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Abstract— We have developed an idealised mathematical model to understand
the isotopic variability of the mantle and its relation to the observed variations
in isotopic ratios143Nd/144Nd, 87Sr/86Sr, 176Hf/177Hf, 208Pb/204Pb,206Pb/204Pb, and
207Pb/204Pb measured on mid-ocean ridge basalt (MORB). We consider a simple
box model of mantle processes. A single melt region produces a melt fractionF
of melt, and the average time since a given parcel of mantle material last visited
this region is given by the timescaleτmelt. The melt region fractionates the par-
ent/daughter ratios. Over time this leads to variations in the mantle isotopic ratios
as the parent decays to the daughter. Key assumptions are that the half-life of the
parent isotope is large compared withτmelt, that the flow is strongly stirring, and
that the mantle has reached a statistical steady state. This enables us to neglect the
specifics of the underlying flow. Sampling from our model mantle is dealt with by
averaging over a large numberN of samples to represent the mixing after melting.

The model predicts a probability density for isotopic ratios in MORB which,
with exception of the Pb isotopes, are consistent with measurements. Fitting the
MORB data to this model gives estimates of the model parametersF , τmelt, andN .
Small melt fractions withF around 0.5% are essential for a good fit, whereasτmelt

andN are less well constrained.τmelt is estimated at around 1.4 to 2.4 Ga, andN is
of the order of hundreds. The model predicts a larger variability for the Pb isotopes
than that observed. As has been stated by many previous authors, it appears that
fundamental differences exist between the dynamics of Pb isotopes and those of
Nd, Sr and Hf isotopes.
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1. INTRODUCTION

Many measurements of isotopic ratios such as143Nd/144Nd,176Hf/177Hf, and87Sr/86Sr
have been made on mid-ocean ridge basalt (MORB). These measurements in prin-
ciple contain significant information on melting and convective processes in the
Earth’s mantle, but to extract that information requires a suitable quantitative model.
In this paper we present a simplified model of what we believe to be the funda-
mental processes that give rise to the isotopic heterogeneity of MORB. To make
the presentation clearer, the paper has been split into two parts. The main text de-
scribes the formulation of the model, summarises the results, and compares them
with observations. The appendix presents the mathematical derivations involved.

A good introduction to the geochemical ideas behind this work can be found in
the recent reviews byHofmann(2003) andvan Keken et al.(2002). Different ap-
proaches have been taken to modelling MORB isotopic measurements. Most work
has focused on mixing lines between end member components in the “mantle array”
(plots of one isotopic ratio against another). These end members have been classi-
fied (White, 1985; Zindler and Hart, 1986), and geochemical models of the Earth
have attempted to relate these end members to different parts of the Earth (reser-
voirs) or different processes occurring in the Earth. Other work has gone further
and has attempted to describe the statistical distributions of isotopic ratios (All ègre
et al., 1980; All ègre and Lewin, 1995a,b; Kellogg et al., 2002), and this is the main
focus of the work we present here. In this work we will not use reservoir models,
and focus instead on a single statistical mantle source for MORB (Meibom and An-
derson, 2003). Important alternative approaches to the work presented here can be
found in numerical simulations of mantle convection (Christensen and Hofmann,
1994; Davies, 2002; Ferrachat and Ricard, 2001; Xie and Tackley, 2004), which
exploit the same fundamental processes to generate the MORB isotopic hetero-
geneity.

In this work we have chosen to focus on MORB rather than ocean island basalt
(OIB). The main advantage in studying MORB is its statistical uniformity - MORB
has similar isotopic characteristics regardless of where in the world it has come
from, although there are some small differences between ridges with different spread-
ing rates. Ocean island basalt varies much more from island to island. There are
also differences in the melting processes between them. MORB is thought to be
produced by passive upwelling with∼10% melt production. OIB is thought to be
produced by an active upwelling, with a smaller∼1% melt production. Melting
under ocean islands is more complicated to model.

The model we present describes well the isotopes143Nd/144Nd, 176Hf/177Hf, and
87Sr/86Sr, but not the isotopes of Pb. No attempt is made to model the behaviour of
the isotopes of rare gases (such as He, Ne, and Xe).
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2. KEY PROCESSES

The isotopic systems we are studying consist of three isotopes, whose molar con-
centrations we will label asp, d andd′. p is the parent isotope, which decays with
decay constantλ to the daughter isotoped. d′ is a stable reference isotope of the
same element asd, whose abundance does not change due to radioactive decay. It
is measurements of isotopic ratiosd/d′ that are made on MORB.

The heterogeneity ofd/d′ in the model arises from partial melting processes in the
mantle which fractionate the parent element from the daughter element. It is as-
sumed that isotopes of the same element have the same behaviour under melting,
and so the ratiod/d′ is unchanged after melting. The fractionation leads to differ-
ences in thep/d′ ratio of different parts of mantle material. Over time this leads to
differences ind/d′ as the parent isotopep decays to the daughter isotoped. While
melting processes create heterogeneity, they also are responsible for destroying it.
When the mantle melts, there is a mixing of different melts which smooths out the
variations ind/d′.

These processes occur on the background of mantle convection and plate tectonics.
Mantle convection stirs the mantle and reduces the lengthscale of heterogeneities.
The distinction between stirring by the convection, and the mixing of the melts
should be emphasised - stirring does not reduce the heterogeneity. The convection
also plays a key role in recycling. Melted material comes to the surface to form new
crust, which may later become subducted back in to the mantle and subsequently
undergo further melting events.

Finally, it is important to note that we cannot sample from the mantle directly: we
can only do so after it has melted and come to the surface. Therefore we expect the
variations we observe in MORB to be less than those in the underlying mantle.

3. THE MODEL

Our model consists of two stages. First we examine the processes that create and
destroy heterogeneity in the mantle to derive the form of the distribution ofd/d′ in
the interior. Secondly we examine the processes involved in sampling after melting
from this model mantle to predict how this interior distribution relates to a distri-
bution we expect to observe at mid-ocean ridges.

We consider an episodic model with a box representing the mantle. For an interval
of time ∆t parcels are advected around the box, and the appropriate radioactive
decay is followed. At the end of this interval, a melting event occurs. In a melting
event we produce a single melt fractionF of melt. We average over the concen-
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trations ofp, d andd′ in the melting region of the box, and use this to calculate
the relevant concentrations in the melt and residue produced. These concentrations
depend on the partition coefficients for each isotope, and we assume that isotopes
of the same element, such asd andd′, have the same behaviour under melting. A
fractionF of the material in the melting region is then set with the uniform melt
value composition, and a fraction1 − F with the uniform residue composition. In
this way our melt region both creates and destroys heterogeneity.

In order to simplify the model we make two key assumptions. The first is that the
radioactive decay is slow, so that we can linearise the equation of radioactive de-
cay. The second is that the advection is strongly stirring. By this we mean that the
stirring is such that the statistics of the melting region at the end of the interval are
the same as the statistics over the whole box. This situation gives rise to a statis-
tical steady state (Armstrong, 1968), and a model mantle which is statistically of
the same isotopic composition everywhere (although not a uniform composition).
For calculational convenience, we also take the limit as∆t → 0. An important pa-
rameterisation of the melting process is then the timescaleτmelt, which determines
how often on average it has been since an individual parcel last experienced a melt-
ing event. The assumption that the radioactive decay is slow is then formally that
λτmelt � 1.

It is then possible to derive analytically an expression for the distribution ofd/d′ in
our model mantle (Appendix A).

