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Summary

Measurements of radiogenic isotopes can in principle constrain the melting, melt mi-
gration, and solid state convection that occurs in the Earth’s mantle, but to do so requires
suitable quantitative models. A new statistical model is introduced to better under-
stand the observed heterogeneity in isotopic ratios 143Nd/144Nd, 87Sr/86Sr, 176Hf/177Hf,
208Pb/204Pb, 206Pb/204Pb and 207Pb/204Pb measured on mid-ocean ridge basalt. The
model is highly idealised, analytically tractable, and contains the essential physical pro-
cesses involved: radioactive decay, the stirring and recycling of mantle convection, partial
melting, and the mixing of melts. Comparison of the modelled heterogeneity with that ob-
served constrains model parameters, which in turn constrains aspects of mantle convection
and melting.

The model provides a new interpretation of the 2.0 Ga lead-lead pseudo-isochron age
in terms of an age distribution of mantle material. Simple equations relate the pseudo-
isochron age to the rate of melting and decay constants. These equations are different from,
but related to and more general than, those found previously for standard geochemical
box models. The results are in good agreement with numerical simulations of mantle
convection. The 2.0 Ga pseudo-isochron age is shown to infer a 0.5 Ga average time scale
for melting of mantle material.

Geochemical and geological evidence suggests that melt travels to the surface via a
network of channels under the ridge. Motivated by this, the fluid dynamical problem of a
open melt conduit surrounded by a deformable porous medium is studied. Previous work
has shown that the conduit supports solitary waves of elevation, with a region of trapped
melt travelling with the wave. The new analysis comes to a different conclusion, showing
that the solitary wave is instead one of depression, without a region of trapped melt.
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Chapter 1

Introduction

We can not observe the Earth’s mantle directly: all inferences must come from measure-
ments made at the surface. Geophysical observations, notably from seismology, tell us a
great deal about the structure, and a little about the composition, of the Earth, but can
tell us almost nothing of its history. Geochemical observations, particularly of radiogenic
isotopes, fill this gap and can tell us a great deal about the time scales for processes oc-
curring within the Earth. Extracting the geochemical information requires quantitative
models, and the role of this thesis is to develop such models.

This chapter briefly reviews some of the basic geochemical arguments and observations
underpinning the thesis. For a more detailed exposition of the topics raised here the reader
is referred to the textbooks [Albarède, 2003, Dickin, 2005, Faure, 1986, White, 2005] and
recent review articles [Hofmann, 2003, Kelemen et al., 1997, van Keken et al., 2002].

1.1 Trace elements

It is perhaps surprising that one of the best sources of geochemical information comes
from the elements that are the least abundant. These elements are the trace elements,
which are usually defined to be those elements making up less than ∼ 0.1% weight of a
rock. They are most useful as passive tracers: They have negligible effect on any process,
but are affected by the process. A great advantage is their diversity: there are a wide
variety of different trace elements with a wide variety of different behaviours.

A key process in this thesis is melting, and of particular interest is the partitioning of
trace elements between liquid melt and solid residue. This is usually measured in terms
of a solid/liquid partition coefficient Ds/l, which measures the ratio of the trace element
concentration Cs in the solid phase to the concentration Cl in the liquid phase in chemical
equilibrium, Ds/l = Cs/Cl. Different trace elements have different partitioning behaviour.
Those elements with Ds/l � 1 readily enter the melt and are referred to as incompatible
elements; those withDs/l ≥ 1 prefer to stay behind in the residue and are called compatible
elements. All the trace elements associated with the radiogenic isotopes discussed in this
thesis are incompatible to varying degrees, and this makes them ideal for studying melting
processes.

There are several factors that influence the partition coefficients. Two important
factors are the ionic charge and ionic radius of an element relative to those of a potential
host crystal lattice site. The more similar in ionic charge and ionic radius the trace element
is to the atom it replaces in the crystal lattice, the larger the partition coefficient and the
more compatible the trace element. Partition coefficients are also affected by pressure
and temperature, and by the different mineral phases present in the host rock. This is of

1
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particular note, since melting in the Earth occurs at different depths and thus at different
pressures, and also with different mineral assemblages as a result of phase transitions in
the mantle. For example, garnet is a stable mantle mineral at depths & 80 km, but not at
shallower depths, and this has a large effect on trace element partitioning. Measurements of
trace element concentrations can thus tell us a great deal about melting and crystallisation
processes on Earth. For a more in-depth discussion of the factors controlling trace element
partitioning see Blundy and Wood [2003].

The rare earth elements (or lanthanides: La to Lu on the periodic table) are a par-
ticularly useful set of trace elements. They have similar chemical properties and, with
two exceptions (Ce and Eu), always have the same ionic charge of +3. The ionic radius
of the rare earth elements decreases with increasing atomic number. As such, there is a
systematic variation in the partition coefficients of the rare earths: In mantle melting the
lighter rare earths (such as La) are much more incompatible than the heavier rare earths
(such as Lu). As a result, the elemental ratio La/Lu will be much higher in the melt than
in the source rock. La and Lu are said to be fractionated by the melting process, and such
fractionations are crucial to understanding isotope geochemistry.

1.2 Isochron dating

The most well-known use of radiogenic isotopes is in dating. The age of the Earth was
first determined accurately by lead isotopic dating. Patterson [1956] measured the lead
isotopic ratios 206Pb/204Pb and 207Pb/204Pb for five different meteorites. 206Pb is a stable
isotope produced by the radioactive decay of 238U, and 207Pb is a stable isotope produced
by the decay of 235U. 204Pb is a reference isotope: it neither decays nor is a decay prod-
uct. Uranium and lead are both trace elements, and uranium is more incompatible than
lead. Geochemists typically measure isotopic ratios rather than absolute concentrations
of isotopes as the ratios can be measured more precisely and more accurately.

The presolar nebula from which the Solar System formed is thought to have been
well mixed, and thus chemically homogeneous. However, the condensation process that
led to the formation of the different meteorites and planets had a chemical fractionation
effect, with different elements being concentrated in different bodies to different degrees.
In particular, Pb is much more volatile than U and thus condensed later. As a result, the
five meteorites formed with different U/Pb elemental ratios. Isotopes of the same element
(such as 204Pb, 206Pb and 207Pb) effectively behave identically in such chemical processes,
and are not fractionated from each other. Thus the lead isotopic ratios 206Pb/204Pb and
207Pb/204Pb are assumed to be initially identical for all five meteorites. The five meteorites
are then assumed to have remained unaltered (a closed system) since their formation at
the birth of the Solar System.

