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Abstract— We have developed an idealised mathematical model to understand
the isotopic variability of the mantle and its relation to the observed variations
in isotopic ratios'*3Nd/A44Nd, 87SrfeSr, 170Hf/17"Hf, 298PbF%Ph, 2%%PhP%Ph, and
20’PpPO%Ph measured on mid-ocean ridge basalt (MORB). We consider a simple
box model of mantle processes. A single melt region produces a melt fraction

of melt, and the average time since a given parcel of mantle material last visited
this region is given by the timescatg,;;. The melt region fractionates the par-
ent/daughter ratios. Over time this leads to variations in the mantle isotopic ratios
as the parent decays to the daughter. Key assumptions are that the half-life of the
parent isotope is large compared with.;;, that the flow is strongly stirring, and

that the mantle has reached a statistical steady state. This enables us to neglect the
specifics of the underlying flow. Sampling from our model mantle is dealt with by
averaging over a large numbarof samples to represent the mixing after melting.

The model predicts a probability density for isotopic ratios in MORB which,
with exception of the Pb isotopes, are consistent with measurements. Fitting the
MORB data to this model gives estimates of the model parameéters.;;, and./V.

Small melt fractions with?” around 0.5% are essential for a good fit, whergas

and N are less well constrained,,; is estimated at around 1.4 to 2.4 Ga, dnds

of the order of hundreds. The model predicts a larger variability for the Pb isotopes
than that observed. As has been stated by many previous authors, it appears that
fundamental differences exist between the dynamics of Pb isotopes and those of
Nd, Sr and Hf isotopes.



1. INTRODUCTION

Many measurements of isotopic ratios suckasd/ 4 Nd, 176Hf/1"’Hf, and®’SrfeSr

have been made on mid-ocean ridge basalt (MORB). These measurements in prin-
ciple contain significant information on melting and convective processes in the
Earth’s mantle, but to extract that information requires a suitable quantitative model.
In this paper we present a simplified model of what we believe to be the funda-
mental processes that give rise to the isotopic heterogeneity of MORB. To make
the presentation clearer, the paper has been split into two parts. The main text de-
scribes the formulation of the model, summarises the results, and compares them
with observations. The appendix presents the mathematical derivations involved.

A good introduction to the geochemical ideas behind this work can be found in
the recent reviews biiofmann(2003 andvan Keken et al(2002. Different ap-
proaches have been taken to modelling MORB isotopic measurements. Most work
has focused on mixing lines between end member components in the “mantle array”
(plots of one isotopic ratio against another). These end members have been classi-
fied (White, 1985 Zindler and Hart1986, and geochemical models of the Earth
have attempted to relate these end members to different parts of the Earth (reser-
voirs) or different processes occurring in the Earth. Other work has gone further
and has attempted to describe the statistical distributions of isotopic ratieg(e

et al, 198Q All egre and Lewin1995ab; Kellogg et al, 2002, and this is the main

focus of the work we present here. In this work we will not use reservoir models,
and focus instead on a single statistical mantle source for MQREomM and An-
derson 2003. Important alternative approaches to the work presented here can be
found in numerical simulations of mantle convecti@h(istensen and Hofmann

1994 Davies 2002 Ferrachat and Ricay@0031; Xie and Tackley 2004, which

exploit the same fundamental processes to generate the MORB isotopic hetero-
geneity.

In this work we have chosen to focus on MORB rather than ocean island basalt
(OIB). The main advantage in studying MORB is its statistical uniformity - MORB

has similar isotopic characteristics regardless of where in the world it has come
from, although there are some small differences between ridges with different spread-
ing rates. Ocean island basalt varies much more from island to island. There are
also differences in the melting processes between them. MORB is thought to be
produced by passive upwelling with10% melt production. OIB is thought to be
produced by an active upwelling, with a smallel% melt production. Melting

under ocean islands is more complicated to model.

The model we present describes well the isotoldé¥d/A**Nd, 176Hf/1""Hf, and
87Srf8Sr, but not the isotopes of Ph. No attempt is made to model the behaviour of
the isotopes of rare gases (such as He, Ne, and Xe).



2. KEY PROCESSES

The isotopic systems we are studying consist of three isotopes, whose molar con-
centrations we will label ag, d andd'. p is the parent isotope, which decays with
decay constank to the daughter isotopé d’ is a stable reference isotope of the
same element ag whose abundance does not change due to radioactive decay. It
is measurements of isotopic ratidsd’ that are made on MORB.

The heterogeneity of/d’ in the model arises from partial melting processes in the
mantle which fractionate the parent element from the daughter element. It is as-
sumed that isotopes of the same element have the same behaviour under melting,
and so the rati@/d’ is unchanged after melting. The fractionation leads to differ-
ences in the/d’ ratio of different parts of mantle material. Over time this leads to
differences ini/d’ as the parent isotopedecays to the daughter isotogeWhile

melting processes create heterogeneity, they also are responsible for destroying it.
When the mantle melts, there is a mixing of different melts which smooths out the
variations ind/d'.

These processes occur on the background of mantle convection and plate tectonics.
Mantle convection stirs the mantle and reduces the lengthscale of heterogenetities.
The distinction between stirring by the convection, and the mixing of the melts
should be emphasised - stirring does not reduce the heterogeneity. The convection
also plays a key role in recycling. Melted material comes to the surface to form new
crust, which may later become subducted back in to the mantle and subsequently
undergo further melting events.

Finally, it is important to note that we cannot sample from the mantle directly: we
can only do so after it has melted and come to the surface. Therefore we expect the
variations we observe in MORB to be less than those in the underlying mantle.

3. THE MODEL

Our model consists of two stages. First we examine the processes that create and
destroy heterogeneity in the mantle to derive the form of the distributiali&fin

the interior. Secondly we examine the processes involved in sampling after melting
from this model mantle to predict how this interior distribution relates to a distri-
bution we expect to observe at mid-ocean ridges.

We consider an episodic model with a box representing the mantle. For an interval
of time At parcels are advected around the box, and the appropriate radioactive
decay is followed. At the end of this interval, a melting event occurs. In a melting
event we produce a single melt fractidhof melt. We average over the concen-



trations ofp, d andd’ in the melting region of the box, and use this to calculate
the relevant concentrations in the melt and residue produced. These concentrations
depend on the partition coefficients for each isotope, and we assume that isotopes
of the same element, such @andd’, have the same behaviour under melting. A
fraction F' of the material in the melting region is then set with the uniform melt
value composition, and a fractidn— F' with the uniform residue composition. In

this way our melt region both creates and destroys heterogeneity.

In order to simplify the model we make two key assumptions. The first is that the
radioactive decay is slow, so that we can linearise the equation of radioactive de-
cay. The second is that the advection is strongly stirring. By this we mean that the
stirring is such that the statistics of the melting region at the end of the interval are
the same as the statistics over the whole box. This situation gives rise to a statis-
tical steady stateArmstrong 1968, and a model mantle which is statistically of

the same isotopic composition everywhere (although not a uniform composition).
For calculational convenience, we also take the limias— 0. An important pa-
rameterisation of the melting process is then the timesgale which determines

how often on average it has been since an individual parcel last experienced a melt-
ing event. The assumption that the radioactive decay is slow is then formally that
A ey < 1.

It is then possible to derive analytically an expression for the distributiaii &fin
our model mantleAppendix A).

4. SAMPLING

As mentioned earlier we cannot sample from the mantle directly, but instead sam-
ple after melting. To model this we have extended the ideas of “sampling under
melting and averaging” (SUMA) dfleibom and Andersof2003. To model the
sampling we mix together a large numbérof independent identically distributed
samples from our model mantl&. characterises the mixing - i¥ is large, there is

a large amount of mixing between different components and thus a large reduction
in the variability observedl is a simple single parameter characterisation of the
averaging process, which in practise is determined by a variety of different factors
such as the length scale of heterogeneities, the length scale of the mantle region
undergoing partial melting, the diffusivity of chemical species in the melt, and the
time spent in magma chambers.

In the case of averaging large numbers of independent samples, the central limit
theorem is potentially relevari\(l egre and Lewin1995h Meibom and Andersgn
2003. It states that the average dfindependent random samples from a distribu-
tion with meanu, and standard deviatian, approaches a normal distribution with
mean, and standard deviation,/ V/N asN increases. However, the central limit



theorem is not directly applicable to the distribution of the rati@’ as it is the
individual concentrationd, andd’ that are averaged and then the ratj@’ calcu-
lated and not the other way round. However, it can be shown that the rigdel
distribution does approach a normal distributionNasncreases, but the standard
deviation is not simplys,/+/N. Appendix Bexplains the details of calculating the
distribution after sampling, anfppendix Cconsiders the larg& asymptotics.

