packing (top end of the RSDL) is edge

corrected, the value goes from R = 1.65 to R = 1.73 and is

then in very close agreement with the numerical simulation

used here. It seems likely that all R values on the RSDL are

slightly biased, and need reanalysing for the edge effects.

The value of R calculated for the rod packings are also

shown in Fig. 7. R monotonically decreases with a (Fig. 8).

As porosity does not behave in the same way (Fig. 5), the

rod packing trend in Fig. 7 is curved. Shape seems to plays

an important role in determining R: for example, a = 0.0

and a = 2.0 have very similar porosities, but their R is

quite different: R = 1.73, and R = 1.58, respectively.
Fig. 3 Cross-section through a spherocylinder along its symmetry

axis. a = L/D
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Fig. 4 Random close packings

of spherocylinders for a = 0.0,
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column, 3D plots, with box of

periodicity shown. Middle
column, representative 2D

slices. Right column, point

patterns generated by the

centroids of the 2D slices
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Jerram et al. (1996) discusses in more detail other factors,

such as overgrowth, compaction and polydispersivity, that

influence R.

It should be noted that all the rod packings shown in

Fig. 7 are random close packings, and thus form touching

frameworks. This is not the case with the points on the

RSDL, as only the Finney packing is a random close

packing. For large porosities, the points on the RSDL do

not come from touching frameworks, and this led Jerram

et al. (2003) to propose that the R against porosity plot may

provide a way to distinguish touching from non-touching

frameworks. However, in general, whether crystals form a

touching framework or not will depend in a complicated

way on grain shape, grain size, and how the grains are

packed. As such, a simple classification of touching and

non-touching frameworks by the R versus porosity plot

seems unlikely.

Correlation functions

More detailed information about the packings can be

gained by looking at the various functions described ear-

lier. Figure 9 plots Ripley’s L function, the pair correlation

function, the radii mark correlation function, and the

autocorrelation for 2D slices through the rod packings

shown in Fig. 4. The units of distance have been chosen so

that the diameter D of the spheres and rods is 1.

For all of the packings, all of the point pattern statistics

(L(r), g(r) and m(r)) show clear evidence of small scale

repulsion, as is expected from the finite size of the rods: all

the curves are below the dashed lines for small values of r.

The length scale of the small scale repulsion is near 1 in

each case, which corresponds to the diameter D of the

spheres and rods.
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Fig. 5 Plot of porosity / against a for random close packings of

spherocylinders (based on Fig. 2 of Williams and Philipse 2003)

Fig. 6 Photomicrographs of thin sections under plane polarised light.

The lower margin of each image is 4.5 mm long. a Olivine cumulate

from the Eastern Layered Suite, Isle of Rum, in which rounded grains

of olivine (with occasional small opaque grains of Cr-spinel) are

enclosed by interstitial plagioclase. There is no evidence of compac-

tion, although adjacent olivine grains have recrystallised to form

mutual grain boundaries. b A polydisperse population of randomly

oriented, framework-forming, elongate plagioclase primocrysts

enclosed by a later-crystallising clinopyroxene oikocryst. This sample

comes from the lower part of the Skaergaard Layered Series, where

olivine and plagioclase were the only liquidus phases. c Oolitic

limestone comprising a polydisperse population of rounded ooids

enclosed by coarsely crystalline calcite cement
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One striking observation is the amount of structure

present in a random packing of monodisperse spheres (top

row, Fig. 9). An alternating pattern of clustering and

ordering of the point pattern on different scales is clearly

visible. This structure is clearest in the pair correlation

function. An interpoint distance of 1 is very common (the

diameter of the spheres), and this is reflected by a sharp

peak. Closer distances are much less common, as is

expected from volume exclusion effects. However, it

should be noted that the slices through the sphere packing

do not have a hard core, unlike the examples shown in

Fig. 1c, d: both L(r) and g(r) are non-zero for all r [ 0.