The radioactive decay law for a given meteorite can be written as(
207Pb
204Pb

)
t

=
(

207Pb
204Pb

)
0

+
(
eλ235t − 1

)( 235U
204Pb

)
t

, (1.1)(
206Pb
204Pb

)
t

=
(

206Pb
204Pb

)
0

+
(
eλ238t − 1

)( 238U
204Pb

)
t

, (1.2)

where subscript 0 refers to the time of formation, and t the present time. λ235 = 9.85 ×
10−10 a−1 and λ238 = 1.55×10−10 a−1 are the decay constants of 235U and 238U respectively
(a = annum = year). The half-life t1/2 of an isotope is related to its decay constant by
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Figure 1.1: Patterson’s original lead-lead meteorite isochron, yielding an age of 4.55 Ga.

t1/2 = (log 2)/λ. By combining (1.1) and (1.2) it follows that(
207Pb/204Pb

)
t
−
(
207Pb/204Pb

)
0

(206Pb/204Pb)t − (206Pb/204Pb)0
=

eλ235t − 1
eλ238t − 1

(
235U
238U

)
t

. (1.3)

This equation forms the basis for lead-lead isochron dating. At the present day, 235U/238U =
1/137.88 everywhere in the Solar System. Plotting the five meteorites on a diagram of
207Pb/204Pb against 206Pb/204Pb (Figure 1.1) yields a straight line called an isochron: a
line of equal time. The slope of the isochron can then be used in (1.3) to calculate the
age of formation of the meteorites, and thus the Solar System, as t = 4.55 ± 0.07 Ga (1
Ga = 109 years). Note that Patterson’s isochron does not date the Earth directly, but we
know from other arguments (such as the method of extinct radioactivities) that it must
have formed within 10-20 million years of these meteorites. Modern estimates for the age
of the Earth differ very little from Patterson’s.

1.3 The Sm-Nd system

147Sm decays slowly to the stable isotope 143Nd with a half-life of 106 Ga. Measurements
of the isotopic ratio 143Nd/144Nd (where 144Nd is a reference isotope) can place important
constraints on the evolution of the Earth. Sm and Nd are both rare earth elements. Rare
earth elements are refractory (i.e. they have high condensation temperatures), and are
generally similar in chemical behaviour. As a result, it is believed that no process in the
early solar system fractionated the rare earths from one another (as opposed the fractiona-
tion of refractory U from volatile Pb in the solar nebula, discussed in the previous section).
In particular, this means that the relative concentrations of the rare earth elements in the
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Earth today are the same as those of chondrites (a class of meteorites that have remained
essentially unchanged since condensation from the solar nebula). Thus the initial Sm/Nd
elemental ratio, and the 147Sm/144Nd and 143Nd/144Nd isotopic ratios of the bulk Earth
are the same as those of chondrites. The entire evolution of 143Nd/144Nd for the bulk
Earth is thus the same as chondrites and is known (solid line, Figure 1.2).

The Earth has chemically segregated into crust, mantle and core. Core formation
is thought to have happened very soon after the Earth’s formation, within around 30-50
million years. The Earth excluding the core is referred to as the Bulk Silicate Earth (BSE).
Since the rare earths do not partition into the core, their relative concentrations in the BSE
are the same as those in chondrites. The continental crust (CC) is thought to have been
produced by partial melting of the mantle over the Earth’s history, followed by further less
well understood differentiation processes. Incompatible elements are thus concentrated in
the continental crust (and the crust is said to be enriched in these elements). The residue
remaining after extraction of continental crust from the BSE is correspondingly known as
the depleted mantle (DM). Since Nd is more incompatible than Sm, the Sm/Nd ratio of
the continental crust is lower than chondritic, and the Sm/Nd ratio of the depleted mantle
is higher than chondritic. Over time this leads to an elevated 143Nd/144Nd for the depleted
mantle, and a lowered 143Nd/144Nd for the continental crust, relative to chondrites. Due
to the long half-life of 147Sm, and the small amounts of fractionation between Sm and
Nd, the differences in 143Nd/144Nd ratios are rather small, but are readily measurable
with modern mass spectrometry. 143Nd/144Nd ratios are often reported relative to the
chondritic value as

εNd = 104 ×

((
143Nd/144Nd

)
sample

(143Nd/144Nd)CHUR

− 1

)
, (1.4)

where CHUR is the chondritic value (CHondritic Uniform Reservoir), and the scaling by
104 is due to the small differences in measured 143Nd/144Nd.

A simple model of crustal formation is shown in Figure 1.2. Here it is supposed that
CC and DM were produced by partial melting of the BSE at 3.5 Ga before the present.
The radioactive decay law is given by(

143Nd
144Nd

)
t

=
(

143Nd
144Nd

)
0

+ λ147t

(
147Sm
144Nd

)
t

, (1.5)

where a linear approximation eλt − 1 ≈ λt has been made due to the long half-life of
147Sm. The partial melting at 3.5 Ga fractionates the Sm/Nd ratios, which over time
leads to different present day 143Nd/144Nd ratios for CC and DM. The simple model
demonstrates the fundamental processes involved in the Sm-Nd system, but the situation
in the real Earth is rather more complicated. A key difference is that the continental
crust has continually formed over the Earth’s history and not just at one specific time.
Moreover, there is good evidence that continental crust has also been recycled back into
the mantle [Galer et al., 1989]. Thus more sophisticated models are needed that take into
account the open system behaviour of the mantle.

One of the most powerful geochemical modelling tools for understanding the isotopic
evolution of the Earth is reservoir (or box) modelling. Reservoir models divide the Earth
into a number of physically distinct reservoirs. For example, the Bulk Silicate Earth could
be divided into the three reservoirs: continental crust, depleted mantle and primitive man-
tle. Simple ordinary differential equations can then be written down expressing conserva-
tion of chemical species in terms of mass fluxes between the different reservoirs. Different
mass transport histories can be investigated and then compared with the geochemical



CHAPTER 1. INTRODUCTION 5

0 1 2 3 4

0.
50

7
0.

50
8

0.
50

9
0.

51
0

0.
51

1
0.

51
2

0.
51

3

Time before present /Ga

14
3 N

d
14

4 N
d

BSE

DM

CC

0 1 2 3 4

−
20

−
10

0
10

Time before present /Ga

ε N
d

BSE

DM

CC

a)

b)

Figure 1.2: a) A simple model of 143Nd/144Nd evolution of mantle and crust. By conven-
tion the present is plotted on the left of the diagram, and so the arrow of time is from
right to left. The Bulk Silicate Earth (BSE) evolution (solid line) is known, and is the
same as that of chondrites. In the above figure it is supposed that continental crust (CC)
and depleted mantle (DM) were produced 3.5 Ga before the present by melting from the
BSE (dashed lines). Note that the evolution curves are nearly linear as a result of the long
half-life of 147Sm. The slopes of the lines are proportional to the Sm/Nd ratio. Present day
BSE values are 143Nd/144Nd = 0.512638 and 147Sm/144Nd = 0.1967. b) Same diagram
using εNd notation of (1.4). (Based on Figure 8.9 of White [2005])
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observations. Reservoir models are responsible for much of our current understanding
of the isotopic evolution of mantle and crust. However, they are limited in that they
only consider the mean compositions of each reservoir and thus neglect the differences in
composition within each reservoir.