5. ANALYTIC RESULTS

For N large there are a number of asymptotic results that can be derived for the
properties of thel/d’ distribution after sampling. The most important analytic re-
sult is for the asymptotic behaviour of the standard deviatiaf the distribution.

2
NF(1-F) @)
Here \ is the decay constant of the parent isotoéﬁ/d’)o is the ratio of the
mean parent isotope concentration to mean reference isotope concentration over
the whole box at the present day, and G, are functions of the melt fractiof
and the relevant partition coefficients, where the lower case subseapts/ refer
to the parent and daughter isotopes under considerd&iiama measure of the in-
compatibility of a given isotope under a particular melt fractiorG If 0 then the
isotope is compatible (stays in the residue), whil&'itz 1 then it is incompatible
(readily enters the melt). For ti&haw(1970 melting modelG, is given by

(e )\Tmelt‘Gd - Gp‘ (5/)0

P 1/Pp
61— (1 Bor) o
where capitalP and D are different weighted averages of partition coefficients.
D, =Y z'K]
L ®)
P, = Z K,

K is the mineral/melt partition coefficient for the parent in minetalt’ is the
mass fraction of mineralin the source rock, ang is the fractional contribution
of minerali to the melt.G, is defined similarly.

Some features of the equation fercan be easily interpreted. Variations dpjd’

arise from differences ip/d’. Since we are assuming linearised decagiepends
linearly on\ and (ﬁ/a?’)o. Also, because the only other time scale in the problem is
Tmelt @Nd sincer is non-dimensional, then on dimensional grounds we must have a
linear dependence an,.; also. So the larger,..;;, the longer it is between melting
events and thus the greater the heterogeneity that can arise.



The role of the melting behaviour eris less obvious. The dependenceGp — G,,|

is indicative of the fact there has to be a fractionation between parent and daugh-
ter to produce the heterogeneity. As such small melt fractions are essential. For
example, large melt fraction MORB melting would hat/ex 1 for nearly all el-
ements under consideration and as such can not produce significant heterogeneity.
As mentioned earlietV is indicative of the amount of mixing after melting, so
asymptotically we have the largaf the smallew.

Another analytic result of particular interest is for the skewness parametép-

pendix C.), which measures the asymmetry of the distribution about its mean

value.

_3(2Gq — 1)sgn(Gq — G))
" 2NF(1-F)

Heresgn(x) is the sign function: it equals if = is positive,—1 if x is negative.

Hence the sign of the skew is determined by the sigicaf — G,) (2G4 — 1).

For example, ifG, < G, (parent more compatible than daughter) &hd< 1/2

(a sufficiently small melt fraction say) then the distribution will be asymptotically

negatively skewed. Furthermore, note the dependenc¥ Bfil — F') in the de-

nominator. While we may think oV as a large parametef, is usually small, so

the skew and non-normality in the distributions can be quite significant.

(4)

It is common in geochemistry to plot one isotopic ratio against another. Consider
two isotopic systemsl) and(2) with different parent and daughter elements. Sup-
pose we plotd/d')'® against(d/d')"). For N large, the model predicts that sam-
ples lie approximately on a straight line through the mean value, and gives a pre-
diction for the gradieng of this line (Appendix C.3

(0 - 62) ()"
(6= 6) (),

B~ (5)
Thus, if we know the partition coefficients, half lives, and mean parent/daughter

isotopic ratios for each system, we can infer a melt fraction from the gradient in
plots of (d/d')® against(d/d')".

This equation simplifies in a particular special case. If the daughter isotopes are
of the same element for both systems (for example, both isotopes of lead) then all
samples lie precisely on a straight line. If it is also the case that the parent elements
are the same (or at least behave similarly under melting suctrfftat- G(») then

the gradiens of this line is independent of the melt model and is simply

A® (5
7=xm <p<1>>0 (©)

Note that this equation will be valid féf8Pb/2%*Pb and?*®Pb/2%Pb, but not®’Pb/?*Pb.
The short half-life 0f**U means thé®’Pb/2%Pb system does not satisfy the slow



decay approximation. As such, this model cannot be use&fBb/?**Pb. It has
been included in the data plots for completeness.

6. COMPARISON WITH OBSERVATIONS

The model has the following input paramete)&s:(ﬁ/d’)o, (J/J/)O, P,, D,, Py,

Dy, Tmers, F', and N. We are only concerned with studying the variationsl ja’

SO (J/d’)o Is not important to us. We will choose it appropriately to get a match
with the mean of the observations. Other parameters we will base on estimates
by previous authors as shownTable 1 We assume that the melting takes place
somewhere in the garnet/ spinel transition region. As such the partition coefficients
we have used are a linear combination of the coefficients for garnet and spinel
peridotite. With the exception of the Lu-Hf system, there is little difference in the
partition coefficients for these two rock types, so the Lu-Hf system was used to
constrain this linear combination.

There are just three unknown parameters left in this model: the melting timescale
Tmelt, the effective melt fractiod” producing the heterogeneity, and the parameter

N characterising the mixing before sampling. Note also that these three parameters
are independent of the isotopic system under consideration.

6.1. Samarium - Neodymium

The Sm-Nd system is the best constrained of the systems under examination. The
Sm/Nd ratio of the bulk Earth is taken to be chondritic, and there is general agree-
ment on the values for the partition coefficients of Sm and®lietén 1994). Hence

the Sm/Nd ratio in depleted mantle models can be calculated accurately.

6.2. Rubidium - Strontium

The Rb-Sr system is less well constrained. Owing to the volatility of Rb, the bulk
Earth Rb/Sr ratio is not precisely known. Furthermore, the observed behaviour of
Sr under melting is not well described by the partition coefficients that have been
measured in the laboratoriiénson 1977). Hence estimates of Rb/Sr in depleted
mantle models vary considerably (for example, a 35% larger estimate than that in
Table 1lis given bySalters and StracK2004)).



6.3. Lutetium - Hafnium

The Lu-Hf system is similar in many ways to the Sm-Nd system, in that we can get
good estimates on the Lu/Hf ratio from chondrites. However, this system is com-
plicated by the large difference between partition coefficients for Lu in the spinel
and garnet stability fields. A 37% larger estimate for Lu/Hf is giveBaiters and
Stracke(2004). Also, fewer measurements of hafnium isotopes have been made.

6.4. Uranium - Thorium - Lead

The U-Th-Pb systems are the most difficult to model. The ratio of U/Pb in the
depleted mantle is not well known (discussed later), and the behaviour of lead under
melting is not well understoodratsumot 1978 White, 1993.

7. RESULTS

The three parameters, N, andr,.; were varied in order to fit the model to the
measurements of MORB isotopic ratios (sources givelyppendix B.

Fis the most straightforward parameter to constrain, provided the decay rates, par-
tition coefficients and mean parent/ daughter isotopic ratios are krieguration 5
shows that the average gradient in plots of one isotopic ratio against another are de-
termined by the melt fractiof’, and is independent of or 7,,,; to leading order.

Fig. 1 gives an example of such a plot, and shows liowan be varied to provide

a good fit. The Sm-Nd and Rb-Sr systems constfain be around 0.5%.

N andr,; are harder to constrain, mainly due to the dependenogl@cr/f\/ﬁ of

the standard deviation fa¥ large. GivenF', the standard deviations only constrain
Tmer/V' N, and so a longer timescale could be offset by a large amount of averaging
before mixing. Increasing,,.;; stretches the density linearly. The behaviounois

more complicated, as it also has an effect on the shape of the distribUgigng)(

For N large the model distribution approaches a normal distribution, and yet there
is a definite skew to the distributions that are observed. Hence all that can be said
with any certainty is that,,.; is around 1.2 - 2.4 Ga, and is of the order of
hundreds to get a reasonable fit to the data.

Motivated by these constraints, Figd.and 4 compare the measurements with
model data using'=0.5%, 7,,.;;:=1.7 Ga andV=500.Fig. 3 shows a plot of ker-

nel smoothed probability density estimates for model and measured data. Kernel
smoothed density estimate&ppendix D are a generalisation and improvement

on histograms. They have the advantage of being smooth, and have no dependence



on the end points of bins as histograms do. They do have a dependence on the
bandwidth of the kernel, which determines how smoothed out distribution features
become. However, there are algorithms for choosing the most appropriate band-
width, and these have been usEdy. 4 shows a more traditional set of scatterplots

for pairs of the isotopic systems. These plot an artificial sample from the model,
as well as the measured datable 2lists the values of a few important calculated
parameters.