4. SAMPLING

As mentioned earlier we cannot sample from the mantle directly, but instead sam-
ple after melting. To model this we have extended the ideas of “sampling under
melting and averaging” (SUMA) ofMeibom and Anderson(2003). To model the
sampling we mix together a large numberN of independent identically distributed
samples from our model mantle.N characterises the mixing - ifN is large, there is
a large amount of mixing between different components and thus a large reduction
in the variability observed.N is a simple single parameter characterisation of the
averaging process, which in practise is determined by a variety of different factors
such as the length scale of heterogeneities, the length scale of the mantle region
undergoing partial melting, the diffusivity of chemical species in the melt, and the
time spent in magma chambers.

In the case of averaging large numbers of independent samples, the central limit
theorem is potentially relevant (All ègre and Lewin, 1995b; Meibom and Anderson,
2003). It states that the average ofN independent random samples from a distribu-
tion with meanµ0 and standard deviationσ0 approaches a normal distribution with
meanµ0 and standard deviationσ0/

√
N asN increases. However, the central limit
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theorem is not directly applicable to the distribution of the ratiod/d′ as it is the
individual concentrationsd, andd′ that are averaged and then the ratiod/d′ calcu-
lated and not the other way round. However, it can be shown that the modeld/d′

distribution does approach a normal distribution asN increases, but the standard
deviation is not simplyσ0/

√
N . Appendix Bexplains the details of calculating the

distribution after sampling, andAppendix Cconsiders the largeN asymptotics.

5. ANALYTIC RESULTS

For N large there are a number of asymptotic results that can be derived for the
properties of thed/d′ distribution after sampling. The most important analytic re-
sult is for the asymptotic behaviour of the standard deviationσ of the distribution.

σ ≈ λτmelt|Gd −Gp|
(

p̄

d̄′

)
0

√
2

NF (1− F )
(1)

Here λ is the decay constant of the parent isotope.
(
p̄/d̄′

)
0

is the ratio of the
mean parent isotope concentration to mean reference isotope concentration over
the whole box at the present day.Gp andGd are functions of the melt fractionF
and the relevant partition coefficients, where the lower case subscriptsp andd refer
to the parent and daughter isotopes under consideration.G is a measure of the in-
compatibility of a given isotope under a particular melt fraction. IfG ≈ 0 then the
isotope is compatible (stays in the residue), while ifG ≈ 1 then it is incompatible
(readily enters the melt). For theShaw(1970) melting modelGp is given by

Gp = 1−
(

1− Pp

Dp

F

)1/Pp

(2)

where capitalP andD are different weighted averages of partition coefficients.

Dp =
∑

i

xiKi
p

Pp =
∑

i

qiKi
p

(3)

Ki
p is the mineral/melt partition coefficient for the parent in minerali, xi is the

mass fraction of minerali in the source rock, andqi is the fractional contribution
of minerali to the melt.Gd is defined similarly.

Some features of the equation forσ can be easily interpreted. Variations ind/d′

arise from differences inp/d′. Since we are assuming linearised decay,σ depends
linearly onλ and

(
p̄/d̄′

)
0
. Also, because the only other time scale in the problem is

τmelt and sinceσ is non-dimensional, then on dimensional grounds we must have a
linear dependence onτmelt also. So the largerτmelt, the longer it is between melting
events and thus the greater the heterogeneity that can arise.
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The role of the melting behaviour onσ is less obvious. The dependence on|Gd −Gp|
is indicative of the fact there has to be a fractionation between parent and daugh-
ter to produce the heterogeneity. As such small melt fractions are essential. For
example, large melt fraction MORB melting would haveG ≈ 1 for nearly all el-
ements under consideration and as such can not produce significant heterogeneity.
As mentioned earlierN is indicative of the amount of mixing after melting, so
asymptotically we have the largerN the smallerσ.

Another analytic result of particular interest is for the skewness parameterγ1 (Ap-
pendix C.1), which measures the asymmetry of the distribution about its mean
value.

γ1 ≈
3 (2Gd − 1) sgn(Gd −Gp)√

2NF (1− F )
(4)

Heresgn(x) is the sign function: it equals1 if x is positive,−1 if x is negative.
Hence the sign of the skew is determined by the sign of(Gd −Gp) (2Gd − 1).
For example, ifGp < Gd (parent more compatible than daughter) andGd < 1/2
(a sufficiently small melt fraction say) then the distribution will be asymptotically
negatively skewed. Furthermore, note the dependence onNF (1 − F ) in the de-
nominator. While we may think ofN as a large parameter,F is usually small, so
the skew and non-normality in the distributions can be quite significant.

It is common in geochemistry to plot one isotopic ratio against another. Consider
two isotopic systems(1) and(2) with different parent and daughter elements. Sup-
pose we plot(d/d′)(2) against(d/d′)(1). ForN large, the model predicts that sam-
ples lie approximately on a straight line through the mean value, and gives a pre-
diction for the gradient̄β of this line (Appendix C.3)

β̄ ≈
λ(2)

(
G

(2)
d −G(2)

p

) (
p̄/d̄′

)(2)

0

λ(1)
(
G

(1)
d −G

(1)
p

) (
p̄/d̄′

)(1)

0

(5)

Thus, if we know the partition coefficients, half lives, and mean parent/daughter
isotopic ratios for each system, we can infer a melt fraction from the gradient in
plots of(d/d′)(2) against(d/d′)(1).

This equation simplifies in a particular special case. If the daughter isotopes are
of the same element for both systems (for example, both isotopes of lead) then all
samples lie precisely on a straight line. If it is also the case that the parent elements
are the same (or at least behave similarly under melting such thatG(1)

p ≈ G(2)
p ) then

the gradientβ of this line is independent of the melt model and is simply

β =
λ(2)

λ(1)

(
p̄(2)

p̄(1)

)
0

(6)

Note that this equation will be valid for208Pb/204Pb and206Pb/204Pb, but not207Pb/204Pb.
The short half-life of235U means the207Pb/204Pb system does not satisfy the slow
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decay approximation. As such, this model cannot be used for207Pb/204Pb. It has
been included in the data plots for completeness.

6. COMPARISON WITH OBSERVATIONS

The model has the following input parameters:λ,
(
p̄/d̄′

)
0
,
(
d̄/d̄′

)
0
, Pp, Dp, Pd,

Dd, τmelt, F , andN . We are only concerned with studying the variations ind/d′

so
(
d̄/d̄′

)
0

is not important to us. We will choose it appropriately to get a match
with the mean of the observations. Other parameters we will base on estimates
by previous authors as shown inTable 1. We assume that the melting takes place
somewhere in the garnet/ spinel transition region. As such the partition coefficients
we have used are a linear combination of the coefficients for garnet and spinel
peridotite. With the exception of the Lu-Hf system, there is little difference in the
partition coefficients for these two rock types, so the Lu-Hf system was used to
constrain this linear combination.

There are just three unknown parameters left in this model: the melting timescale
τmelt, the effective melt fractionF producing the heterogeneity, and the parameter
N characterising the mixing before sampling. Note also that these three parameters
are independent of the isotopic system under consideration.

6.1. Samarium - Neodymium

The Sm-Nd system is the best constrained of the systems under examination. The
Sm/Nd ratio of the bulk Earth is taken to be chondritic, and there is general agree-
ment on the values for the partition coefficients of Sm and Nd (Green, 1994). Hence
the Sm/Nd ratio in depleted mantle models can be calculated accurately.