1.4 Mantle heterogeneity

We can only sample the mantle after it has partially melted and that melt has erupted
at the Earth’s surface. Such melting happens within three main environments on Earth:
at mid-ocean ridges (such as the Mid-Atlantic ridge) where two plates separate and melt
passively upwells due to decompression; at ocean islands (such as Hawaii), where there
is an active upwelling of melt caused by a plume in the mantle circulation; and at island
arcs (such as the Aleutians) near subduction zones, where the presence of water and other
volatiles causes a region around the subducted plate to melt. The focus of this thesis is
the isotopic measurements that have been made on mid-ocean ridge basalt (MORB), as
this is the simplest of the three situations to model. There will also be some discussion of
ocean island basalt (OIB). Mid-ocean ridges are where most melting of the mantle occurs.
MORB has very similar (but not uniform) isotopic characteristics regardless of where in
the world it has come from, although there are some small differences between ridges with
different spreading rates. OIB varies much more from island to island. The overall degree
of melting is also quite different between ridges and ocean islands. There is much more
melting under mid-ocean ridges with around ∼10% of the underlying mantle melting. The
degree of melting at ocean islands is more variable but usually much smaller, around ∼1%.

The mantle is chemically and isotopically heterogeneous, and this is reflected in the
chemical and isotopic heterogeneity of MORB. The observed heterogeneity of isotopic
ratios such as 143Nd/144Nd reflects ancient parent/daughter fractionations, indicative of
the recycling of old crust and residue from ancient melting events caused by plate tectonics
and mantle convection. We wish to understand quantitatively what this heterogeneity can
tell us about processes occurring in the mantle, and this requires suitable models of the
physical processes.

1.5 Geochemical end-members

A popular approach to understanding the observed isotopic heterogeneity of oceanic
basalts is by the identification of end-member components. The concept of geochemi-
cal end-members is somewhat loosely defined. The key idea is that the data is considered
to result from mixing of a small number of uniform components in different proportions.
These uniform components are usually taken to lie at the extremes of the dataset, and are
thus called end -members.

The simplest example of end-member identification is shown in Figure 1.3, which plots
143Nd/144Nd against 87Sr/86Sr for MORB data. This particular diagram is commonly
referred to as “the mantle array”. There is a strong negative correlation between the two
isotopic ratios; this may be interpreted in terms of mixing between two end-members, for
example those indicated by A and B. Any mixture of A and B lies on a line between
A and B (called a two-component mixing line). In general, two-component mixing lines
on ratio-ratio plots like Figure 1.3 are not straight but curved, unless the denominators
in both ratios are the same (such as 207Pb/204Pb against 206Pb/204Pb) or proportional.
The linear appearance of the array is often taken to infer that the denominators of the
end-members should be chosen to be approximately proportional.
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Figure 1.3: The mantle array: a plot of 143Nd/144Nd against 87Sr/86Sr for MORB data.
Note the spread of different values, and the clear negative correlation. A and B are
respectively possible depleted and enriched end-members. Mixing between these two end-
members could account for the majority of the observed correlation.
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Figure 1.4: The mantle zoo: a plot of 143Nd/144Nd against 87Sr/86Sr for OIB data (based
on Figure 15 of Hofmann [2003]). Islands thought to be of the same type are coloured
the same, and the four standard end-members DM, HIMU, EM-I and EM-II have been
plotted.

Based on data from several different isotopic systems, and from the wide range of ocean
island basalts, geochemists have identified a whole host of mantle end-member components.
An example, showing the four standard end-members for OIB data, is shown in Figure 1.4.
These four end-members have the acronyms DM (depleted mantle), EM-I (enriched mantle
1), EM-II (enriched mantle 2) and HIMU (high µ = 238U/204Pb) [White, 1985, Zindler and
Hart, 1986]. Sometimes an additional component is identified in the centre of the array,
referred to by different authors as C (common), FOZO (focal zone) or PREMA (prevalent
mantle). This taxonomy of oceanic basalts in terms of end-member components has, quite
rightly, been called the “mantle zoo”. The different geochemical end-members have been
interpreted in terms of different processes occurring in the Earth, or in terms of different
reservoirs (for example, the acronym DM refers to both an end-member and a mantle
reservoir).

How are end-members chosen? The simplest approach is by eye: to examine the data
for linear arrays, and assign end-members to either end. However, with this approach a
single isotope ratio - isotope ratio plot can lead quickly to a large number of end-members,
the choice of which is largely subjective. A more objective approach is to ask: what is the
minimum number of end-members that is consistent with a data set? If we have a data
set of n isotopic ratios, then this requires mixing between at most n + 1 end-members.
Having more than n + 1 end-members means that the individual observations cannot be
expressed uniquely in terms of the end-members. With statistical techniques, such as
principal component analysis (PCA), we can go further and determine the number of
significant end-members [Debaille et al., 2006]. PCA reduces the dimensionality of the
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data to the m most statistically significant principal components, where m ≤ n. The data
can then be interpreted in terms of m + 1 significant end-members. However, it should
again be noted that there is a potential problem here: PCA is a linear analysis technique,
and the mixing lines between end-members are not necessarily linear.

Understanding isotopic heterogeneity with end-members has a number of problems.
Firstly, given a dataset, there is no unique way to identify the end-members. For example,
end-members can always lie an arbitrary distance further away from the arrays. The
second issue is one of interpretation. Oceanic basalts are simply not made by different
amounts of mixing between a small number of mantle components. In reality, the continual
processes of fractionation occurring on Earth will produce an infinite range of different
mantle components which may be mixed together. End-member analysis helps describe
some of the main features of the complex isotopic systematics of oceanic basalt, but new
modelling approaches are certainly needed.