In this tableG,; < 1/2 for all isotopic systems. Hendeéquation 4implies that

the sign of the skew is determined by the signtyf — G, i.e. by the relative
compatibility of parent and daughter. Where the parent is more compatible than
the daughter@, — G, > 0 e.g. Sm-Nd, Lu-Hf) we expect a negatively skewed
distribution, and where the parent is less compatiblg ¢ G, < 0 e.g. Rb-Sr,
U-Th-Pb) a positively skewed distribution. This is what is observed. Note also that
NF(1-F) = 2.5 so that the skews and the non-normality in these distributions are
appreciable. Furthermore, note that the sign of the correlations in the plots of one
isotope against another is given fty, — G,)? /(G4 — G,)) and thus the observed
correlations are also governed by the relative compatibilities of parent and daughter
elements.

The special case that yield@&uation 6applies to the plot of°®Pb/?%“Pb against
208py/204pp, In this case the model predicts a single straight line whose gratlient
depends only on the decay constant$®f and?32Th, andx, the average isotopic
ratio?32Th/23%8J in the model mantlef = (\232/\238) k). Since the decay constants
are known, the slope of the plot §Pb/2%“Pb against®®Pb/2%Pb can be used to
estimatex. The value ofx used was 2.5, and this provides a reasonable fit to the
observed slope.

There is reasonably good agreement between the model and the measurements of
Nd, Sr, and Hf isotopic ratios. The MORB data shows more scatter than the model,
but the general trends are the same. Such scatter could possibly be accounted for
by the variability in melt fractions in the real mantle. The Pb isotopes, however, do
not fit this simple model. The standard deviation of Pb calculated from the model

is larger than that observed. An ad hoc solution to this problem is to reduce the
average ratiéU /2%Pb, 11, while keepings unchanged. A value for mean depleted
mantley of around 2.7 (as opposed to the value of 8.0 used) gives a good match
with these parameters. There is still much debate on the valuerothe depleted
mantle, with some authors arguing it should be less thanWWhité, 1993, or as

high as 14.4 %alters and Strack004).

The isotopes of Nd, Sr, and Hf correlate well with each other. The isotopes of
Pb also correlate well with each other, but there is little correlation between the
isotopes of Nd, Sr, and Hf and the isotopes of Pb. It is important to note that the
model Pb isotopes are more variable than the measured. Itimplies itis not necessary
to include additional mechanisms for producing heterogeneity, such as subducted

10



sediments, to explain the observed variations. Note also that Sm, Nd, Lu, and Hf
are elements which are little depleted in the mantle by the formation of continental
crust. Sris also only little depleted, but its parent, Rb, is very depleted. Th, U, and
Pb are all much depleted in the mantle by the formation of continental crust. As
has been stated by many previous authors, the dynamics of the Pb systems seem
notably different to those of Nd, Sr and Hf.

8. PREVIOUS WORK

There has been some recent work done on this problem by other authors. Most
recentlyMeibom and Anderso(R003 introduced the ideas of the statistical upper
mantle assemblage, and of sampling under melting and averaging (which they refer
to as SUMA). Their ideas form a key part of the model we present here. The only
slight criticism we have of their work is in their assessment of the standard deviation
within the framework of the central limit theorem (s@@pendix Efor a fuller
discussion). Their paper describes the ideas behind SUMA, argues strongly for
statistical ways of thinking about these distributions, and discusses in more detail
possible interpretations of the mixing parametet .

Another detailed examination of this problem was recently giveKdllogg et al.
(2002. Many of the main ideas in their modelling approach are shared with our
own. They too have partial melting as the primary cause of heterogeneity, and have
a sampling process which averages over different components in their model mantle
reducing heterogeneity. The main difference in the two approaches lies in their
complexity. TheKellogg et al.(2002 model analyses the behaviour of multiple
reservoirs with fluxes between them, whereas in our model we look at essentially
just one statistical depleted mantle reservoir. Their model has to track subreservoirs
within these reservoirs to study the heterogeneity, and further sub-subreservoirs to
handle the sampling. As such, in order to implement their model it is necessary
to solve numerous differential equations numerically. Furthermore their approach
leads to a proliferation of unknown free parameters, and even more so in extensions
of their model to fit Pb dataKellogg, 2004). Their findings for the Sm-Nd and Rb-

Sr systems are broadly similar to our own, and importantly they also found that
small melt fractions (also around 0.5%) were essential to getting a good fit to the
data. The advantage of our model is that it is able to reproduce such features using
a simpler and analytically tractable framework with just a few free parameters.

Modelling mixing by averaging oveN components was used for trace element

observations bylater et al(2001). The variability in trace elements in tigdater

et al. (2001) model arises from mixing between different fractional melts from a

uniform MORB source. They found the standard deviation of their model fractional

I referred to as\/ in that paper.
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melts to be a factor of 4 greater than that observed in melt inclusions, which in
turn was a factor of 4 greater than that observed in the host lavas. Hence their
N =~ 162 =~ 250, which is of similar magnitude to our model. However, our model
differs in using a heterogenous MORB source, which is necessary when studying
isotopic variability rather than elemental.

A number of the important ideas in this paper can be found in the earlier work of
All egre and Lewir{1995ab). The first of these paperé\lf egre and Lewin1995hH
stresses the importance of looking at the distributions of geochemical measure-
ments, and examines in general terms how various distributions can arise from the
fundamental processes of mixing and fractionation. In the context of this paper the
model mantle we consider is “a well-stirred homogeneous mixture of components
from heterogeneous sources”. We have heterogeneity in our source components
because we have melt and residue components of varying ages. These are strongly
stirred in our model mantle, and then mixed in the melting before sampling. Impor-
tantly, Allegre and Lewir(1995H stress the role of the central limit theorem and

the approach to a normal distribution in such a case.

The subsequent papekl(egre and Lewin19953 models the standard deviation

of isotopic ratios in terms of these fundamental processes. Similar approximations
are made as in the work presented here, including looking at a steady state, and
linearising the radioactive decay. HowevaH egre and Lewir{(19953 do not dis-
tinguish clearly between the distinct processes of stirring and mixing and so direct
comparison between the stirring time scale of their paper and the melting time scale
of this paper cannot be made. Furthermore, as has been demonstrated in this paper,
the behaviour of the standard deviation of ratios can be quite non intuitive and can
not be modelled by a simple linear evolution equation as is done in their paper.

9. CONCLUSIONS

The minimal model we present here goes some way to explaining the isotopic het-
erogeneity we see in MORB. In this model the heterogeneity in the model mantle is
produced by a small melt fraction (0.5%) partial melting process, where on average
a parcel of mantle material undergoes such melting around every 2 Ga. In partic-
ular, the heterogeneity we observe in MORB does not originate in the large melt
fraction melting that produces MORB. One possible place for a small melt fraction
partial melting process to occur to generate this heterogeneity would be underneath
ocean island hot spots.

The simplified model does not fit well with the lead isotopes, but this is unsurprising
since lead isotopes are generally inconsistent with simple evolutionary models of
the depleted mantle. Any resolutions to the various “lead paradok&ae( and
O’Nions, 1985 Murphy et al, 2002 should also be able to explain the variability

12



found in the isotopic measurements. The main message here is one of consistency.
With the exception of lead, the heterogeneity we see is consistent with a simple
model of mantle processes.

The model we have presented is minimal, and neglects many processes that have
been proposed to account for the isotopic variability of the mantle. But we hope it
contains the most essential physics. There are many possible extensions. Of partic-
ular interest would be an extension to the isotopic measurements made on ocean
island basalt (OIB)Meibom and Andersoii2003 have argued it may be possi-

ble to explain these observations using the same sample source as for MORB but
with modifications to the sampling process. For example, there could be a different
amount of mixing (a differentV), or there could be preferential melting of dif-
ferent components. Preferential melting would require some modifications to the
sampling procedures we have described. Real mantle melting takes place at a wide
range of melt fractions and so another useful extension would be to consider mul-
tiple melt regions with different melt fractions and the effect this would have on
the distributions. Another simplifying assumption in this model was in taking a
strong stirring statistical steady state, and it is not clear how valid an assumption
this is to make. Fluid dynamics simulations may be able to play an important role
in examining the validity of this assumption. Further investigation is needed.