This is understandable, for while two sphere centres cannot

approach each other closer than their diameters, the cen-

troids of two sphere cross-sections can. As such, it is

merely less likely that short interpoint distance are found,

not impossible, and this is sometimes referred to as ‘‘soft

core’’ behaviour.

As a is increased, a lot of the alternating structure

vanishes due to the broken symmetry. A hard core appears

to develop, with very few points occurring at a distance of

less than 1. This is also understandable, as interpoint dis-

tances less than 1 can only occur in thin section when the

end of a rod is sliced. As the rods get longer, this scenario

becomes less likely. The L function and pair correlation

function for a = 40.0 somewhat resemble the hard core

ordered pattern in Fig. 1c.

There is no variation in grain size in any of the packings.

However, there is a variation in the size of grain cross-

sections (‘‘apparent grain size’’) in the 2D slices, and the

2D mark correlation function is sensitive to this. Short

interpoint distances are associated with small grain cross-

sections due to slicing the ends of rods. Hence the mark

correlation function is below the dashed line for small

interpoint distances, and increases with increasing r until

around r = 1 in each case, corresponding to the diameter D

of the rods and spheres. As with the pair correlation

function, there is some additional oscillating structure

visible in the mark correlation function for small a, but this

diminishes as a increases.

For all the packings, the autocorrelation C(r) dies away

over a length scale of 1 in keeping with 1 being the diameter

of the rods. The sphere packing again shows the most

structure, with oscillations above and below the long range

value. These oscillations again diminish as a increases.

Clustered textures

Correlation functions can be used to detect the clustering of

grains, and the length scale over which clustering takes

place. As an example, Figs. 10 and 11 show two artificially

clustered textures, where again the diameter D of the rods

and spheres is 1. In Fig. 10, the random sphere packing has

been altered by randomly removing groups of spheres to

leave a ‘‘swiss-cheese’’ texture. The holes in the swiss-

cheese texture were chosen to have a radius of 3.5.

α = 0.0 (spheres)

α = 0.5

α = 2.0

α = 10.0

α = 40.0
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Fig. 7 Plot of aggregation index R against porosity / (after Jerram

et al. 1996). Circles show points for random close packings of

spherocylinders with a = 0.0, 0.2, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0,

20.0, 40.0. The ‘‘random sphere distribution line’’ (RSDL) of Jerram

et al. (1996) is also shown. Crosses show the numerical and

experimental simulations of sphere packing used by Jerram et al.

(1996) to define the RSDL

0 10 20 30 40

1.
0

1.
2

1.
4

1.
6

1.
8

α

R

Fig. 8 Plot of aggregation index R against a for random close

packings of spherocylinders
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Figure 10 should be compared to the first row of Fig. 9.

The L function is now above the dotted line at large scales,

indicative of clustering. The pair correlation has likewise

been shifted so that interpoint distances for r. 3:5 are

more common than they were, although the alternating

structure remains. This identifies 3.5 as a characteristic

length scale for the clustering, which is equal to the chosen

diameter of the holes. The radii mark correlation function

is unchanged: this is expected, since the radii mark corre-

lation is only sensitive to the radii of points separated by a

particular distance, and not to the number of points sepa-

rated by a particular distance. It is thus useful to compare

the radii mark correlation function with the pair correlation

function to distinguish between crystal size interactions

and overall clustering of the framework. In this case,

apparent crystal size interactions are important on inter-

point distances up to 1 (mark correlation), and overall

clustering on interpoint distances up to 3.5 (pair correla-

tion). The autocorrelation also hints at the different scales

in the packing: there is a kink near 1, and the curve tails off

near 3.5.

Figure 11 shows a similar artificially clustered packing,

this time for a rod packing with a = 10, to be compared

with the fourth row of Fig. 9, with a chosen hole diameter

of 10. The effect of the clustering is easier to distinguish in

this example, because there is less structure present in the

original packing. Again L(r) is above the dotted line at

large scales. The pair correlation is above the line up to

Ripley’s L Pair correlation Mark correlation Autocorrelation
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Fig. 9 Summary of 2D thin

section statistics for the random

close packings shown in Fig. 4.