1.6 Statistical box models

This thesis takes a different view of mantle heterogeneity from that of end-member com-
ponents and reservoir models. Rather than considering mixing between a few uniform
mantle components, a model is produced for the overall statistical distribution of isotopic
ratios. The focus is on understanding the broad features of the observed heterogeneity,
and most importantly on modelling in terms of the physical processes responsible. There
has been some recent work in this direction, either through modified reservoir models
[Kellogg et al., 2002] or through the advection of tracers in mantle convection simulations
[Christensen and Hofmann, 1994, Ferrachat and Ricard, 2001, Xie and Tackley, 2004a,b].
Both of these approaches require involved numerical calculations, with the modified reser-
voir models being rather less involved than the convection simulations. The approach
taken in this thesis is somewhat akin to the modified reservoir models of Kellogg et al.
[2002], but is much more straightforward and has the great advantage of being analyti-
cally tractable. The model is highly idealised, but includes the essential physical processes
involved: radioactive decay, fractionation produced by melting, recycling and stirring by
mantle convection, and the mixing of melts that occurs before sampling.

The bulk of this thesis, chapters 2 to 6, describe this new approach to modelling mantle
isotopic heterogeneity. To make the thesis more accessible, the detailed mathematical
derivations have been separated out, and are described in chapters 3 and 5.

1.6.1 Long-lived isotopes

Chapters 2 and 3 describe the simplest form of the model, which tackles the isotopic ratios
143Nd/144Nd, 176Hf/177Hf, 87Sr/86Sr, 208Pb/204Pb and 206Pb/204Pb which result from the
decay of long-lived (with respect to the age of the Earth) parent isotopes. The model
is a simple statistical box model of mantle processes. A single melt region produces a
melt fraction F of melt, and the average time since a given parcel of mantle material
last visited this region is given by a time scale τmelt. The melt region fractionates the
parent/daughter ratios. Over time this leads to variations in the mantle isotopic ratios
as the parent decays to the daughter. Key assumptions are that the flow is strongly
stirring, and that the mantle has reached a statistical steady state. These assumptions
allow the neglect of the specifics of the underlying flow. Sampling from the model mantle
is performed by averaging over a large number N of samples, representative of the mixing
that occurs after melting [Meibom and Anderson, 2004].
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The model predicts a probability density for isotopic ratios. Fitting the model to the
MORB data gives estimates of the parameters F , τmelt and N . Small melt fractions with
F around 0.5% are essential for a good fit, whereas τmelt and N are less well constrained.
τmelt is estimated from the variance of the Nd, Sr and Hf isotopic ratios at around 1.4 to
2.4 Ga, and N is of the order of hundreds. With these parameters, the model predicts
a larger variability for the Pb isotopes than that observed. Fundamental differences are
shown to exist between the dynamics of Pb isotopes and those of Nd, Sr and Hf isotopes.

1.6.2 Pseudo-isochrons

Chapters 4 and 5 generalise the statistical box model to tackle shorter-lived isotopes, no-
tably the isotopic ratio 207Pb/204Pb, and discuss the problem of mantle pseudo-isochrons.
If MORB data is plotted on the same diagram of 207Pb/204Pb against 206Pb/204Pb used
to date the meteorites (Figure 1.1), then an approximate linear relationship is found. If
naively the isochron method is used on the slope of a regression line through the data to
calculate an age, a figure of around 2.0 Ga is found. However, since the mantle is not a
closed system (as the meteorites are) the isochron dating method is not valid, and thus
this age of 2.0 Ga is often referred to as a pseudo-isochron age. An important question in
mantle geochemistry is: how to interpret this pseudo-isochron age? It certainly does not
date a single fractionation event as the mantle is constantly processed through melting.
The statistical box model offers a solution to this problem and provides a way of relating
the pseudo-isochron age to physical parameters.

Simple equations are presented which relate the pseudo-isochron age to the decay
constants and distribution of heterogeneity ages in the model mantle. In turn, this age
distribution is simply related to the history of melting. The equations are in good agree-
ment with results from mantle convection simulations [Christensen and Hofmann, 1994,
Xie and Tackley, 2004a]. The equations are different from, but related to and more gen-
eral than, those found previously for reservoir models [Albarède, 2001, Allègre and Lewin,
1995a, Donnelly et al., 2004]. While the pseudo-isochron age does not signify a mean
age in the usual sense, in the model presented it is related to a “generalised mean” over
the distribution of heterogeneity ages. If a constant melt rate over the Earth’s history
is assumed, the 2.0 Ga lead-lead pseudo-isochron age is shown to infer a mean remelting
time τmelt of 0.5 Ga.

Concluding the statistical box model work, Chapter 6 discusses the shortcomings of
the approach, and suggests some generalisations that may be useful in future.

1.7 Uranium series disequilibria

The remaining part of the thesis relates to an altogether different problem, and to a
different use of radiogenic isotopes. The decay of 238U to 206Pb, 235U to 207Pb, and
232Th to 208Pb takes place through a series of short-lived intermediate decay products
(Figure 1.5). These decay series can be used to place important constraints on the time
scales of melt extraction from the mantle. Over long times in a closed system, a state of
radioactive equilibrium arises, whereby each of the daughter isotopes in the decay chain
are produced at the same rate as they decay. It is useful to consider the activity of an
isotope, defined as the product of an isotope’s concentration C and its decay constant
λ, and is denoted by round brackets, e.g. (X) = λXCX . In radioactive equilibrium, the
activities of all the isotopes in the chain are identical.
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Figure 1.5: The decay series of 238U, 235U and 232Th (reproduced from Dickin [2005]),
showing the intermediate decay products and their half-lives. Some of the geochemically
more useful isotopes are indicated by double boxes. Arrows indicate alpha decay; diago-
nally adjacent isotopes indicate beta decay.



CHAPTER 1. INTRODUCTION 12

An important feature of decay chains is the time taken to return to radioactive equi-
librium after all of a particular isotope is removed. Perhaps counterintuitively, this return
to equilibrium is governed by the decay constant of the isotope removed and not by the
decay constant of its parent. Disequilibrium is usually measured by an activity ratio, e.g.
(230Th/238U). In a state of radioactive equilibrium (230Th/238U) = 1, and a ratio different
from 1 signifies disequilibrium. After removal of 230Th, the activity ratio (230Th/238U)
returns to 1 on a characteristic time scale 1/λ230Th ≈ 100, 000 years.

Since the half-life of 230Th is very short compared with the time scales involved in
mantle convection, mantle material just before melting must be in radioactive equilibrium
with (230Th/238U) = 1. However, disequilibrium activity ratios with (230Th/238U) ≈ 1.15
are measured on MORB. This disequilibria must arise from the melting process, and
requires that Th is extracted more quickly than U during melting. Since Th is only more
incompatible than U at depths greater ∼ 80 km in the mantle (in the garnet stability
field), this disequilibrium signal can only be generated near the onset of melting, which
occurs at such depths. Migration of melt to the surface from where it is first produced
must happen in less than 100,000 years, in order to preserve this disequilibrium signal.