13



Acknowledgements We would like to thank Steve Galer, Anders Meibom, Yanick Ricard,
and an anonymous reviewer for helping us to improve the manuscript. We would also like
to thank Andreas Stracke for providing us with his compilation of MORB data. This project

was supported under the Environmental Mathematics and Statistics initiative of NERC and
EPSRC, and by the Royal Society.

14



REFERENCES

Allegre C. J., Bevart O., Dupe B., and Minister J.-F. (1980) Isotopic and chemical
effects produced in a continuously differentiating convecting Earth mdetié.
Trans. R. Soc. Lon@97, 447-477.

Allegre C. J. and Lewin E. (1995a) Isotopic systems and stirring times of the earth’s
mantle.Earth Planet. Sci. Lettl36, 629-646.

Allegre C. J. and Lewin E. (1995b) Scaling laws and geochemical distributions.
Earth Planet. Sci. Lett132 1-13.

Armstrong R. L. (1968) A model for the evolution of strontium and lead isotopes
in a dynamic earthRev. Geophy$, 175-199.

Bach W., Hegner E., Erzinger J., and Satir M. (1994) Chemical and isotopic varia-
tions along the superfast spreading East Pacific Rise ff@t®30S. Contrib.
Mineral. Petr.116, 365—-380.

Blinnikov S. and Moessner R. (1998) Expansions for nearly gaussian distributions.
Astron. Astrophys. Suppl. S&B0, 193-205.

Chauvel C. and Blichert-Toft J. (2001) A hafnium isotope and trace element per-
spective on melting of the depleted manHEarth Planet. Sci. Lettl90 137-151.

Christensen U. R. and Hofmann A. W. (1994) Segregation of subducted oceanic
crust in the convecting mantld. Geophys. Re89, 19867-19884.

Davies G. F. (2002) Stirring geochemistry in mantle convection models with stiff
plates and slabs&seochim. Cosmochim. Ac®, 3125-3142.

Dosso L., Bougault H., Beuzart P., Calvez J. Y., and Joron J. L. (1988) The geo-
chemical structure of the Southeast Indian Ridgarth Planet. Sci. Lett88,
47-59.

Dosso L., Bougault H., and Joron J. L. (1993) Geochemical morphology of the
North Mid-Atlantic Ridge, 10-24°N - Trace element-isotope complementarity.
Earth Planet. Sci. Lettl20, 443—-462.

Dosso L., Bougault H., Langmuir C., Bollinger C., Bonnier O., and Etoubleau J.
(1999) The age and distribution of mantle heterogeneity along the Mid-Atlantic
Ridge (31-41N). Earth Planet. Sci. Lettl70, 269-286.

Dosso L., Hanan B. B., Bougault H., Schilling J. G., and Joron J. L. (1991) Sr-Nd-
Pb geochemical morphology betweertliGand 17N on the Mid-Atlantic Ridge
- A new MORB isotope signatur&arth Planet. Sci. Lettl06, 29—43.

Douglass J., Schilling J. G., and Fontignie D. (1999) Plume-ridge interactions of
the Discovery and Shona mantle plumes with the Southern Mid-Atlantic Ridge
(40°-55°S).J. Geophys. Res.-Solitl04, 2941-2962.

Faure G. (1986principles of Isotope GeologWiley, 2nd edition. ISBN 0-471-
86412-9.

Ferrachat S. and Ricard Y. (2001) Mixing properties in the Earth’s mantle: Effects
of the viscosity stratification and of oceanic crust segregatéeochem. Geo-
phys. Geosyse. doi:10.1029/2000GC000092.

Fontignie D. and Schilling J. G. (1996) Mantle heterogeneities beneath the South
Atlantic: A Nd-Sr-Pb isotope study along the Mid-Atlantic Ridgeé$346'S).

Earth Planet. Sci. Lettl42 209-221.

15



Frey F., Walker N., Stakes D., Hart S., and Nielsen R. (1993) Geochemical char-
acteristics of basaltic glasses from the Amar and FAMOUS Axial Valleys, Mid-
Atlantic Ridge (36-37°N) - petrogenetic implication€arth Planet. Sci. Lett.

115 117-136.

Galer S. J. G. and O’Nions R. K. (1985) Residence time of thorium, uranium and
lead in the mantle with implications for mantle convectiNiature316, 778—782.

Green T. H. (1994) Experimental studies of trace-element partitioning applicable
to igneous petrogenesis: Sedona 16 years lateem. Geoll117, 1-36.

Hamelin B. and Alégre C. J. (1985) Large-scale regional units in the depleted
upper mantle revealed by an isotope study of the southwest Indian Rldgee
315 196-199.

Hamelin B., Dupre B., and Adigre C. J. (1986) Pb-Sr-Nd isotopic data of Indian-
Ocean Ridges - New evidence of large-scale mapping of mantle heterogeneities.
Earth Planet. Sci. Let76, 288—298.

Hanan B. B., Kingsley R. H., and Schilling J. G. (1986) Pb isotope evidence in the
South-Atlantic for migrating ridge hotspot interactiohsature322, 137-144.

Hanson G. N. (1977) Geochemical variation of sub-oceanic mahtf@eol. Soc.
Lond.134, 235-53.

Hegner E. and Tatsumoto M. (1987) Pb, Sr, and Nd isotopes in basalts and sulphides
from the Juan-de-Fuca Ridgeé.Geophys. Res.-Solig2, 11380-11386.

Hofmann A. W. (2003) Sampling mantle heterogeneity through oceanic basalts:
Isotopes and trace elements.Tireatise on Geochemistfgds. H. Holland and
K. K. Turekian), Elsevier-Pergamon, Oxford, volume 2, chapter 3, pp. 61-101.

Ito E., White W. M., and Gopel C. (1987) The O, Sr, Nd and Pb isotope geochem-
istry of MORB. Chem. Geol62, 157-176.

Kellogg J. B. (2004) Towards an understanding of chemical and isotopic hetero-
geneity in the Earth’s mantle. Ph. D. thesis, Harvard University.

Kellogg J. B., Jacobsen S. B., and O’'Connell R. J. (2002) Modelling the distribution
of isotopic ratios in geochemical reservoiEarth Planet. Sci. Lett204, 183—

202.

Kempton P. D., Fitton J. G., Saunders A. D., Nowell G. M., Taylor R. N., Hardarson
B. S., and Pearson G. (2000) The Iceland plume in space and time: a Sr-Nd-
Pb-Hf study of the North Atlantic rifted margirkarth Planet. Sci. Lettl77,
255-271.

Klein E. M., Langmuir C. H., and Staudigel H. (1991) Geochemistry of basalts from
the Southeast Indian Ridge, PE5138E. J. Geophys. Res.-Soli@6, 2089—
2107.

Klein E. M., Langmuir C. H., Zindler A., Staudigel H., and Hamelin B. (1988)
Isotope evidence of a mantle convection boundary at the Australian-Antarctic
discordanceNature333 623—-629.

Lide D. R. (2003)CRC Handbook of Chemistry and Physi@&RC Press, 84th
edition. ISBN 0-849-30484-9.

MacDougall J. D. and Lugmair G. W. (1986) Sr and Nd isotopes in basalts from
the East Pacific Rise - significance for mantle heterogengdyth Planet. Sci.

Lett. 77, 273-284.

16



Mahoney J. J., Graham D. W., Christie D. M., Johnson K. T. M., Hall L. S., and
Vonderhaar D. L. (2002) Between a hotspot and a cold spot: Isotopic variation
in the Southeast Indian Ridge asthenosphereE8A.8E. J. Petrol. 43, 1155
1176.

Mahoney J. J., Natland J. H., White W. M., Poreda R., Bloomer S. H., Fisher R. L.,
and Baxter A. N. (1989) Isotopic and geochemical provinces of the Western
Indian-Ocean spreading centeisGeophys. Res.-Solig4, 4033—-4052.

Mahoney J. J., Sinton J. M., Kurz M. D., MacDougall J. D., Spencer K. J., and
Lugmair G. W. (1994) Isotope and trace-element characteristics of a super-fast
spreading ridge - East Pacific Rise, 13:@3Earth Planet. Sci. Lettl21, 173—

193.

McKenzie D. and O’Nions R. K. (1991) Partial melt distributions from inversion
of rare earth element concentratiodsPetrol.32, 1021-1091.