First column Ripley’s L(r).

Second column pair correlation

function g(r). Third column
mark correlation function m(r),

where marks are the effective

radius of each grain cross-

section. Fourth column
autocorrelation function C(r).

Units of distance are such that

the diameter D of the

spherocylinders is 1
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around r = 10, so that 10 is the characteristic length scale

of the clustering, which again reflects the chosen diameter

of the holes. Again, the radii mark correlation function is

unchanged while the autocorrelation function has a

noticeable kink near r = 1, again showing the presence of

different scales in the packing.

The Holyoke colonnade

The 200 m thick Holyoke flood basalt (Connecticut and

Massachusetts, USA) is notable for the demonstration that

plagioclase micro-crystals in experimentally-melted sam-

ples form a framework of chains of touching grains when

the porosity is as high as 75% (Philpotts et al. 1998). The

basalt flow comprises a quench-textured roof-crust (the

entablature) while the texture in the upwards-crystallising

floor zone (the colonnade) results from the recrystallisation

of crystal-rich plumes fallen from the roof zone (Philpotts

and Dickson 2000). The plagioclase crystals in the colon-

nade inherit the clustering formed early in the solidification

history of the entablature (Jerram et al. 2003), with the

chains separated by granular pyroxene aggregates which

are recrystallised remnants of ophitic pyroxene–plagioclase

clusters that nucleated within the spaces between the chains

(Jerram et al. 2003; Philpotts and Dickson 2000).

Figure 12 shows a line drawing of the plagioclase grains

in a sample from the colonnade of the Holyoke flood
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basalt. The clustering of the plagioclase grains is clear in

both the raw image and the statistics (Fig. 12). R = 0.75

for the point pattern indicates clustering regardless of

which reference texture it is compared with. The pair

correlation function shows ordering at length-scales below

about 0.05 mm (an obvious consequence of finite grain

size), and then clustering up to around 0.5 mm. The

autocorrelation function similarly shows a characteristic

length scale of 0.5 mm associated with the clustering. The

mark correlation function indicates that crystal size inter-

actions are only important on scales up to 0.15 mm. Unlike

the packing examples, the Holyoke colonnade has a real

variation in grain size and not just apparent grain size.

Since the length scale for clustering of the point pattern

(0.5 mm) is so different from that of the crystal size

interactions (0.15 mm), the crystals must be forming a

clustered framework. The characteristic length scale of the

clustering probably corresponds to the characteristic spac-

ing between the plagioclase chains (c.f. Philpotts and

Dickson 2000), in a similar way that the characteristic

clustering length scales of Figs. 10 and 11 relate to hole

size.

It is not entirely clear how to interpret the mark corre-

lation function in the igneous textures context. For

metamorphic textures, the length scale for crystal size

interactions found from the mark correlation function has

been interpreted in terms of the distance over which dif-

fusion controls crystal size (e.g. Hirsch et al. 2000;

Ketcham et al. 2005). This would be appropriate for the

Holyoke colonnade if it were the case that the plagioclase

grains had nucleated and grown in situ. However, consid-

eration of the compositions of plagioclase grains within the

clusters lead Philpotts et al. (1998) to suggest that the

plagioclase crystals nucleated and remained freely sus-

pended for some time before joining to form the chains by

synneusis. Hence, crystal size interactions in igneous tex-

tures might depend on how different sizes of crystals mix.

A better understanding is likely to come from combining

the information in the mark correlation function with

crystal size distribution data. Despite this current lack of

understanding, the mark correlation function still provides

an important constraint on the length scale over which

crystal size interactions are important.

The relationship between 2D and 3D

All the analysis shown has been on 2D thin sections, but

the statistical techniques can also be applied in 3D (e.g.