Shorter-lived isotopes place further constraints on melt migration. Disequilibrium
activity ratios have been measured for (226Ra/230Th) (half-life of 226Ra = 1, 600 years)
and more recently for (210Pb/226Ra) (half-life of 210Pb = 22 years) [Rubin et al., 2005].
However, equilibrium activity ratios have been measured for (228Ra/232Th) (half-life of
228Ra = 6.7 years) and more recently for (227Ac/231Pa) (half-life of 227Ac = 22 years) [K.
Sims, personal communication 2006]. It is harder to constrain the exact depths at which
the different disequilibria signals are generated, but it appears likely that the degassing
of radon (Rn) near the surface is responsible for the disequilibrium (210Pb/226Ra). Thus,
current observations suggest that the time scale of melt extraction is constrained by the
half-lives of 227Ac and 226Ra at between 22 and 1,600 years.

An important question is now: what are the physical mechanisms whereby melt travels
to the surface so quickly? One possibility is that the melt is organised in a series of
connected melt conduits. Evidence for such a network of conduits is also provided by
geological observations of ophiolites (rocks thought to be samples of oceanic crust and
upper mantle material) [Kelemen et al., 1997, 2000]. Channel flow in the conduits allows
melt to be extracted fast enough to satisfy the U-series constraints. Motivated by this,
Richardson et al. [1996] studied the fluid dynamics of a isolated melt conduit surrounded
by a partially molten region. The conduit was shown to support solitary waves, with a
region of trapped melt travelling with the wave. Chapter 7 revisits their analysis, and
comes to a different conclusion. It seems that the region of trapped melt may not exist,
and this may have implications for the chemistry. Finally, chapter 8 concludes the thesis.



Chapter 2

The isotopic heterogeneity of
mid-ocean ridge basalt

2.1 Introduction

Many measurements of isotopic ratios such as 143Nd/144Nd, 176Hf/177Hf and 87Sr/86Sr
have been made on mid-ocean ridge basalt (MORB). These measurements in principle
contain significant information on melting and convective processes in the Earth’s mantle,
but to extract that information requires a suitable quantitative model. In this chapter a
simplified model is presented of what are believed to be the fundamental processes that
give rise to the isotopic heterogeneity of MORB. This chapter describes the formulation of
the model, summarises the results, and compares them with observations. The following
chapter presents the mathematical derivations involved.

The model presented in this chapter describes well the isotopes 143Nd/144Nd, 176Hf/177Hf,
and 87Sr/86Sr, but not the isotopes of Pb. Generalisations of the model to tackle Pb iso-
topes and noble gases (such as He) will be discussed in later chapters.

2.2 Key processes

The isotopic systems studied consist of three isotopes, whose molar concentrations are
labelled as p, d and d′. p is the parent isotope, which decays with decay constant λ to
the daughter isotope d. d′ is a stable reference isotope of the same element as d, whose
abundance does not change due to radioactive decay. It is measurements of isotopic ratios
d/d′ that are made on MORB.

The heterogeneity of d/d′ in the model arises from partial melting processes in the
mantle which fractionate the parent element from the daughter element. It is assumed
that isotopes of the same element have the same behaviour under melting, and so the ratio
d/d′ is unchanged after melting. The fractionation leads to differences in the p/d′ ratio of
different parts of mantle material. Over time this leads to differences in d/d′ as the parent
isotope p decays to the daughter isotope d. While melting processes create heterogeneity,
they also are responsible for destroying it. When the mantle melts, there is a mixing of
different melts which smooths out the variations in d/d′.

These processes occur on the background of mantle convection and plate tectonics.
Mantle convection stirs the mantle and reduces the length scale of heterogeneities. The
distinction between stirring by the convection, and the mixing of the melts should be
emphasised - stirring does not reduce the heterogeneity. The convection also plays a key
role in recycling. Melted material comes to the surface to form new crust, which may

13
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later become subducted back in to the mantle and subsequently undergo further melting
events.

Finally, it is important to note that we cannot sample from the mantle directly: we can
only do so after it has melted and come to the surface. Therefore we expect the variations
observed in MORB to be less than those in the underlying mantle.

2.3 The model

The model consists of two stages. First the processes that create and destroy heterogeneity
in the mantle are examined to derive the form of the distribution of d/d′ in the interior.
Secondly the processes involved in sampling after melting from this model mantle are
examined to predict how this interior distribution relates to a distribution expected to be
observed at mid-ocean ridges.

An episodic model is considered with a box representing the mantle. For an interval
of time ∆t parcels are advected around the box, and the appropriate radioactive decay is
followed. At the end of this interval, a melting event occurs. In a melting event a single
melt fraction F of melt is produced. The concentrations of p, d and d′ are averaged over in
the melting region of the box, and this is used to calculate the relevant concentrations in
the melt and residue produced. These concentrations depend on the partition coefficients
for each isotope, and it is assumed that isotopes of the same element, such as d and d′,
have the same behaviour under melting. A fraction F of the material in the melting region
is then set with the uniform melt value composition, and a fraction 1−F with the uniform
residue composition. In this way the melt region both creates and destroys heterogeneity.

In order to simplify the model two key assumptions are made. The first is that the
radioactive decay is slow, so that the equation of radioactive decay can be linearised (this
assumption will later be dropped in Chapter 4). The second is that the advection is
strongly stirring. By this it is meant that the stirring is such that the statistics of the
melting region at the end of the interval are the same as the statistics over the whole
box. This situation gives rise to a statistical steady state [Armstrong, 1968], and a model
mantle which is statistically of the same isotopic composition everywhere (although not
a uniform composition). For calculational convenience, the limit is also taken as ∆t→ 0,
turning the episodic model into a continuous one. An important parameterisation of the
melting process is then the timescale τmelt, which determines how often on average it has
been since an individual parcel last experienced a melting event. The assumption that the
radioactive decay is slow is then formally that λτmelt � 1.

It is then possible to derive analytically an expression for the distribution of d/d′ in
the model mantle (section 3.1).

2.4 Sampling

As mentioned earlier we cannot sample from the mantle directly, but instead sample after
melting. To model this the ideas of “sampling under melting and averaging” (SUMA)
of Meibom and Anderson [2004] have been extended. To model the sampling a large
number N of independent identically distributed samples from the model mantle are mixed
together. N characterises the mixing - if N is large, there is a large amount of mixing
between different components and thus a large reduction in the variability observed. N is
a simple single parameter characterisation of the averaging process, which in practice is
determined by a variety of different factors such as the length scale of heterogeneities, the
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length scale of the mantle region undergoing partial melting, the diffusivity of chemical
species in the melt, and the time spent in magma chambers.