Meibom A. and Anderson D. L. (2003) The statistical upper mantle assemblage.
Earth Planet. Sci. Let17, 123-139.

Mertz D. F., Devey C. W., Todt W., Stoffers P., and Hofmann A. W. (1991) Sr-Nd-
Pb isotope evidence against plume asthenosphere mixing north of |cEktial.
Planet. Sci. Lett107, 243-255.

Mertz D. F. and Haase K. M. (1997) The radiogenic isotope composition of the
high-latitude North Atlantic mantléseology25, 411-414.

Michard A., Montigny R., and Schlich R. (1986) Geochemistry of the mantle be-
neath the Rodriguez triple junction and the Southeast Indian Richgth Planet.

Sci. Lett.78, 104-114.

Murphy D. T., Kamber B. S., and Collerson K. D. (2002) A refined solution to the
first terrestrial Pb-isotope paradak.Petrol.44, 39-53.

Newsom H. E., White W. M., Jochum K. P., and Hofmann A. W. (1986) Siderophile
and chalcophile element abundances in oceanic basalts, Pb-isotope evolution and
growth of the Earth’s coreearth Planet. Sci. Let80, 299-313.

Price R. C., Kennedy A. K., Riggssneeringer M., and Frey F. A. (1986) Geochem-
istry of basalts from the Indian-Ocean triple junction - Implications for the gen-
eration and evolution of Indian-Ocean ridge bas&l&th Planet. Sci. Let{78,
379-396.

Pyle D. G., Christie D. M., and Mahoney J. J. (1992) Resolving an isotopic bound-
ary within the Autralian-Antarctic Discordanc&arth Planet. Sci. Lettl12
161-178.

R Development Core Team (200B: A language and environment for statisti-
cal computing R Foundation for Statistical Computing, Vienna, Austria. URL
http://www.R-project.org , ISBN 3-900051-00-3.

Rehkamper M. and Hofmann A. W. (1997) Recycled ocean crust and sediment in
Indian Ocean MORBEarth Planet. Sci. Lettl47, 93—-106.

Salters V. J. M. (1996) The generation of mid-ocean ridge basalts from the Hf and
Nd isotope perspectiv&arth Planet. Sci. Lettl41, 109-123.

Salters V. J. M. and Hart S. R. (1991) The mantle sources of ocean ridges, islands
and arcs - The Hf-isotope connectidtarth Planet. Sci. Lettl04, 364—-380.

Salters V. J. M. and Stracke A. (2004) Composition of the depleted mantle.

17


http://www.R-project.org

Geochem. Geophys. Geosystdoi:10.1029/2003GC00059.

Salters V. J. M. and White W. M. (1998) Hf isotope constraints on mantle evolution.
Chem. Geol145 447-460.

Schilling J., Hanan B., McCully B., Kingsley R., and Fontignie D. (1994) Influence
of the Sierra-Leone mantle plume on the equatorial Mid-Atlantic Ridge - A Nd-
Sr-Pb isotopic studyl. Geophys. Res.-Soli@l9, 12005-12028.

Schilling J., Kingsley R., Fontignie D., Poreda R., and Xue S. (1999) Dispersion of
the Jan Mayen and Iceland mantle plumes in the Arctic: A He-Pb-Nd-Sr isotope
tracer study of basalts from the Kolbeinsey, Mohns, and Knipovich Ridhes.
Geophys. Res.-Solil04, 10543-10569.

Shaw D. M. (1970) Trace element fractionation during anateZsochim. Cos-
mochim. Act&84, 237-243.

Sheather S. J. and Jones M. C. (1991) A reliable data-based bandwidth selection
method for kernel density estimatiah.Roy. Statist. So&, 683-690.

Shirey S., Bender J., and Langmuir C. (1987) 3-Component isotopic heterogeneity
near the Oceanographer transform, Mid-Atlantic Ridgature325 217-223.

Silverman B. W. (1986Pensity EstimationLondon: Chapman and Hall.

Sims K. W. W,, Goldstein S. J., Blichert-Toft J., Perfit M. R., Kelemen P., Fornari
D. J., Michael P., Murrell M. T., Hart S. R., DePaolo D. J., Layne G., Ball L., Jull
M., and Bender J. (2002) Chemical and isotopic constraints on the generation
and transport of magma beneath the East Pacific ’dsechim. Cosmochim.
Acta66, 3481-3504.

Slater L., McKenzie D., Ginvold K., and Shimizu N. (2001) Melt generation and
movement beneath Theistareykir, NE IcelahdPetrol.42, 321-354.

Tatsumoto M. (1978) Isotopic composition of lead in oceanic basalt and its impli-
cation to mantle evolutiorkarth Planet. Sci. Let38, 63—-87.

van Keken P. E., Hauri E. H., and Ballentine C. J. (2002) Mantle mixing: The
generation, preservation, and destruction of chemical heterogeAaity. Rev.
Earth Planet. Sci30, 493-525. doi:10.1146/annurev.earth.30.091201.141236.

Vlastelic 1., Aslanian D., Dosso L., Bougault H., Olivet J. L., and Geli L. (1999)
Large-scale chemical and thermal division of the Pacific mahtéure 399,
345-350.

Wendt J. I., Regelous M., Niu Y. L., Hekinian R., and Collerson K. D. (1999) Geo-
chemistry of lavas from the Garrett Transform Fault: insights into mantle hetero-
geneity beneath the Eastern Pacifiarth Planet. Sci. Lettl73 271-284.

White W. M. (1985) Sources of oceanic basalts: Radiogenic isotopic evidéeee.
ology13,115-118.

White W. M. (1993)%8U/?°*Pb in MORB and open system evolution of the de-
pleted mantleEarth Planet. Sci. Lettl15 211-226.

White W. M., Hofmann A. W., and Puchelt H. (1987) Isotope geochemistry of
Pacific midocean ridge basalt. Geophys. Res.-Soli@2, 4881-4893.

Xie S. and Tackley P. J. (2004) Evolution of U-Pb and Sm-Nd systems in nu-
merical models of mantle convection and plate tectoric&eophys. Re4.09
doi:10.1029/2004JB003176.

Yu D., Fontignie D., and Schilling J. G. (1997) Mantle plume-ridge interactions in

18



the Central North Atlantic: A Nd isotope study of Mid-Atlantic Ridge basalts
from 30°N to 5C°N. Earth Planet Sci. Lettl46 259-272.

Zindler A. and Hart S. R. (1986) Chemical geodynam#sn. Rev. Earth Planet.
Sci.14, 493-571.

Zou H. (1998) Trace element fractionation during modal and nonmodal dynamic
melting and open-system melting: A mathematical treatm@ebchim. Cos-
mochim. Act&62, 1937-1945.

19



A. THE BASIC MODEL

A.l. Radioactive Decay

We track the molar concentrations of the three isotgpes andd’. Consider a
fluid parcel which remains outside the melting region. Suppose werhavg,; ..,

d = dgtart, d = d.,,. fOr such a fluid parcel. Following this fluid parcel we have
Dp Dd Dd’
Y S kI AD
Thus, after a time following this fluid parcel we have
P = Dstart e_M
d= dstart + Dstart (1 - e_At) (A2)

d =d.

start

and in particular

(2)=(3)_ o)

Suppose thait < 1. Then approximating this to first order we have

d d P
— == M| = A4
<d,> (d/> start + (d/ ) start ( )

Let po, do, andd), be the mean concentrations of these isotopes over the whole box
at the present day. Let, d,, andd’, be the same mean concentrations anage
ago. Then working in similar way but integrating backwards in timayif< 1 we

have <c_?> ) ((g_) _)\T<?) s
d)._ d), d /o '

The assumption that the age is short compared to the radioactive decay timescale
means we can tre@p/d’) as a constant and look at linear growth(@fd’).