6.2. Rubidium - Strontium

The Rb-Sr system is less well constrained. Owing to the volatility of Rb, the bulk
Earth Rb/Sr ratio is not precisely known. Furthermore, the observed behaviour of
Sr under melting is not well described by the partition coefficients that have been
measured in the laboratory (Hanson, 1977). Hence estimates of Rb/Sr in depleted
mantle models vary considerably (for example, a 35% larger estimate than that in
Table 1is given bySalters and Stracke(2004)).
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6.3. Lutetium - Hafnium

The Lu-Hf system is similar in many ways to the Sm-Nd system, in that we can get
good estimates on the Lu/Hf ratio from chondrites. However, this system is com-
plicated by the large difference between partition coefficients for Lu in the spinel
and garnet stability fields. A 37% larger estimate for Lu/Hf is given inSalters and
Stracke(2004). Also, fewer measurements of hafnium isotopes have been made.

6.4. Uranium - Thorium - Lead

The U-Th-Pb systems are the most difficult to model. The ratio of U/Pb in the
depleted mantle is not well known (discussed later), and the behaviour of lead under
melting is not well understood (Tatsumoto, 1978; White, 1993).

7. RESULTS

The three parametersF , N , andτmelt were varied in order to fit the model to the
measurements of MORB isotopic ratios (sources given inAppendix F).

F is the most straightforward parameter to constrain, provided the decay rates, par-
tition coefficients and mean parent/ daughter isotopic ratios are known.Equation 5
shows that the average gradient in plots of one isotopic ratio against another are de-
termined by the melt fractionF , and is independent ofN or τmelt to leading order.
Fig. 1gives an example of such a plot, and shows howF can be varied to provide
a good fit. The Sm-Nd and Rb-Sr systems constrainF to be around 0.5%.

N andτmelt are harder to constrain, mainly due to the dependence onτmelt/
√

N of
the standard deviation forN large. GivenF , the standard deviations only constrain
τmelt/

√
N , and so a longer timescale could be offset by a large amount of averaging

before mixing. Increasingτmelt stretches the density linearly. The behaviour ofN is
more complicated, as it also has an effect on the shape of the distributions (Fig. 2).
ForN large the model distribution approaches a normal distribution, and yet there
is a definite skew to the distributions that are observed. Hence all that can be said
with any certainty is thatτmelt is around 1.2 - 2.4 Ga, andN is of the order of
hundreds to get a reasonable fit to the data.

Motivated by these constraints, Figs.3 and 4 compare the measurements with
model data usingF=0.5%,τmelt=1.7 Ga andN=500.Fig. 3 shows a plot of ker-
nel smoothed probability density estimates for model and measured data. Kernel
smoothed density estimates (Appendix D) are a generalisation and improvement
on histograms. They have the advantage of being smooth, and have no dependence
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on the end points of bins as histograms do. They do have a dependence on the
bandwidth of the kernel, which determines how smoothed out distribution features
become. However, there are algorithms for choosing the most appropriate band-
width, and these have been used.Fig. 4shows a more traditional set of scatterplots
for pairs of the isotopic systems. These plot an artificial sample from the model,
as well as the measured data.Table 2lists the values of a few important calculated
parameters.

In this tableGd < 1/2 for all isotopic systems. HenceEquation 4implies that
the sign of the skew is determined by the sign ofGd − Gp, i.e. by the relative
compatibility of parent and daughter. Where the parent is more compatible than
the daughter (Gd − Gp > 0 e.g. Sm-Nd, Lu-Hf) we expect a negatively skewed
distribution, and where the parent is less compatible (Gd − Gp < 0 e.g. Rb-Sr,
U-Th-Pb) a positively skewed distribution. This is what is observed. Note also that
NF (1−F ) = 2.5 so that the skews and the non-normality in these distributions are
appreciable. Furthermore, note that the sign of the correlations in the plots of one
isotope against another is given by(Gd−Gp)

(2)/(Gd−Gp)
(1) and thus the observed

correlations are also governed by the relative compatibilities of parent and daughter
elements.

The special case that yieldsEquation 6applies to the plot of206Pb/204Pb against
208Pb/204Pb. In this case the model predicts a single straight line whose gradientβ
depends only on the decay constants of238U and232Th, andκ, the average isotopic
ratio232Th/238U in the model mantle (β = (λ232/λ238)κ). Since the decay constants
are known, the slope of the plot of206Pb/204Pb against208Pb/204Pb can be used to
estimateκ. The value ofκ used was 2.5, and this provides a reasonable fit to the
observed slope.

There is reasonably good agreement between the model and the measurements of
Nd, Sr, and Hf isotopic ratios. The MORB data shows more scatter than the model,
but the general trends are the same. Such scatter could possibly be accounted for
by the variability in melt fractions in the real mantle. The Pb isotopes, however, do
not fit this simple model. The standard deviation of Pb calculated from the model
is larger than that observed. An ad hoc solution to this problem is to reduce the
average ratio238U/204Pb,µ, while keepingκ unchanged. A value for mean depleted
mantleµ of around 2.7 (as opposed to the value of 8.0 used) gives a good match
with these parameters. There is still much debate on the value ofµ in the depleted
mantle, with some authors arguing it should be less than 4.7 (White, 1993), or as
high as 14.4 (Salters and Stracke, 2004).

The isotopes of Nd, Sr, and Hf correlate well with each other. The isotopes of
Pb also correlate well with each other, but there is little correlation between the
isotopes of Nd, Sr, and Hf and the isotopes of Pb. It is important to note that the
model Pb isotopes are more variable than the measured. It implies it is not necessary
to include additional mechanisms for producing heterogeneity, such as subducted

10



sediments, to explain the observed variations. Note also that Sm, Nd, Lu, and Hf
are elements which are little depleted in the mantle by the formation of continental
crust. Sr is also only little depleted, but its parent, Rb, is very depleted. Th, U, and
Pb are all much depleted in the mantle by the formation of continental crust. As
has been stated by many previous authors, the dynamics of the Pb systems seem
notably different to those of Nd, Sr and Hf.

8. PREVIOUS WORK

There has been some recent work done on this problem by other authors. Most
recentlyMeibom and Anderson(2003) introduced the ideas of the statistical upper
mantle assemblage, and of sampling under melting and averaging (which they refer
to as SUMA). Their ideas form a key part of the model we present here. The only
slight criticism we have of their work is in their assessment of the standard deviation
within the framework of the central limit theorem (seeAppendix Efor a fuller
discussion). Their paper describes the ideas behind SUMA, argues strongly for
statistical ways of thinking about these distributions, and discusses in more detail
possible interpretations of the mixing parameterN 1 .

Another detailed examination of this problem was recently given byKellogg et al.
(2002). Many of the main ideas in their modelling approach are shared with our
own. They too have partial melting as the primary cause of heterogeneity, and have
a sampling process which averages over different components in their model mantle
reducing heterogeneity. The main difference in the two approaches lies in their
complexity. TheKellogg et al.(2002) model analyses the behaviour of multiple
reservoirs with fluxes between them, whereas in our model we look at essentially
just one statistical depleted mantle reservoir. Their model has to track subreservoirs
within these reservoirs to study the heterogeneity, and further sub-subreservoirs to
handle the sampling. As such, in order to implement their model it is necessary
to solve numerous differential equations numerically. Furthermore their approach
leads to a proliferation of unknown free parameters, and even more so in extensions
of their model to fit Pb data (Kellogg, 2004). Their findings for the Sm-Nd and Rb-
Sr systems are broadly similar to our own, and importantly they also found that
small melt fractions (also around 0.5%) were essential to getting a good fit to the
data. The advantage of our model is that it is able to reproduce such features using
a simpler and analytically tractable framework with just a few free parameters.