In the case of averaging large numbers of independent samples, the central limit the-
orem is potentially relevant [Allègre and Lewin, 1995b, Meibom and Anderson, 2004]. It
states that the average of N independent random samples from a distribution with mean
µ0 and standard deviation σ0 approaches a normal distribution with mean µ0 and stan-
dard deviation σ0/

√
N as N increases. However, the central limit theorem is not directly

applicable to the distribution of the ratio d/d′ as it is the individual concentrations d and
d′ that are averaged and then the ratio d/d′ calculated and not the other way round. How-
ever, it can be shown that the model d/d′ distribution does approach a normal distribution
as N increases, but the standard deviation is not simply σ0/

√
N . Section 3.2 explains the

details of calculating the distribution after sampling, and section 3.3 considers the large
N asymptotics.

2.5 Analytic results

For N large there are a number of asymptotic results that can be derived for the properties
of the d/d′ distribution after sampling. The most important analytic result is for the
asymptotic behaviour of the standard deviation σ of the distribution,

σ ≈ λτmelt|Gp −Gd|
p̄

d̄′

√
2

NF (1− F )
. (2.1)

Here λ is the decay constant of the parent isotope; p̄/d̄′ is the ratio of the mean parent
isotope concentration to mean reference isotope concentration over the whole box at the
present day; Gp and Gd are functions of the melt fraction F and the relevant partition
coefficients, where the lower case subscripts p and d refer to the parent and daughter
isotopes under consideration. G is the molar fraction of a chemical species that enters the
melt, and thus is a measure of the incompatibility of a given isotope under a particular
melt fraction. If G ≈ 0 then the isotope is compatible (stays in the residue), while if G ≈ 1
then it is incompatible (readily enters the melt). For the Shaw [1970] melting model Gp
is given by

Gp = 1−
(

1− Pp
Dp

F

)1/Pp

, (2.2)

where capital P and D are different weighted averages of partition coefficients.

Dp =
∑
i

xiKi
p, (2.3)

Pp =
∑
i

qiKi
p. (2.4)

Ki
p is the mineral/melt partition coefficient for the parent in mineral i; xi is the mass

fraction of mineral i in the source rock; and qi is the fractional contribution of mineral i
to the melt. Gd is defined similarly.

Some features of the equation for σ can be easily interpreted. Variations in d/d′

arise from differences in p/d′. Since linearised decay is assumed, σ depends linearly on λ
and p̄/d̄′. Also, because the only other time scale in the problem is τmelt and since σ is
non-dimensional, then on dimensional grounds σ must have a linear dependence on τmelt

also. So the larger τmelt, the longer it is between melting events and thus the greater the
heterogeneity that can arise.
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The role of the melting behaviour on σ is less obvious. The dependence on |Gp −Gd|
is indicative of the fact there has to be a fractionation between parent and daughter to
produce the heterogeneity. As such, small melt fractions are essential. For example, large
melt fraction MORB melting would have G ≈ 1 for nearly all elements under consideration
and as such can not produce significant heterogeneity. As mentioned earlier N is indicative
of the amount of mixing after melting, so asymptotically the larger N the smaller σ.

Another analytic result of particular interest is for the skewness parameter γ1 (sec-
tion 3.3.2), which measures the asymmetry of the distribution about its mean value,

γ1 ≈
3 (1− 2Gd) sgn(Gp −Gd)√

2NF (1− F )
. (2.5)

Here sgn(x) is the sign function: it equals 1 if x is positive, −1 if x is negative. Hence
the sign of the skew is determined by the sign of (Gp −Gd) (1 − 2Gd). For example, if
Gp < Gd (parent more compatible than daughter) and Gd < 1/2 (a sufficiently small melt
fraction say) then the distribution will be asymptotically negatively skewed. Furthermore,
note the dependence on NF (1 − F ) in the denominator. While N may be thought of as
a large parameter, F is usually small, so the skew and non-normality in the distributions
can be quite significant.

It is common in geochemistry to plot one isotopic ratio against another. Consider two
isotopic systems 1 and 2 with different parent and daughter elements. Suppose (d/d′)2 is
plotted against (d/d′)1. For N large, the model predicts that samples lie approximately
on a straight line through the mean value, and gives a prediction for the gradient β̄ of this
line (section 3.3.4)

β̄ ≈
λ2 (Gp2 −Gd2)

(
p̄/d̄′

)
2

λ1 (Gp1 −Gd1)
(
p̄/d̄′

)
1

. (2.6)

Thus, if the partition coefficients, half lives, and mean parent/daughter isotopic ratios are
known for each system, the melt fraction can be inferred from the gradient in plots of
(d/d′)2 against (d/d′)1.

This equation simplifies in a particular special case. If the daughter isotopes are of the
same element for both systems (for example, both isotopes of lead) then all samples lie
precisely on a straight line. If it is also the case that the parent elements are the same (or
at least behave similarly under melting such that Gp1 ≈ Gp2) then the gradient β of this
line is independent of the melt model and is simply

β =
λ2p̄2

λ1p̄1
. (2.7)

Note that this equation will be valid for 208Pb/204Pb and 206Pb/204Pb, but not 207Pb/204Pb.
The short half-life of 235U means the 207Pb/204Pb system does not satisfy the slow decay
approximation. As such, this version of the model cannot be used for 207Pb/204Pb. It
has been included in the data plots for completeness, and the model will be extended in
chapter 4 to handle isotopes with shorter half-lives.

2.6 Comparison with observations

The model has the following input parameters: λ, p̄/d̄′, d̄/d̄′, Pp, Dp, Pd, Dd, τmelt, F ,
and N . The key concern is with studying the variations in d/d′ so d̄/d̄′ is not important.
d̄/d̄′ is chosen appropriately to get a match with the mean of the observations. Other
parameters are based on estimates by previous authors as shown in Table 2.1. The melting
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Table 2.1: Given parameters.

parent isotope p 147Sm 87Rb 176Lu 232Th 238U 235U
daughter isotope d 143Nd 87Sr 176Hf 208Pb 206Pb 207Pb
reference isotope d′ 144Nd 86Sr 177Hf 204Pb 204Pb 204Pb

decay rate / Ga−1a λ 0.00654 0.0142 0.0193 0.0495 0.155 0.985
parent part. coeff.b Dp 0.03990 0.00039 0.29739 0.00021 0.00054 0.00054
parent part. coeff.b Pp 0.12392 0.00058 0.94719 0.00068 0.00178 0.00178

daughter part. coeff.b Dd 0.02787 0.02983 0.04508 0.02793 0.02793 0.02793
daughter part. coeff.b Pd 0.08653 0.08908 0.14333 0.07175 0.07175 0.07175

mean isotopic par./dau.c p̄/d̄′ 0.253 0.0188 0.0324 20.0 8.04 0.0583

(a) Decay constants λ of the parent isotopes are accurately known [Faure, 1986]. Some λ have
been rounded.
(b) Partition coefficients based on the estimates of McKenzie and O’Nions [1991], taking a linear
combination of the values for garnet and spinel peridotite (Appendix A).
(c) p̄/d̄′ estimated from the depleted mantle model of McKenzie and O’Nions [1991] (Appendix A).

is assumed to take place somewhere in the garnet/ spinel transition region. As such the
partition coefficients used are a linear combination of the coefficients for garnet and spinel
peridotite. With the exception of the Lu-Hf system, there is little difference in the partition
coefficients for these two rock types, so the Lu-Hf system was used to constrain this linear
combination.