A.2. Melting

At intervals At a melting event occurs in the melting region. In a melting event
we find the mean values ¢f d, andd’ in the melting region and call these our
Psources dsource; ANAd. ... Values. Note that in the steady state approximation the

mean of the melting region is the same as the mean over the whole box. That is to
SaYPsource = Prs dsource = dr, ANAd, = d/ at an age" before the present day.

source
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The melting region produces a melt fractiéhof melt. As such, a fractiod” of
material in the melting region is set With= ppeit, d = diert, d = d.,o, Where

these values are calculated from the expressions below. Similarly, a fractian)
is set to the appropriate residue values. The melting equations are:

_G _1-G
Pmelt = F Psource Pres = 1_F Psource
Gd 11— Gd
dme = 7dsource dres - dsource A.6
=& - (A6)
Ga 1—-Gy
;nelt = ?dgource d;es = 1-F dgource

whereG,, G4, G4 come from the melting model used, and are related to the parti-
tion coefficients for the relevant isotopes and the melt frackioA good overview
of different melt models is given idou (1998. Here we have used tt&haw(1970

model, where
P 1/Pp
G :1—< —pF> (A.7)
p Dp

with similar definitions forG,, andG . This is slightly confusing notation - upper

caseP, D are different weighted averages of partition coefficients for a given iso-
tope, whereas lower caged refer to the parent and daughter isotopes respectively.

D, =) 'K}
P, =3 'K,

K} is the mineral/melt partition coefficient for the parent in minetat’ is the
mass fraction of mineralin the source rock, ang is the fractional contribution
of minerali to the melt. Note that

(A.8)

F
Gp—>ﬁ as F —0 (A.9)

p

We will assume that isotopes of the same element have the same behaviour under
melting (and thus for a given melt fraction the safe and in particular that7; =
Gd/.

With A\t <« 1 we can treat thép/d’)_ . and(p/d’),., values as constants. Hence,

at an age- before the present day we have

0).- 50

d' ] melt Gd d/o

P 1-G, (ﬁ)

(d/>res_ 1_Gd J, 0 (Alo)

(), (&)~ (), (5)
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A.3. Rates of growth

Define the age of a parcel as the time elapsed since the parcel last entered the
melting region. Any given parcel was last created either as melt or residue in the
melting region. Since the melt fraction produced by the melting regiadn, ithis
means a fractiorf” of the overall material will have come from melt afid— F')

from residue. Suppose a parcel has anagad was made as melt a timeago.

Then its presentd/d’) value is

7). o) oG
- = + AT ()
( d' T,was melt d' melt d melt

7 ) (A.11)
_ (¢ Py o _ (P
B (d/>0+)\7—(<d/>melt (d’)o)
This can be simplified as
d d vT
<d/>r,wasmelt - (CZ/>0 - Gfd (Alz)
where B
u:A(Gd—C%)(p> (A.13)
d/o

Similarly for the residue we have
d d UT
2 — (= A.14
<d,>frwasres <d/>0+ 1_Gd ( )

A.4. Distribution of ages

Let the melting region have non-dimensional areeelative to the size of the box.
Define the iterate ageto be the number of iterates since a given parcel last entered
the melting region. Leb be a discrete random variable giving the distribution of
iterate ages. If the advection is strongly stirring, then the probability of any given
parcel entering the melting region at that timestepli<Considering a long time
statistical steady staté,is given by a geometric distribution, where the probability
of an iterate age of is

A(1 — A)* s=0,1,2... (A.15)

However, it is easier to work with a continuous distribution. The continuous ana-
logue of the geometric distribution is the exponential distribution. Therdgehe
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time since a given parcel last entered the melting region and-s@At. Note that

A(l — A)° = Aexp <—7'_10g(Alt_A)> (A.16)

So the discrete distribution has an associated melting timescale given by

At
Tmelt = _ 10g(1 _ A) (Al?)
Taking the limit asAt — 0, A — 0 with 7, fixed allows us to relate the discrete
and continuous distributions. L&t be the continuous random variable giving the
distribution of ages. Thef is distributed exponentially with Mmeathel:- Let £ be
an exponential random variable with mean 1. Then we can iite T F. B
has probability density function given by

folr)=¢e" x>0 (A.18)

In this limit the time intervalAt and the melting region ared become infinites-

imal. As such the assumption that strong stirring occurs between time intervals
cannot be made. However, the continuous limit should be a reasonable approxima-
tion provided the timescale for stirring is short compared to the melting timescale
Tmelt, @nd for calculational convenience it is used from now on.

A.5. Distribution of d/d’

Hence, in terms of the random variaifegiving the distribution of ages we have
(usingA.12 andA.14) the following for the distribution ofi/d’ in the interior of

the box
d d —vT /Gy (melt)
Y (L) 17 A.19
(w) (d) {VT/u ~G) (res) (A19)
Where we have a probability’ of getting a melt value, andl — F) of getting

a residue value. Here hats dnandd’ are used to denote that they are random
variables A.19 can also be expressed in terms of the exponential random variable

F as
d d —1E/Gy (melt)
=== ~ s A.20
(w) (d) {lE/(l —G) (res) (A.20)
where
[ = VTimelt = ATmelt (Gd - Gp) (5,) (AZ].)
0
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B. SAMPLING

When we sample the mantle we do not sample directly from the distribution that
has just been derived. In fact we sample after numerous components from this dis-
tribution have melted and mixed together. This is the “sampling under melting and
averaging” (SUMA) conceptMeibom and Andersgr2003. We will assume there

is no bias in melting and mixing - the likelihood of a component entering the melt
is proportional to its abundance in the source.

Suppose we mix togethe¥ independent random samples from the distribution
A.20. Note in particular that théd/d’) ratio of the mixture isnot the mean of the
ratios of the independent samples. Instead the individual concentratiang d’

are averaged and the ratio is then calculated i.e. the quantity of interest is

N N
Y di/y d; (B.1)

=1 =1

Note in particular the following identity

Yd (dY & d; d
S @0 - Kd;) - (@)J (8:2)

where the weights); are given by

N
j=1

Let Z give the distribution o(zf\;l di/ >N, ci;) - (J/d’)o andR; give the distri-

bution of (d; /d;) — (J/J’)O. Then theR;’s are independent identically distributed
(i.i.d.) random variables with distribution (usi#g20)

(B.4)

- { —!Ei/Gd (melt)
' IE;/ (1 —Gy) (res)

where theEi’s are i.i.d. exponential random variables with mean 1.

Now, note thatl, can only take two values in our model - itd§G,/F if we have
amelt value, and; (1 — G,) /(1 — F') if we have a residue value. Hence

oo [ —dylE/F (melt)
diF = {Jéloﬁi/(l —F) (res) (8.5)

Now Zévzl d; depends on how many melt and how many residue components are

mixed together. Suppose we havaelt components anlf —r residue components
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in the mix. Then™?_, . = M (r)d), where

Jj=1"j

M(r):rifijt(]\f—r)

1 -Gy
1-F

(B.6)

Assuming the sampling is unbiased, the probabidjitgf gettingr melt components
andN — r residue components in the mix is given by the binomial distribution

0" (N ) Fr(1— F)N-r (B.7)

HenceZ has distribution given by

A ~

Z =Y, with probability g, (B.8)

WhereY, is the result of combining melt andN — r residue components, with
distribution given in terms of th&;’s as

- I (& B, XK
Y, = ——=+ — (B.9)
M(r) (; F i:zr—:&-ll_F)

The above expression forms the basis of one method of estimating the density func-
tion for d/d’' after sampling. Exponential random variables can be simulated easily,
and so an atrtificial sample from this distribution can be constructed. From this
it is possible to numerically estimate the density (e.g. by kernel smoothing,
pendix D).

B.1. Characteristic functions

In order to get an analytic expression for the probability distributiorZaif is

useful to use characteristic functions. Suppose a random variable has probability
density functionf(z). Then its characteristic functiaf(k) is defined by its Fourier
transform

o) = [~ e flaydo (B.10)

There are two important properties that we wish to exploif Ifs a random vari-
able with characteristic function(k) thenaX has characteristic functiop(ak).
Also, if X1, X5, ...X, are independently distributed with characteristic functions
d1(k), pa(k), ...0n(k), thend} 2, X; has characteristic functiai;’_, ¢;(k).

The exponential random variabfehas characteristic function

¢p(k) = (1 +ik)™" (B.11)
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Hence, using the two properties stated abdiyéhas characteristic function

oy (k) = (1 — Mi(ﬁgF>_r<1 + Mon)Z(kf—F)> o (B.12)

HenceZ has characteristic function

NN
o5 =3 (V)= g ©.13)
r=0
By using the Fourier inversion theorem we may recover the distributich of
1 > ikx
fala) = 5= [ e oy(k) dk (B.14)

This is another way of constructing the densitylgf’ after sampling, and gives the
precise density function. Doing this Fourier inversion analytically leads to compli-
cated sums of a large number of terms. These are very time consuming to calculate,
and difficult to interpret. However, this integral can be done efficiently numerically
using a Fast Fourier Transform (FFT), and this method was used to prbadu&
Moreover, simpler asymptotic results for laryecan be obtained that are easier to
interpret and much quicker to evaluate.