Modelling mixing by averaging overN components was used for trace element
observations bySlater et al.(2001). The variability in trace elements in theSlater
et al. (2001) model arises from mixing between different fractional melts from a
uniform MORB source. They found the standard deviation of their model fractional

1 referred to asM in that paper.
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melts to be a factor of 4 greater than that observed in melt inclusions, which in
turn was a factor of 4 greater than that observed in the host lavas. Hence their
N ≈ 162 ≈ 250, which is of similar magnitude to our model. However, our model
differs in using a heterogenous MORB source, which is necessary when studying
isotopic variability rather than elemental.

A number of the important ideas in this paper can be found in the earlier work of
All ègre and Lewin(1995a,b). The first of these papers (All ègre and Lewin, 1995b)
stresses the importance of looking at the distributions of geochemical measure-
ments, and examines in general terms how various distributions can arise from the
fundamental processes of mixing and fractionation. In the context of this paper the
model mantle we consider is “a well-stirred homogeneous mixture of components
from heterogeneous sources”. We have heterogeneity in our source components
because we have melt and residue components of varying ages. These are strongly
stirred in our model mantle, and then mixed in the melting before sampling. Impor-
tantly, All ègre and Lewin(1995b) stress the role of the central limit theorem and
the approach to a normal distribution in such a case.

The subsequent paper (All ègre and Lewin, 1995a) models the standard deviation
of isotopic ratios in terms of these fundamental processes. Similar approximations
are made as in the work presented here, including looking at a steady state, and
linearising the radioactive decay. However,All ègre and Lewin(1995a) do not dis-
tinguish clearly between the distinct processes of stirring and mixing and so direct
comparison between the stirring time scale of their paper and the melting time scale
of this paper cannot be made. Furthermore, as has been demonstrated in this paper,
the behaviour of the standard deviation of ratios can be quite non intuitive and can
not be modelled by a simple linear evolution equation as is done in their paper.

9. CONCLUSIONS

The minimal model we present here goes some way to explaining the isotopic het-
erogeneity we see in MORB. In this model the heterogeneity in the model mantle is
produced by a small melt fraction (0.5%) partial melting process, where on average
a parcel of mantle material undergoes such melting around every 2 Ga. In partic-
ular, the heterogeneity we observe in MORB does not originate in the large melt
fraction melting that produces MORB. One possible place for a small melt fraction
partial melting process to occur to generate this heterogeneity would be underneath
ocean island hot spots.

The simplified model does not fit well with the lead isotopes, but this is unsurprising
since lead isotopes are generally inconsistent with simple evolutionary models of
the depleted mantle. Any resolutions to the various “lead paradoxes” (Galer and
O’Nions, 1985; Murphy et al., 2002) should also be able to explain the variability
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found in the isotopic measurements. The main message here is one of consistency.
With the exception of lead, the heterogeneity we see is consistent with a simple
model of mantle processes.

The model we have presented is minimal, and neglects many processes that have
been proposed to account for the isotopic variability of the mantle. But we hope it
contains the most essential physics. There are many possible extensions. Of partic-
ular interest would be an extension to the isotopic measurements made on ocean
island basalt (OIB).Meibom and Anderson(2003) have argued it may be possi-
ble to explain these observations using the same sample source as for MORB but
with modifications to the sampling process. For example, there could be a different
amount of mixing (a differentN ), or there could be preferential melting of dif-
ferent components. Preferential melting would require some modifications to the
sampling procedures we have described. Real mantle melting takes place at a wide
range of melt fractions and so another useful extension would be to consider mul-
tiple melt regions with different melt fractions and the effect this would have on
the distributions. Another simplifying assumption in this model was in taking a
strong stirring statistical steady state, and it is not clear how valid an assumption
this is to make. Fluid dynamics simulations may be able to play an important role
in examining the validity of this assumption. Further investigation is needed.
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A. THE BASIC MODEL

A.1. Radioactive Decay

We track the molar concentrations of the three isotopesp, d, andd′. Consider a
fluid parcel which remains outside the melting region. Suppose we havep = pstart,
d = dstart, d′ = d′start for such a fluid parcel. Following this fluid parcel we have

Dp

Dt
= −λp

Dd

Dt
= λp

Dd′

Dt
= 0 (A.1)

Thus, after a timet following this fluid parcel we have

p = pstart e−λt

d = dstart + pstart

(
1− e−λt

)
d′ = d′start

(A.2)

and in particular (
d

d′

)
=

(
d

d′

)
start

+
(
1− e−λt

) ( p

d′

)
start

(A.3)

Suppose thatλt � 1. Then approximating this to first order we have(
d

d′

)
=

(
d

d′

)
start

+ λt
(

p

d′

)
start

(A.4)

Let p̄0, d̄0, andd̄′0 be the mean concentrations of these isotopes over the whole box
at the present day. Let̄pτ , d̄τ , andd̄′τ be the same mean concentrations an ageτ
ago. Then working in similar way but integrating backwards in time, ifλτ � 1 we
have (

d̄

d̄′

)
τ

=

(
d̄

d̄′

)
0

− λτ
(

p̄

d̄′

)
0

(A.5)

The assumption that the age is short compared to the radioactive decay timescale
means we can treat(p/d′) as a constant and look at linear growth of(d/d′).

A.2. Melting

At intervals∆t a melting event occurs in the melting region. In a melting event
we find the mean values ofp, d, andd′ in the melting region and call these our
psource, dsource, andd′source values. Note that in the steady state approximation the
mean of the melting region is the same as the mean over the whole box. That is to
saypsource = p̄τ , dsource = d̄τ , andd′source = d̄′τ at an ageτ before the present day.
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The melting region produces a melt fractionF of melt. As such, a fractionF of
material in the melting region is set withp = pmelt, d = dmelt, d′ = d′melt, where
these values are calculated from the expressions below. Similarly, a fraction(1−F )
is set to the appropriate residue values. The melting equations are:

pmelt =
Gp

F
psource pres =

1−Gp

1− F
psource

dmelt =
Gd

F
dsource dres =

1−Gd

1− F
dsource

d′melt =
Gd′

F
d′source d′res =

1−Gd′

1− F
d′source

(A.6)

whereGp, Gd, Gd′ come from the melting model used, and are related to the parti-
tion coefficients for the relevant isotopes and the melt fractionF . A good overview
of different melt models is given inZou(1998). Here we have used theShaw(1970)
model, where

Gp = 1−
(

1− Pp

Dp

F

)1/Pp

(A.7)

with similar definitions forGd, andGd′. This is slightly confusing notation - upper
caseP , D are different weighted averages of partition coefficients for a given iso-
tope, whereas lower casep, d refer to the parent and daughter isotopes respectively.

Dp =
∑

i

xiKi
p

Pp =
∑

i

qiKi
p

(A.8)

Ki
p is the mineral/melt partition coefficient for the parent in minerali, xi is the

mass fraction of minerali in the source rock, andqi is the fractional contribution
of minerali to the melt. Note that

Gp →
F

Dp

as F → 0 (A.9)

We will assume that isotopes of the same element have the same behaviour under
melting (and thus for a given melt fraction the sameG), and in particular thatGd =
Gd′.