There are just three unknown parameters left in this model: the melting timescale
τmelt, the effective melt fraction F producing the heterogeneity, and the parameter N
characterising the mixing before sampling. Note also that these three parameters are
independent of the isotopic system under consideration.

2.6.1 Samarium - neodymium

The Sm-Nd system is the best constrained of the systems under examination. The Sm/Nd
ratio of the bulk Earth is taken to be chondritic, and there is general agreement on the
values for the partition coefficients of Sm and Nd [Green, 1994]. Hence the Sm/Nd ratio
in depleted mantle models can be calculated accurately.

2.6.2 Rubidium - strontium

The Rb-Sr system is less well constrained. Owing to the volatility of Rb, the bulk Earth
Rb/Sr ratio is not precisely known. Furthermore, the observed behaviour of Sr under
melting is not well described by the partition coefficients that have been measured in the
laboratory [Hanson, 1977]. Hence estimates of Rb/Sr in depleted mantle models vary
considerably (for example, a 35% larger estimate than that in Table 2.1 is given by Salters
and Stracke [2004]).

2.6.3 Lutetium - hafnium

The Lu-Hf system is similar in many ways to the Sm-Nd system, in that good estimates on
the Lu/Hf ratio can be obtained from chondrites. However, this system is complicated by
the large difference between partition coefficients for Lu in the spinel and garnet stability
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Figure 2.1: Plot of 143Nd/144Nd against 87Sr/86Sr. Measured MORB data points are
plotted. Straight lines are model predictions using (2.6) with melt fraction F as indicated.
A melt fraction of 0.5% provides a good fit.

fields. A 37% larger estimate for Lu/Hf is given in Salters and Stracke [2004]. Also, fewer
measurements of hafnium isotopes have been made.

2.6.4 Uranium - thorium - lead

The U-Th-Pb systems are the most difficult to model. The ratio of U/Pb in the depleted
mantle is not well known (discussed later), and the behaviour of lead under melting is not
well understood [Tatsumoto, 1978, White, 1993].

2.7 Results

The three parameters F , N and τmelt were varied in order to fit the model to the mea-
surements of MORB isotopic ratios (sources given in Appendix A).

F is the most straightforward parameter to constrain, provided the decay rates, par-
tition coefficients and mean parent/ daughter isotopic ratios are known. (2.6) shows that
the average gradient in plots of one isotopic ratio against another are determined by the
melt fraction F , and is independent of N or τmelt to leading order. Figure 2.1 gives an
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example of such a plot, and shows how F can be varied to provide a good fit. The Sm-Nd
and Rb-Sr systems constrain F to be around 0.5%.

N and τmelt are harder to constrain, mainly due to the dependence on τmelt/
√
N of

the standard deviation for N large. Given F , the standard deviations only constrain
τmelt/

√
N , and so a longer timescale could be offset by a larger amount of mixing before

sampling. Increasing τmelt stretches the density linearly. The behaviour of N is more
complicated, as it also has an effect on the shape of the distributions (Figure 2.2). For N
large the model distribution approaches a normal distribution, and yet there is a definite
skew to the distributions that are observed. Hence all that can be said with any certainty
is that τmelt is around 1.2 - 2.4 Ga, and N is of the order of hundreds to get a reasonable
fit to the data.

Motivated by these constraints, Figures 2.3 and 2.4 compare the measurements with
model data using F=0.5%, τmelt=1.7 Ga and N=500. Figure 2.3 shows a plot of kernel
smoothed probability density estimates for model and measured data. Kernel smoothed
density estimates (section 3.4) are a generalisation and improvement on histograms. They
have the advantage of being smooth, and have no dependence on the end points of bins
as histograms do. They do have a dependence on the bandwidth of the kernel, which
determines how smoothed out distribution features become. However, there are algorithms
for choosing the most appropriate bandwidth, and these have been used. Figure 2.4 shows
a more traditional set of scatterplots for pairs of the isotopic systems. These plot an
artificial sample from the model, as well as the measured data. Table 2.2 lists the values
of a few important calculated parameters.

In this table Gd < 1/2 for all isotopic systems. Hence (2.5) implies that the sign of
the skew is determined by the sign of Gp−Gd, i.e. by the relative compatibility of parent
and daughter. Where the parent is more compatible than the daughter (Gp −Gd < 0 e.g.
Sm-Nd, Lu-Hf) a negatively skewed distribution is expected, and where the parent is less
compatible (Gp −Gd > 0 e.g. Rb-Sr, U-Th-Pb) a positively skewed distribution. This is
what is observed. Note also that NF (1−F ) = 2.5 so that the skews and the non-normality
in these distributions are appreciable. Furthermore, note that the sign of the correlations
in the plots of one isotope against another is given by (Gp2 −Gd2)/(Gp1 −Gd1) and thus
the observed correlations are also governed by the relative compatibilities of parent and
daughter elements.

The special case that yields (2.7) applies to the plot of 206Pb/204Pb against 208Pb/204Pb.
In this case the model predicts a single straight line whose gradient β depends only on the
decay constants of 238U and 232Th, and κ, the average isotopic ratio 232Th/238U in the
model mantle (β = (λ232/λ238)κ). Since the decay constants are known, the slope of the
plot of 206Pb/204Pb against 208Pb/204Pb can be used to estimate κ. The value of κ used
was 2.5, and this provides a reasonable fit to the observed slope.