C. ASYMPTOTIC RESULTS
C.1. Asymptotic Moments

The moments of the distribution can be read off from the Taylor expansion about
k = 0 of the characteristic function. If the® moment is,, we have

py(k) = i an(—;’l'{:)" (C.1)
n=0 :

We are interested in understanding the behaviour of these moments forNarge
Note that the characteristic function can be written as

o= 3 (M) ra-rroe(5) €2

r=0 r

where

ikl N ikl —N(-=)
= (- xre) (1 5 ) (€3
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and

Gy 1 -Gy

m(x)—xF +(1 x)l—F

Taylor expanding)(r/N) in C.2aboutr/N = F (the mean of the binomial distri-
bution) gives

(C.4)

628 =o(P) + Ty
F<1_F)(1_2F) "
o o"(F) (C.5)

Nz V) +0 <N3>

where the coefficient of ™ (F) is simply them!" central moment of the binomial
distribution overm!N™.

Taylor expanding(x) given inC.3aboutk = 0 yields

. F—z
o) =1+ ) e T (G = e
(—ikl)> N(F —2)*+ F? 4+ x — 2Fx
> N((1—Go)F + (Ga—F)a)

(C.6)

Taylor expanding this expression fofz) aboutz = F' and substituting into equa-
tion C.5allows us to read off the asymptotic moments. To leading order we have

Z=E[7] :l<1\g‘él__FF)+O<]\1[2>>
E {(2—2)1 _ <NF(12—F)+O(Z\172>> (C.7)
2122 - (e = ()
In particular, note that the skew parameters
w=el(z-2(e[(z-2))
=eenl) <(2J3';2(C1¥d—_pl)))1/2 o (Niﬂ))

Most importantly from all this we see that the asymptotic standard deviatien

\/var(Z) of this distribution is

o= )\Tmelt‘Gd - Gp| (g,)o

(C.8)

2

NF(1—F) (C-9)
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Less important is the smald(1/N) correction to the mean which is not signifi-
cant compared with th@(1/N'/?) standard deviation. Higher order moments and
corrections can be easily found by just expanding the Taylor series to higher orders.

C.2. Asymptotic density: Edgeworth expansion

An approximate form of the density for largé can obtained by using an Edge-
worth expansion (seBlinnikov and Moessne(1998 for a fuller discussion of
these expansions). L&t = (Z — Z)/o. Then the first two terms in the Edgeworth
expansion for the density of is

ey
o) == {14 ey

vam . 6 o (C.10)
2 4 3 3
+o (24He4(:(:) + 72Heﬁ(a:)> +0 (O’ )}
whereS,, = k, /0?2 andk,, is then'™ cumulant defined by
© (—ik)"
log ¢y (k) = 3 ,{n( n') (C.11)
n=0 :

He, () is then'™ Chebyshev-Hermite polynomial, the relevant ones being

Hes(z) = 2 — 3x
Hey(z) = 2* — 622 + 3 (C.12)
Heg(z) = 2% — 152 + 4522 — 15

We have

o = |l

2 1
NE(A—F) 0 (N3/2) (C.13)

Using the results of the previous section we can calculate the cumulants of the
distribution in powers of. Thus

K 3
ngafj:?l(zadqwo(a?) 1
K 3 '
Si= 5 = o (4Gi + F* —8FGy — 10Gy +3F +2) + 0 (o*)

Substituting these expressions back inlxd 0 gives an expansion with errors of
O (03). Substituting back the leading order expressionf¢€.13 gives an expan-

sion in powers ofN with errors ofO (1/N3/2). As an example, working to first
order ino (as the next term is more cumbersome) we get

—a?/2 _
e {1 N (2G4 — 1) sgn(l)

folo) ="z 2, ANF(1— F)
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The above Edgeworth expansion is a third way of estimating the distribution of
d/d' after sampling. Its main strength is that it is the quickest to evaluate. It is
an approximation to the true density and can contain features that the true density
would not. For example, it is possible for an Edgeworth expansion of a density to
become negative, although it still always integrates to 1.

C.3. Mixing lines

Consider two isotopic systen{$) and (2) with potentially different parent and
daughter elements. Suppose we ftotd)® against(d/d')"). We are interested
in knowing where our samples plot.

Consider a sample which was made by averagimgelt components an@y/ — r
residue components. Recall

. 1 k. N B
v = -= - C.16
0= s (52 + 55,07 (18
and note in particular that the part in brackets is independent of isotopic system and
melt model.

Hence

y;(% 1A MO (r)
O T IOMO ) P (C.17)

T

That is, in a plot of plot ofd/d')® against(d/d')'" samples will lie on straight

lines through((d/d’)g), (d/d’)f)) with gradients3,. For example, when = 0

have ( (1))
1% (1 -G,
=~ %/ C.18
Bo 0 (1 _ G((iz)) ( )
and whenr = N have "
2G4
= C.19
5N Z(I)G((f) ( )

For N large, we can use the methods of expansion used in the previous section to
show that for

B =0,  with probability g, (C.20)
we have
_ . 1) 1
F=E(B) = 15 +0 <N> (C.21)
and 2(W) _ q@)?
) @) —
var(B) = (;D) ( VFQ _‘;)) +0 (;g) (C.22)
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So for NV large the mean gradient of the lines can be approximated to leading order
by (® /1), Hence
2 _ 0\ @)
O (60 - &) (1),
0 (6 —al) (o),

Note a particular special case - if for both systems the daughters are isotopes of the
same element (for example, both isotopes of lead), théh(r) = M) (r) and

thus all samples lie on a single straight line of gradient exatty? /I(V), In this

case it is usual for the reference isotopes to be the séie= ¢’'® . Furthermore,

if it also the case that the parent elements are the same (or at least behave similarly
under melting7(!) ~ G{) then this gradient is independent of the melt model and

is simply
A2 (p(2)>
= —| = (C.24)
2D\ p® )

D. COMPARISON OF METHODS FOR DENSITY ESTIMATION

RS (C.23)

We have outlined in the previous sectiois B.1, andC.2) three methods of es-
timating the density ofl/d’ in the model. The first method, numerical simulation,
generates a sample from the model distribution by using computer generated sam-
ples from an exponential distribution. The probability density is then estimated us-
ing a kernel smoothed estimate for this sample. Givémdependent observations

T1, s, ..., z, from the random variabl&, the kernel density estimatg?g(x) of the
density valuef(z) is defined as

L1y k ( ) (D.1)
nh =1
whereh is the bandwidth and (u) the kernel function. For a gaussian kernel

K(u) = \/12_7T exp (—;u2) (D.2)
The functiondensity in R (R Development Core Tea(@004)) was used to cal-
culate this efficiently. One advantage of using kernel smoothed estimates, over plot-
ting a histogram for example, is that it is easy to plot more than one density on the
same plot. In this work, the default gaussian kernel was used, with optimal band-
width as chosen by R. Kernel smoothed estimates are sensitive to choices of kernel
and bandwidth, seBheather and Joné$991), Silverman(1986, and the R docu-
mentation for a fuller discussion.

The second method involves calculating the full analytic distribution by numeri-
cally doing the Fourier inversion dquation B.14 The advantage of this method
is that you get the density precisely.
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The third method is to use the asymptotic approximation provided by the Edge-
worth expansion ofC.15 This is an approximation to the true density, but is the
quickest of the three methods to calculate, and becomes more accurstésas
increased.

Fig. D.1luses these three methods to produce model densitié&ka/A4*Nd. All

three methods produce very similar shapes, clearly showing similar standard devi-
ations and skews. The analytic density contains a small scale spike at 0.51322. The
area under this spike is small compared with 1. The spike is not seen in the kernel
smoothed estimate because it is a feature of smaller scale than the bandwidth. Sim-
ilarly it is not seen in the Edgeworth expansion because there are not enough terms
in the expansion to express such a feature. Our interest in this work is in broad
features of the distributions, and such small features are liable to be disturbed by
other factors (for example, measurement error) and so this spike is not an important
feature. Note also that the Edgeworth expansion becomes negative on the far right
of the plot, which is a disadvantage in using such an expansion far from the mean.

When demonstrating the behaviour of the model distribution with varynon

Fig. 2numerical Fourier inversion was used for greatest accuracy. However, when
comparing the model with measured dataFig. 3 we have opted to use kernel
smoothed densities to provide a more like-for-like comparison between the model
and measured data. When generating a model sample, a sample size of 1000 was
used to provide a close comparison with the measured data used which is of a
similar size.