With λτ � 1 we can treat the(p/d′)melt and(p/d′)res values as constants. Hence,
at an ageτ before the present day we have(

p

d′

)
melt

=
Gp

Gd

(
p̄

d̄′

)
0(

p

d′

)
res

=
1−Gp

1−Gd

(
p̄

d̄′

)
0(

d

d′

)
melt

=

(
d

d′

)
res

=

(
d̄

d̄′

)
0

− λτ
(

p̄

d̄′

)
0

(A.10)
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A.3. Rates of growth

Define the ageτ of a parcel as the time elapsed since the parcel last entered the
melting region. Any given parcel was last created either as melt or residue in the
melting region. Since the melt fraction produced by the melting region isF , this
means a fractionF of the overall material will have come from melt and(1− F )
from residue. Suppose a parcel has an ageτ and was made as melt a timeτ ago.
Then its present(d/d′) value is

(
d

d′

)
τ,was melt

=

(
d

d′

)
melt

+ λτ
(

p

d′

)
melt

=

(
d̄

d̄′

)
0

+ λτ
((

p

d′

)
melt

−
(

p̄

d̄′

)
0

) (A.11)

This can be simplified as

(
d

d′

)
τ,was melt

=

(
d̄

d̄′

)
0

− ντ

Gd

(A.12)

where

ν = λ (Gd −Gp)
(

p̄

d̄′

)
0

(A.13)

Similarly for the residue we have

(
d

d′

)
τ,was res

=

(
d̄

d̄′

)
0

+
ντ

1−Gd

(A.14)

A.4. Distribution of ages

Let the melting region have non-dimensional areaA relative to the size of the box.
Define the iterate ages to be the number of iterates since a given parcel last entered
the melting region. Let̂S be a discrete random variable giving the distribution of
iterate ages. If the advection is strongly stirring, then the probability of any given
parcel entering the melting region at that timestep isA. Considering a long time
statistical steady state,̂S is given by a geometric distribution, where the probability
of an iterate age ofs is

A(1− A)s s = 0, 1, 2... (A.15)

However, it is easier to work with a continuous distribution. The continuous ana-
logue of the geometric distribution is the exponential distribution. The ageτ is the
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time since a given parcel last entered the melting region and soτ = s∆t. Note that

A(1− A)s = A exp

(
−τ
− log(1− A)

∆t

)
(A.16)

So the discrete distribution has an associated melting timescale given by

τmelt =
∆t

− log(1− A)
(A.17)

Taking the limit as∆t → 0, A → 0 with τmelt fixed allows us to relate the discrete
and continuous distributions. Let̂T be the continuous random variable giving the
distribution of ages. Then̂T is distributed exponentially with meanτmelt. Let Ê be
an exponential random variable with mean 1. Then we can writeT̂ = τmeltÊ. Ê
has probability density function given by

fÊ(x) = e−x x > 0 (A.18)

In this limit the time interval∆t and the melting region areaA become infinites-
imal. As such the assumption that strong stirring occurs between time intervals
cannot be made. However, the continuous limit should be a reasonable approxima-
tion provided the timescale for stirring is short compared to the melting timescale
τmelt, and for calculational convenience it is used from now on.

A.5. Distribution of d/d′

Hence, in terms of the random variablêT giving the distribution of ages we have
(usingA.12 andA.14) the following for the distribution ofd/d′ in the interior of
the box (

d̂

d̂′

)
−
(

d̄

d̄′

)
0

∼
{
−νT̂ /Gd (melt)

νT̂ /(1−Gd) (res)
(A.19)

Where we have a probabilityF of getting a melt value, and(1 − F ) of getting
a residue value. Here hats on̂d and d̂′ are used to denote that they are random
variables.A.19 can also be expressed in terms of the exponential random variable
Ê as (

d̂

d̂′

)
−
(

d̄

d̄′

)
0

∼
{
−lÊ/Gd (melt)

lÊ/(1−Gd) (res)
(A.20)

where

l = ντmelt = λτmelt (Gd −Gp)
(

p̄

d̄′

)
0

(A.21)
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B. SAMPLING

When we sample the mantle we do not sample directly from the distribution that
has just been derived. In fact we sample after numerous components from this dis-
tribution have melted and mixed together. This is the “sampling under melting and
averaging” (SUMA) concept (Meibom and Anderson, 2003). We will assume there
is no bias in melting and mixing - the likelihood of a component entering the melt
is proportional to its abundance in the source.

Suppose we mix togetherN independent random samples from the distribution
A.20. Note in particular that the(d/d′) ratio of the mixture isnot the mean of the
ratios of the independent samples. Instead the individual concentrationsd andd′

are averaged and the ratio is then calculated i.e. the quantity of interest is

N∑
i=1

di/
N∑

i=1

d′i (B.1)

Note in particular the following identity

∑N
i=1 di∑N
i=1 d′i

−
(

d̄

d̄′

)
0

=
N∑

i=1

wi

[(
di

d′i

)
−
(

d̄

d̄′

)
0

]
(B.2)

where the weightswi are given by

wi = d′i/
N∑

j=1

d′j (B.3)

Let Ẑ give the distribution of
(∑N

i=1 d̂i/
∑N

i=1 d̂′i
)
−
(
d̄/d̄′

)
0

andR̂i give the distri-

bution of
(
d̂i/d̂

′
i

)
−
(
d̄/d̄′

)
0
. Then theR̂i’s are independent identically distributed

(i.i.d.) random variables with distribution (usingA.20)

R̂i =

{
−lÊi/Gd (melt)

lÊi/ (1−Gd) (res)
(B.4)

where theÊi’s are i.i.d. exponential random variables with mean 1.

Now, note thatd̂′i can only take two values in our model - it is̄d′0Gd/F if we have
a melt value, and̄d′0 (1−Gd) /(1− F ) if we have a residue value. Hence

d̂′iR̂i =

{
−d̄′0lÊi/F (melt)

d̄′0lÊi/(1− F ) (res)
(B.5)

Now
∑N

j=1 d′j depends on how many melt and how many residue components are
mixed together. Suppose we haver melt components andN−r residue components
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in the mix. Then
∑N

j=1 d′j = M(r)d̄′0 where

M(r) = r
Gd

F
+ (N − r)

1−Gd

1− F
(B.6)

Assuming the sampling is unbiased, the probabilityqr of gettingr melt components
andN − r residue components in the mix is given by the binomial distribution

qr =

(
N

r

)
F r(1− F )N−r (B.7)

HenceẐ has distribution given by

Ẑ = Ŷr with probability qr (B.8)

WhereŶr is the result of combiningr melt andN − r residue components, with
distribution given in terms of thêEi’s as

Ŷr =
l

M(r)

 r∑
i=1

−Êi

F
+

N∑
i=r+1

Êi

1− F

 (B.9)

The above expression forms the basis of one method of estimating the density func-
tion for d/d′ after sampling. Exponential random variables can be simulated easily,
and so an artificial sample from this distribution can be constructed. From this
it is possible to numerically estimate the density (e.g. by kernel smoothing,Ap-
pendix D).

B.1. Characteristic functions

In order to get an analytic expression for the probability distribution ofẐ it is
useful to use characteristic functions. Suppose a random variable has probability
density functionf(x). Then its characteristic functionφ(k) is defined by its Fourier
transform

φ(k) =
∫ ∞

−∞
e−ikx f(x) dx (B.10)

There are two important properties that we wish to exploit. IfX̂ is a random vari-
able with characteristic functionφ(k) thenaX̂ has characteristic functionφ(ak).
Also, if X̂1, X̂2, ...X̂n are independently distributed with characteristic functions
φ1(k), φ2(k), ...φn(k), then

∑n
i=1 X̂i has characteristic function

∏n
i=1 φi(k).