Hirsch et al. 2000). Unfortunately, there are no general

stereological relationships between 2D point pattern sta-

tistics of grain cross-sections and 3D statistics of grain

centres. A key advantage of the autocorrelation over point

pattern statistics is that it is the same in 3D as 2D, assuming

the medium is isotropic. This is not to say that 2D point

pattern statistics are not useful: indeed, as has been shown,

2D statistics provide a good description of the structure.

Moreover, the 2D statistics are similar to the 3D statistics

at larger scales (Stoyan et al. 1995). For example, the 3D

pair correlation function of sphere centres for random

sphere packing is shown in Fig. 13. Apart from near r B 1,

the 3D pair correlation function is very similar to the 2D

pair correlation shown in Fig. 9. The difference at small

scales arises because while the two sphere centres can
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never be less than a distance D apart, the centroids of two

profiles can. For a more detailed discussion of the stereo-

logy of spatial statistics see Chapter 8 of Stoyan et al.

(1995). 3D textural information is becoming more readily

available (Jerram and Higgins 2007), and future studies

should quantify spatial structure in terms of the 3D ver-

sions of the techniques. 3D pair correlation functions and

autocorrelations are commonly quoted in the packing lit-

erature, and will provide a good source for comparison.

Conclusions

When studying the spatial distribution of grains in a rock, it

is important to compare with reference textures that have

grains with a similar aspect ratio. Whilst packings of

spheres should be an appropriate reference texture for

materials with equant grains, materials with elongate grains

are better compared to packings of rods. The statistical

techniques discussed here, based on correlation functions,

rather than on single indices such as R, show that sphere

packings contain a great deal of structure that is not found

in packings of more general shapes.

The rod packings we have used have notable short-

comings as a reference texture. The main disadvantage is

that all the packings studied here comprise populations of

identical particles (i.e. they are monodisperse). Real rocks

contain crystals of a wide range of sizes, and this will play

an important role in their packing behaviour. While there

are some published studies on polydisperse packings of

spheres (e.g. Bezrukov et al. 2001; Lochmann et al. 2006),

there seem to be a few corresponding studies on polydis-

perse packing of more general shapes. The polydisperse

packings, more representative, of igneous rocks are likely

to show less inherent structure than the monodisperse

packings described here. Future reference textures need to

be more random in the shape and size of their crystals, to

better model real rocks.

A further drawback is that it is not clear how applicable

is random close packing for igneous rocks. All the refer-

ence textures we have used here have the maximum

density, and while this state undoubtedly is possible to

achieve, for example, a sandstone or oolitic limestone

(Fig. 6c), the relatively small density difference between

solid and liquid, together with the high viscosity of typical

silicate liquids, means that gravitational settling may result

in a much looser packing than our reference textures. A

further complication is presented by in situ nucleation and

growth of primocrystic phases in the cumulate mush. Such

grains infill primary porosity but may not be easily dis-

tinguishable from the gravitationally accumulated grains.

They may also nucleate and grow on pre-existing grains,

inheriting a pre-determined crystal orientation.

The illustration of the information which can be

extracted from a thin section of basalt using functions

rather than indices to quantify grain distributions demon-

strates not only that there is much information which can

be extracted relatively easily, but also that we are in the

very early stages of understanding what the information

actually mean. Although such sophisticated treatments

have already been applied to metamorphic rocks (e.g.

Hirsch et al. 2000), the case of igneous rocks, in which

individual particles can move relative to each other in the

early stages of solidification, is still an unexplored territory.

We are yet to begin to tease apart the importance of crystal

accumulation rate on the extent and size of clusters in

solidifying rocks (e.g. Blumenfeld et al. 2005), despite the

importance of such an effect on the rheology of ascending

magmas and the permeability and ease of compaction of

cumulates. Application of the techniques outlined here to

suites of rocks from different magmatic environments is

the way forward.
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