E. REMARKS ON THE CENTRAL LIMIT THEOREM

As has been discussed Appendix B when we sample from our model mantle
we do so after averaging over a number of components. For a set of independent
identically distributed random variablés, X5, ..., X with meanyu, and standard
deviationo, the central limit theorem states that the distributionXof= >~ X; /N

will approach a normal distribution with mear and standard deviation, /v/N.
However, this cannot be applied in mixing isotopic ratios since it is the individ-
ual concentrations of andd’' that are averaged and then the ratio taken. Hence
d/d =Y d;/>d; # S(d;/d';)/N. As always in geochemistry, great care must
be taken in dealing with ratios of quantities. However, it does turn out that in our
model we do approach a normal distribution, but the standard deviation is quite dif-
ferent from a naive use of the central limit theorem. As an example, using Meibom
and Anderson’s notation, the standard deviatigp of thed/d’ distribution before
averaging is

J(F—Ga)? +2F(1—F)
Ga(1—Gy)

(E.1)

Oum = |{|
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whereas the standard deviatiog..s we would measure after the averaging is

2 1
_ _ i E.2
and in particular it is clear that
g
meas 7 — = E.3
Omeas 7 N (E.3)

In fact, for the model values for Nd, there is a factor of 15 difference between the
left and right hand sides of the above expression whNes large. It is also impor-
tant to note that the approach to a normal distribution is governed Byl — F)

and not/V, as indicated by the expression for the skew of the distributtaqué-

tion 4) and the first correction to the normal distribution in the Edgeworth expansion
(Equation C.1D SinceF' is small, the distributions we observe are significantly
skewed despité&/ being large.

F. DATA SOURCES

Table F.1gives the raw data from which some of the datarable 1was calcu-
lated. The weighted partition coefficientsand D given in Table lare a linear
combination of 60% the garnet and 40% the spinel coefficients giv&abie F.1

The MORB data set was a compilation by A. Stracke from the woiRaath et al.
(1999); Chauvel and Blichert-Toft2001); Dosso et al(1988 1993 1999 1991);
Douglass et al(1999; Fontignie and Schilling1996; Frey et al.(1993; Hamelin
and Allegre(1985; Hamelin et al.(1986; Hanan et al(1986; Hegner and Tat-
sumoto(1987); Ito et al.(1987); Kempton et al(2000; Klein et al. (1991, 1988
MacDougall and Lugmaif19869; Mahoney et al(2002 1989 1994); Mertz et al.
(199)); Mertz and Haas€1997); Michard et al(1986; Newsom et al(1986); Price
et al. (1986); Pyle et al.(1992; Rehkamper and Hofman(il997); Salters(1996;
Salters and Harf1991); Salters and Whit€1998; Schilling et al.(1994 1999;
Shirey et al(1987); Sims et al(2002; Vlastelic et al.(1999; Wendt et al(1999);
White et al.(1987); Yu et al.(1997).
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Table 1. Given parameters.

parent isotope

daughter isotope

reference isotope

decay rate / Ga'®

parent part. coeff.
parent part. coeff.
daughter part. coeff.
daughter part. coeff.

mean isotopic par./dau. ratio (p/d)o

Py

1475 m
143\
144N
0.00654
0.03990
0.12392
0.02787
0.08653
0.253

8Rb
87y
863y
0.0142
0.00039
0.00058
0.02983
0.08908
0.0188

178
17645
17745
0.0193
0.29739
0.94719
0.04508
0.14333
0.0324

23T

208Pb

204Pb
0.0495
0.00021
0.00068
0.02793
0.07175

20.0

238U

235U

206Pb 207Pb
204Pb 204Pb

0.155
0.00054
0.00178
0.02793
0.07175

8.04

0.985
0.00054
0.00178
0.02793
0.07175

0.0583

(a) Decay constants of the parent isotopes are accurately knowaure 1986. Some)

have been rounded.

(b) Partition coefficients based on the estimatesloKenzie and O’Niong1997), taking
a linear combination of the values for garnet and spinel peridatippéndix B.
(c) (p/J’)O estimated from the depleted mantle modeMifKenzie and O’Niong1991)

(Appendix B.
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Table 2. Calculated parameters given0.5%,,.:=1.7 Ga,N=500.

parentisotope  p 147Sm 8'Rb 176 y
daughter isotope  d 143Nd 87sr 176h¢
reference isotope  d’ 144Nd 863y ST

parent incompatibility G, 0.119 1.000 0.017
daughter incompatibility G4 0.165 0.155 0.106
relative compatibility G4 — G, 0.047 -0.845 0.089
model asymptotic S.8.  casym | 1.18x10% 3.43x10* 8.49x10°
MORB datas.d. omorp | 1.26x10% 4.93x10* 1.36x10*

232Th 238U 235U
208Pb 206pb 207Pb
204ppy  204pp  204pp
1.000 1.000 1.000
0.165 0.165 0.165
-0.835 -0.835 -0.835
1.260 1.587 0.073
0.464 0.469 0.056

¢ oasym 1S the asymptotic standard deviation of the model calculated Ejogtion 1
b omorg IS the standard deviation of the isotopic measurements on MORB.
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Table F.1. Elemental concentrations, garnet/spinel partition coefficients and isotopic abun-

dances.

parent isotope

daughter isotopé

reference isotopd

parent element conc. /pgm

daughter element conc. /pgn

par./dau. elemental ratio

p isotope abundance /%

d’ isotope abundance /%
parentDspinela
parentPspiner”
parentharneta
parentpgarneta
daughterDgpine®
daughterPy ;e
daughterDga et
daughterPyarmet®

147Sm
143Nd
144Nd
0.272
1 0.677
0.402
15.0
23.8
0.03477
0.10634
0.04760
0.15028
0.02778
0.08592
0.02801
0.08745

87Rb
87Sr
868r
0.0930
14.0
0.00664
27.84
9.86
0.00039
0.00056
0.00039
0.00062
0.03454
0.10403
0.02277
0.06666

176Lu
176Hf
177Hf

2z,
208pp
204Pb

0.0550 0.00420

0.237
0.232
2.60
18.6

0.05077
0.12193
0.66733
2.18507
0.02888
0.08878
0.06939
0.22516

0.0150

0.280
100.0

1.40
0.00016
0.00052
0.00028
0.00091
0.03198
0.08393
0.02186
0.05348

238U

206pp
204Pb

0.113
99.27
1.40
0.00012
0.00036
0.00118
0.00391
0.03198
0.08393
0.02186
0.05348

235U

207Pb
204Pb
0.00170 0.00170

0.0150 0.0150

0.113
0.72
1.40
0.00012
0.00036
0.00118
0.00391
0.03198
0.08393
0.02186
0.05348

(a) McKenzie and O’Niong199
(b) Lide (2003

D
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and gaussian in appearance, and standard deviation decreases as
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the observed mean witN=500. 38

Plots of kernel smoothed probability density estimates for model
and observed MORB data. gives the number of measured

MORSB isotopic ratios. The model curves were calculated from

a sample of size 1000 generated by numerical simulation. The
bandwidth quoted is the standard deviation of the gaussian kernel
smoother applied. 39

Scatter plots of model and observed MORB data. 40

Plot comparing the three methods of density estimation in the
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Fig. 1. Plot of143Nd/A*Nd against®’Srf8Sr. Measured MORB data points are plotted.
Straight lines are model predictions usiBguation Swith melt fractionF' as indicated. A
melt fraction of 0.5% provides a good fit.
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Fig. 2. Plot of model probability densities f&§*Nd/A44Nd with £=0.5%,7,,.;=1.7 Ga, and

N varied as shown. Surprisingly, fé&¥ between 2 and 30 the standard deviation actually
increases av is increased. FolV large the distribution becomes more symmetric and
gaussian in appearance, and standard deviation decreakég As(Equation ). N=500
gives a similar distribution shape to that observed(3). Note that(d/d’),, has been
chosen to match the observed mean viNth500.
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Fig. D.1. Plot comparing the three methods of density estimation in the model for
143N d/A44Nd, with F'=0.5%,7,01:=1.7 Ga, andV=500. For the numerical sample, the sam-

ple sizen is shown along with the bandwidth of the kernel smoother. The Edgeworth ex-
pansion is to second order (up to and including terms of ardjr
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