The exponential random variablêE has characteristic function

φÊ(k) = (1 + ik)−1 (B.11)
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Hence, using the two properties stated above,Ŷr has characteristic function

φŶr
(k) =

(
1− ikl

M(r)F

)−r(
1 +

ikl

M(r)(1− F )

)−(N−r)

(B.12)

HenceẐ has characteristic function

φẐ(k) =
N∑

r=0

(
N

r

)
F r(1− F )N−rφŶr

(k) (B.13)

By using the Fourier inversion theorem we may recover the distribution ofẐ.

fẐ(x) =
1

2π

∫ ∞

−∞
eikx φẐ(k) dk (B.14)

This is another way of constructing the density ofd/d′ after sampling, and gives the
precise density function. Doing this Fourier inversion analytically leads to compli-
cated sums of a large number of terms. These are very time consuming to calculate,
and difficult to interpret. However, this integral can be done efficiently numerically
using a Fast Fourier Transform (FFT), and this method was used to produceFig. 2.
Moreover, simpler asymptotic results for largeN can be obtained that are easier to
interpret and much quicker to evaluate.

C. ASYMPTOTIC RESULTS

C.1. Asymptotic Moments

The moments of the distribution can be read off from the Taylor expansion about
k = 0 of the characteristic function. If thenth moment isαn we have

φẐ(k) =
∞∑

n=0

αn
(−ik)n

n!
(C.1)

We are interested in understanding the behaviour of these moments for largeN .
Note that the characteristic function can be written as

φẐ(k) =
N∑

r=0

(
N

r

)
F r(1− F )N−rv

(
r

N

)
(C.2)

where

v(x) =

(
1− ikl

NFm(x)

)−Nx(
1 +

ikl

N(1− F )m(x)

)−N(1−x)

(C.3)
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and

m(x) = x
Gd

F
+ (1− x)

1−Gd

1− F
(C.4)

Taylor expandingv(r/N) in C.2aboutr/N = F (the mean of the binomial distri-
bution) gives

φẐ(k) =v(F ) +
F (1− F )

2N
v′′(F )

+
F (1− F )(1− 2F )

6N2
v′′′(F )

+
3F 2(1− F )2

24N2
v(4)(F ) + O

(
1

N3

) (C.5)

where the coefficient ofv(m)(F ) is simply themth central moment of the binomial
distribution overm!Nm.

Taylor expandingv(x) given inC.3aboutk = 0 yields

v(x) = 1 + (−ikl)
F − x

(1−Gd) F + (Gd − F )x

+
(−ikl)2

2

N(F − x)2 + F 2 + x− 2Fx

N((1−Gd)F + (Gd − F )x)2
+ ...

(C.6)

Taylor expanding this expression forv(x) aboutx = F and substituting into equa-
tion C.5 allows us to read off the asymptotic moments. To leading order we have

Z̄ = E
[
Ẑ
]

= l

(
Gd − F

NF (1− F )
+ O

(
1

N2

))

E
[(

Ẑ − Z̄
)2
]

= l2
(

2

NF (1− F )
+ O

(
1

N2

))

E
[(

Ẑ − Z̄
)3
]

= l3
(

6 (2Gd − 1)

(NF (1− F ))2 + O
(

1

N3

)) (C.7)

In particular, note that the skew parameterγ1 is

γ1 = E
[(

Ẑ − Z̄
)3
]
/
(
E
[(

Ẑ − Z̄
)2
])3/2

= sgn(l)

(
3 (2Gd − 1)

(2NF (1− F ))1/2
+ O

(
1

N3/2

)) (C.8)

Most importantly from all this we see that the asymptotic standard deviationσ =√
var(Ẑ) of this distribution is

σ ≈ λτmelt|Gd −Gp|
(

p̄

d̄′

)
0

√
2

NF (1− F )
(C.9)
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Less important is the smallO(1/N) correction to the mean which is not signifi-
cant compared with theO(1/N1/2) standard deviation. Higher order moments and
corrections can be easily found by just expanding the Taylor series to higher orders.

C.2. Asymptotic density: Edgeworth expansion

An approximate form of the density for largeN can obtained by using an Edge-
worth expansion (seeBlinnikov and Moessner(1998) for a fuller discussion of
these expansions). Let̂Q = (Ẑ − Z̄)/σ. Then the first two terms in the Edgeworth
expansion for the density of̂Q is

fQ̂(x) =
e−x2/2

√
2π

{
1 + σ

S3

6
He3(x)

+σ2

(
S4

24
He4(x) +

S2
3

72
He6(x)

)
+ O

(
σ3
)} (C.10)

whereSn = κn/σ
2n−2 andκn is thenth cumulant defined by

log φẐ(k) =
∞∑

n=0

κn
(−ik)n

n!
(C.11)

Hen(x) is thenth Chebyshev-Hermite polynomial, the relevant ones being

He3(x) = x3 − 3x

He4(x) = x4 − 6x2 + 3

He6(x) = x6 − 15x4 + 45x2 − 15

(C.12)

We have

σ = |l|
√

2

NF (1− F )
+ O

(
1

N3/2

)
(C.13)

Using the results of the previous section we can calculate the cumulants of the
distribution in powers ofσ. Thus

S3 =
κ3

σ4
=

3

2l
(2Gd − 1) + O

(
σ2
)

S4 =
κ4

σ6
=

3

2l2

(
14G2

d + F 2 − 8FGd − 10Gd + 3F + 2
)

+ O
(
σ2
) (C.14)

Substituting these expressions back in toC.10 gives an expansion with errors of
O (σ3). Substituting back the leading order expression forσ (C.13) gives an expan-
sion in powers ofN with errors ofO

(
1/N3/2

)
. As an example, working to first

order inσ (as the next term is more cumbersome) we get

fQ̂(x) =
e−x2/2

√
2π

1 +
(2Gd − 1) sgn(l)

2
√

2NF (1− F )
He3(x) + O

(
1

N

) (C.15)
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The above Edgeworth expansion is a third way of estimating the distribution of
d/d′ after sampling. Its main strength is that it is the quickest to evaluate. It is
an approximation to the true density and can contain features that the true density
would not. For example, it is possible for an Edgeworth expansion of a density to
become negative, although it still always integrates to 1.

C.3. Mixing lines

Consider two isotopic systems(1) and (2) with potentially different parent and
daughter elements. Suppose we plot(d/d′)(2) against(d/d′)(1). We are interested
in knowing where our samples plot.

Consider a sample which was made by averagingr melt components andN − r
residue components. Recall

Ŷ (1)
r =

l(1)

M (1)(r)

 r∑
i=1

−Êi

F
+

N∑
i=r+1

Êi

1− F

 (C.16)

and note in particular that the part in brackets is independent of isotopic system and
melt model.

Hence
Ŷ (2)

r

Ŷ
(1)
r

=
l(2)M (1)(r)

l(1)M (2)(r)
= βr (C.17)

That is, in a plot of plot of(d/d′)(2) against(d/d′)(1) samples will lie on straight

lines through
((

d̄/d̄′
)(1)

0
,
(
d̄/d̄′

)(2)

0

)
with gradientsβr. For example, whenr = 0

have

β0 =
l(2)

(
1−G

(1)
d

)
l(1)

(
1−G

(2)
d

) (C.18)

and whenr = N have

βN =
l(2)G

(1)
d

l(1)G
(2)
d

(C.19)

For N large, we can use the methods of expansion used in the previous section to
show that for

β̂ = βr with probability qr (C.20)

we have

β̄ = E(β̂) =
l(2)

l(1)
+ O

(
1

N

)
(C.21)

and

var(β̂) =

(
l(2)

l(1)

)2
(
G

(1)
d −G

(2)
d

)2

NF (1− F )
+ O

(
1

N2

)
(C.22)
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So forN large the mean gradient of the lines can be approximated to leading order
by l(2)/l(1). Hence

β̄ ≈
λ(2)

(
G

(2)
d −G(2)

p

) (
p̄/d̄′

)(2)

0

λ(1)
(
G

(1)
d −G

(1)
p

) (
p̄/d̄′

)(1)

0

(C.23)

Note a particular special case - if for both systems the daughters are isotopes of the
same element (for example, both isotopes of lead), thenM (1)(r) = M (2)(r) and
thus all samples lie on a single straight line of gradient exactlyβ = l(2)/l(1). In this
case it is usual for the reference isotopes to be the samed′(1) = d′(2). Furthermore,
if it also the case that the parent elements are the same (or at least behave similarly
under meltingG(1)

p ≈ G(2)
p ) then this gradient is independent of the melt model and

is simply

β =
λ(2)

λ(1)

(
p̄(2)

p̄(1)

)
0

(C.24)

D. COMPARISON OF METHODS FOR DENSITY ESTIMATION

We have outlined in the previous sections (B, B.1, andC.2) three methods of es-
timating the density ofd/d′ in the model. The first method, numerical simulation,
generates a sample from the model distribution by using computer generated sam-
ples from an exponential distribution. The probability density is then estimated us-
ing a kernel smoothed estimate for this sample. Givenn independent observations
x1, x2, ..., xn from the random variablêX, the kernel density estimator̃fh(x) of the
density valuef(x) is defined as

f̃h(x) =
1

nh

n∑
i=1

K
(

xi − x

h

)
(D.1)

whereh is the bandwidth andK(u) the kernel function. For a gaussian kernel

K(u) =
1√
2π

exp
(
−1

2
u2
)

(D.2)

The functiondensity in R (R Development Core Team(2004)) was used to cal-
culate this efficiently. One advantage of using kernel smoothed estimates, over plot-
ting a histogram for example, is that it is easy to plot more than one density on the
same plot. In this work, the default gaussian kernel was used, with optimal band-
width as chosen by R. Kernel smoothed estimates are sensitive to choices of kernel
and bandwidth, seeSheather and Jones(1991), Silverman(1986), and the R docu-
mentation for a fuller discussion.

The second method involves calculating the full analytic distribution by numeri-
cally doing the Fourier inversion ofEquation B.14. The advantage of this method
is that you get the density precisely.
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The third method is to use the asymptotic approximation provided by the Edge-
worth expansion ofC.15. This is an approximation to the true density, but is the
quickest of the three methods to calculate, and becomes more accurate asN is
increased.

Fig. D.1uses these three methods to produce model densities for143Nd/144Nd. All
three methods produce very similar shapes, clearly showing similar standard devi-
ations and skews. The analytic density contains a small scale spike at 0.51322. The
area under this spike is small compared with 1. The spike is not seen in the kernel
smoothed estimate because it is a feature of smaller scale than the bandwidth. Sim-
ilarly it is not seen in the Edgeworth expansion because there are not enough terms
in the expansion to express such a feature. Our interest in this work is in broad
features of the distributions, and such small features are liable to be disturbed by
other factors (for example, measurement error) and so this spike is not an important
feature. Note also that the Edgeworth expansion becomes negative on the far right
of the plot, which is a disadvantage in using such an expansion far from the mean.

When demonstrating the behaviour of the model distribution with varyingN in
Fig. 2numerical Fourier inversion was used for greatest accuracy. However, when
comparing the model with measured data inFig. 3 we have opted to use kernel
smoothed densities to provide a more like-for-like comparison between the model
and measured data. When generating a model sample, a sample size of 1000 was
used to provide a close comparison with the measured data used which is of a
similar size.

E. REMARKS ON THE CENTRAL LIMIT THEOREM

As has been discussed inAppendix B, when we sample from our model mantle
we do so after averaging over a number of components. For a set of independent
identically distributed random variablesX1, X2, ..., XN with meanµ0 and standard
deviationσ0, the central limit theorem states that the distribution ofX̄ =

∑
Xi/N

will approach a normal distribution with meanµ0 and standard deviationσ0/
√

N .
However, this cannot be applied in mixing isotopic ratios since it is the individ-
ual concentrations ofd andd′ that are averaged and then the ratio taken. Hence
d̄/d̄′ =

∑
di/

∑
d′i 6=

∑
(di/d

′
i)/N . As always in geochemistry, great care must

be taken in dealing with ratios of quantities. However, it does turn out that in our
model we do approach a normal distribution, but the standard deviation is quite dif-
ferent from a naive use of the central limit theorem. As an example, using Meibom
and Anderson’s notation, the standard deviationσum of thed/d′ distribution before
averaging is

σum = |l|

√
(F −Gd)2 + 2F (1− F )

Gd(1−Gd)
(E.1)
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whereas the standard deviationσmeas we would measure after the averaging is

σmeas = |l|
(√

2

NF (1− F )
+ O

(
1

N3/2

))
(E.2)

and in particular it is clear that

σmeas 6=
σum√

N
(E.3)

In fact, for the model values for Nd, there is a factor of 15 difference between the
left and right hand sides of the above expression whenN is large. It is also impor-
tant to note that the approach to a normal distribution is governed byNF (1 − F )
and notN , as indicated by the expression for the skew of the distribution (Equa-
tion 4) and the first correction to the normal distribution in the Edgeworth expansion
(Equation C.10). SinceF is small, the distributions we observe are significantly
skewed despiteN being large.

F. DATA SOURCES

Table F.1gives the raw data from which some of the data inTable 1was calcu-
lated. The weighted partition coefficientsP andD given in Table 1are a linear
combination of 60% the garnet and 40% the spinel coefficients given inTable F.1.

The MORB data set was a compilation by A. Stracke from the work ofBach et al.
(1994); Chauvel and Blichert-Toft(2001); Dosso et al.(1988, 1993, 1999, 1991);
Douglass et al.(1999); Fontignie and Schilling(1996); Frey et al.(1993); Hamelin
and Allègre(1985); Hamelin et al.(1986); Hanan et al.(1986); Hegner and Tat-
sumoto(1987); Ito et al.(1987); Kempton et al.(2000); Klein et al.(1991, 1988);
MacDougall and Lugmair(1986); Mahoney et al.(2002, 1989, 1994); Mertz et al.
(1991); Mertz and Haase(1997); Michard et al.(1986); Newsom et al.(1986); Price
et al.(1986); Pyle et al.(1992); Rehk̈amper and Hofmann(1997); Salters(1996);
Salters and Hart(1991); Salters and White(1998); Schilling et al.(1994, 1999);
Shirey et al.(1987); Sims et al.(2002); Vlastelic et al.(1999); Wendt et al.(1999);
White et al.(1987); Yu et al.(1997).
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Table 1. Given parameters.

parent isotope p 147Sm 87Rb 176Lu 232Th 238U 235U
daughter isotope d 143Nd 87Sr 176Hf 208Pb 206Pb 207Pb
reference isotope d′ 144Nd 86Sr 177Hf 204Pb 204Pb 204Pb

decay rate / Ga−1a λ 0.00654 0.0142 0.0193 0.0495 0.155 0.985
parent part. coeff.b Dp 0.03990 0.00039 0.29739 0.00021 0.00054 0.00054
parent part. coeff.b Pp 0.12392 0.00058 0.94719 0.00068 0.00178 0.00178

daughter part. coeff.b Dd 0.02787 0.02983 0.04508 0.02793 0.02793 0.02793
daughter part. coeff.b Pd 0.08653 0.08908 0.14333 0.07175 0.07175 0.07175

mean isotopic par./dau. ratioc (p̄/d̄′)0 0.253 0.0188 0.0324 20.0 8.04 0.0583

(a) Decay constantsλ of the parent isotopes are accurately known (Faure, 1986). Someλ
have been rounded.
(b) Partition coefficients based on the estimates ofMcKenzie and O’Nions(1991), taking
a linear combination of the values for garnet and spinel peridotite (Appendix F).
(c)
(
p̄/d̄′

)
0

estimated from the depleted mantle model ofMcKenzie and O’Nions(1991)
(Appendix F).
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Table 2. Calculated parameters givenF=0.5%,τmelt=1.7 Ga,N=500.

parent isotope p 147Sm 87Rb 176Lu 232Th 238U 235U
daughter isotope d 143Nd 87Sr 176Hf 208Pb 206Pb 207Pb
reference isotope d′ 144Nd 86Sr 177Hf 204Pb 204Pb 204Pb

parent incompatibility Gp 0.119 1.000 0.017 1.000 1.000 1.000
daughter incompatibility Gd 0.165 0.155 0.106 0.165 0.165 0.165

relative compatibility Gd −Gp 0.047 -0.845 0.089 -0.835 -0.835 -0.835
model asymptotic s.d.a σasym 1.18×10-4 3.43×10-4 8.49×10-5 1.260 1.587 0.073

MORB data s.d.b σMORB 1.26×10-4 4.93×10-4 1.36×10-4 0.464 0.469 0.056

a σasym is the asymptotic standard deviation of the model calculated usingEquation 1.
b σMORB is the standard deviation of the isotopic measurements on MORB.
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Table F.1. Elemental concentrations, garnet/spinel partition coefficients and isotopic abun-
dances.

parent isotopep 147Sm 87Rb 176Lu 232Th 238U 235U
daughter isotoped 143Nd 87Sr 176Hf 208Pb 206Pb 207Pb

reference isotoped′ 144Nd 86Sr 177Hf 204Pb 204Pb 204Pb
parent element conc. /ppma 0.272 0.0930 0.0550 0.00420 0.00170 0.00170

daughter element conc. /ppma 0.677 14.0 0.237 0.0150 0.0150 0.0150
par./dau. elemental ratioa 0.402 0.00664 0.232 0.280 0.113 0.113
p isotope abundance /%b 15.0 27.84 2.60 100.0 99.27 0.72
d′ isotope abundance /%b 23.8 9.86 18.6 1.40 1.40 1.40

parentDspinel
a 0.03477 0.00039 0.05077 0.00016 0.00012 0.00012

parentPspinel
a 0.10634 0.00056 0.12193 0.00052 0.00036 0.00036

parentDgarnet
a 0.04760 0.00039 0.66733 0.00028 0.00118 0.00118

parentPgarnet
a 0.15028 0.00062 2.18507 0.00091 0.00391 0.00391

daughterDspinel
a 0.02778 0.03454 0.02888 0.03198 0.03198 0.03198

daughterPspinel
a 0.08592 0.10403 0.08878 0.08393 0.08393 0.08393

daughterDgarnet
a 0.02801 0.02277 0.06939 0.02186 0.02186 0.02186

daughterPgarnet
a 0.08745 0.06666 0.22516 0.05348 0.05348 0.05348

(a)McKenzie and O’Nions(1991)
(b) Lide (2003)
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List of Figures

1 Plot of143Nd/144Nd against87Sr/86Sr. Measured MORB data points
are plotted. Straight lines are model predictions usingEquation 5
with melt fractionF as indicated. A melt fraction of 0.5% provides
a good fit. 37

2 Plot of model probability densities for143Nd/144Nd with F=0.5%,
τmelt=1.7 Ga, andN varied as shown. Surprisingly, forN between
2 and 30 the standard deviation actually increases asN is
increased. ForN large the distribution becomes more symmetric
and gaussian in appearance, and standard deviation decreases as
1/
√

N (Equation 1). N=500 gives a similar distribution shape to
that observed (Fig. 3). Note that

(
d̄/d̄′

)
0

has been chosen to match
the observed mean withN=500. 38

3 Plots of kernel smoothed probability density estimates for model
and observed MORB data.n gives the number of measured
MORB isotopic ratios. The model curves were calculated from
a sample of size 1000 generated by numerical simulation. The
bandwidth quoted is the standard deviation of the gaussian kernel
smoother applied. 39

4 Scatter plots of model and observed MORB data. 40

D.1 Plot comparing the three methods of density estimation in the
model for143Nd/144Nd, with F=0.5%,τmelt=1.7 Ga, andN=500.
For the numerical sample, the sample sizen is shown along with
the bandwidth of the kernel smoother. The Edgeworth expansion
is to second order (up to and including terms of orderσ2). 41
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Fig. 1. Plot of143Nd/144Nd against87Sr/86Sr. Measured MORB data points are plotted.
Straight lines are model predictions usingEquation 5with melt fractionF as indicated. A
melt fraction of 0.5% provides a good fit.
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Fig. 2. Plot of model probability densities for143Nd/144Nd withF=0.5%,τmelt=1.7 Ga, and
N varied as shown. Surprisingly, forN between 2 and 30 the standard deviation actually
increases asN is increased. ForN large the distribution becomes more symmetric and
gaussian in appearance, and standard deviation decreases as1/

√
N (Equation 1). N=500

gives a similar distribution shape to that observed (Fig. 3). Note that
(
d̄/d̄′

)
0

has been
chosen to match the observed mean withN=500.
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Fig. 3. Plots of kernel smoothed probability density estimates for model and observed
MORB data.n gives the number of measured MORB isotopic ratios. The model curves
were calculated from a sample of size 1000 generated by numerical simulation. The band-
width quoted is the standard deviation of the gaussian kernel smoother applied.

39



143Nd 144Nd

0.702 0.704 0.706 36 38 40 42 15.4 15.6 15.8

0.
51

24
0.

51
28

0.
51

32

0.
70

2
0.

70
4

0.
70

6

87Sr 86Sr

176Hf 177Hf

0.
28

28
0.

28
32

36
38

40
42

208Pb 204Pb

206Pb 204Pb
16

18
20

22
24

0.5124 0.5128 0.5132

15
.4

15
.6

15
.8

0.2828 0.2832 16 18 20 22 24

207Pb 204Pb

● ●Model data MORB data

Fig. 4. Scatter plots of model and observed MORB data.

40



0.5126 0.5127 0.5128 0.5129 0.5130 0.5131 0.5132 0.5133

0
10

00
20

00
30

00
40

00

143Nd 144Nd

n = 1000   Bandwidth = 2.498e−05

D
en

si
ty

Numerical sample
Full analytics
Edgeworth expansion

Fig. D.1. Plot comparing the three methods of density estimation in the model for
143Nd/144Nd, withF=0.5%,τmelt=1.7 Ga, andN=500. For the numerical sample, the sam-
ple sizen is shown along with the bandwidth of the kernel smoother. The Edgeworth ex-
pansion is to second order (up to and including terms of orderσ2).
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