There is reasonably good agreement between the model and the measurements of Nd,
Sr and Hf isotopic ratios. The MORB data shows more scatter than the model, but
the general trends are the same. Such scatter could possibly be accounted for by the
variability in melt fractions in the real mantle. The Pb isotopes, however, do not fit this
simple model. The standard deviation of Pb calculated from the model is larger than that
observed. An ad hoc solution to this problem is to reduce the average ratio 238U/204Pb, µ,
while keeping κ unchanged. A value for mean depleted mantle µ of around 2.7 (as opposed
to the value of 8.0 used) gives a good match with these parameters. There is still much
debate on the value of µ in the depleted mantle, with some authors arguing it should be
less than 4.7 [White, 1993], or as high as 14.4 [Salters and Stracke, 2004].

The isotopes of Nd, Sr and Hf correlate well with each other. The isotopes of Pb
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Figure 2.2: Plot of model probability densities for 143Nd/144Nd with F=0.5%, τmelt=1.7
Ga, and N varied as shown. Surprisingly, for N between 2 and 30 the standard deviation
actually increases as N is increased. For N large the distribution becomes more symmetric
and gaussian in appearance, and standard deviation decreases as 1/

√
N (2.1). N=500

gives a similar distribution shape to that observed (Figure 2.3). Note that d̄/d̄′ has been
chosen to match the observed mean with N=500.
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Figure 2.3: Plots of kernel smoothed probability density estimates for model and ob-
served MORB data. n gives the number of measured MORB isotopic ratios. The model
curves were calculated from a sample of size 1000 generated by numerical simulation. The
bandwidth quoted is the standard deviation of the gaussian kernel smoother applied.



CHAPTER 2. THE ISOTOPIC HETEROGENEITY OF MORB 22

143Nd 144Nd

0.702 0.704 0.706 36 38 40 42 15.4 15.6 15.8

0.
51

24
0.

51
28

0.
51

32

0.
70

2
0.

70
4

0.
70

6

87Sr 86Sr

176Hf 177Hf

0.
28

28
0.

28
32

36
38

40
42

208Pb 204Pb

206Pb 204Pb

16
18

20
22

24

0.5124 0.5128 0.5132

15
.4

15
.6

15
.8

0.2828 0.2832 16 18 20 22 24

207Pb 204Pb

● ●Model data MORB data

Figure 2.4: Scatter plots of model and observed MORB data.
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Table 2.2: Calculated parameters given F=0.5%, τmelt=1.7 Ga, N=500.

parent isotope p 147Sm 87Rb 176Lu 232Th 238U 235U
daughter isotope d 143Nd 87Sr 176Hf 208Pb 206Pb 207Pb
reference isotope d′ 144Nd 86Sr 177Hf 204Pb 204Pb 204Pb

parent incompatibility Gp 0.119 1.000 0.017 1.000 1.000 1.000
daughter incompatibility Gd 0.165 0.155 0.106 0.165 0.165 0.165

relative compatibility Gp −Gd -0.047 0.845 -0.089 0.835 0.835 0.835
model asymptotic s.d.a σasym 1.18×10-4 3.43×10-4 8.49×10-5 1.260 1.587 0.073

MORB data s.d.b σMORB 1.26×10-4 4.93×10-4 1.36×10-4 0.464 0.469 0.056

a σasym is the asymptotic standard deviation of the model calculated using (2.1).
b σMORB is the standard deviation of the isotopic measurements on MORB.

also correlate well with each other, but there is little correlation between the Pb isotopes
and the Nd, Sr and Hf isotopes. It is important to note that the model Pb isotopes
are more variable than the measured. It implies it is not necessary to include additional
mechanisms for producing heterogeneity, such as subducted sediments, to explain the
observed variations. Note also that Sm, Nd, Lu and Hf are elements which are little
depleted in the mantle by the formation of continental crust. Sr is also only little depleted,
but its parent, Rb, is very depleted. Th, U and Pb are all much depleted in the mantle
by the formation of continental crust. As has been stated by many previous authors, the
dynamics of the Pb systems seem notably different to those of Nd, Sr and Hf.

2.8 Previous work

There has been some recent work done on this problem by other authors. Most recently
Meibom and Anderson [2004] introduced the ideas of the statistical upper mantle assem-
blage, and of sampling under melting and averaging (which they refer to as SUMA). Their
ideas form a key part of the model presented here. The only slight criticism of their work
is in their assessment of the standard deviation within the framework of the central limit
theorem (see section 3.5 for a fuller discussion). Their paper describes the ideas behind
SUMA, argues strongly for statistical ways of thinking about these distributions, and dis-
cusses in more detail possible interpretations of the mixing parameter N (referred to as
M in that paper).

Another detailed examination of this problem was recently given by Kellogg et al.
[2002]. Many of the main ideas in their modelling approach are shared with the approach
taken here. They too have partial melting as the primary cause of heterogeneity, and
have a sampling process which averages over different components in their model mantle
reducing heterogeneity. The main difference in the two approaches lies in their complexity.
The Kellogg et al. [2002] model analyses the behaviour of multiple reservoirs with fluxes
between them, whereas in the present model we look at essentially just one statistical
depleted mantle reservoir. Their model has to track subreservoirs within these reservoirs
to study the heterogeneity, and further sub-subreservoirs to handle the sampling. As
such, in order to implement their model it is necessary to solve numerous differential
equations numerically. Furthermore their approach leads to a proliferation of unknown
free parameters, and even more so in extensions of their model to fit Pb data [Kellogg,
2004]. Their findings for the Sm-Nd and Rb-Sr systems are broadly similar to our own, and
importantly they also found that small melt fractions (also around 0.5%) were essential to
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getting a good fit to the data. The advantage of our model is that it is able to reproduce
such features using a simpler and analytically tractable framework with just a few free
parameters.

Modelling mixing by averaging over N components was used for trace element ob-
servations by Slater et al. [2001]. The variability in trace elements in the Slater et al.
[2001] model arises from mixing between different fractional melts from a uniform MORB
source. They found the standard deviation of their model fractional melts to be a factor
of 4 greater than that observed in melt inclusions, which in turn was a factor of 4 greater
than that observed in the host lavas. Hence their N ≈ 162 ≈ 250, which is of similar
magnitude to our model. However, our model differs in using a heterogeneous MORB
source, which is necessary when studying isotopic variability rather than elemental.

A number of the important ideas in this chapter can be found in the earlier work of
Allègre and Lewin [1995a,b]. The first of these papers [Allègre and Lewin, 1995b] stresses
the importance of looking at the distributions of geochemical measurements, and examines
in general terms how various distributions can arise from the fundamental processes of
mixing and fractionation. In the context of this, the model mantle considered here is
“a well-stirred homogeneous mixture of components from heterogeneous sources”. There
is heterogeneity in the source components because there is melt and residue components
of varying ages. These are strongly stirred in the model mantle, and then mixed in the
melting before sampling. Importantly, Allègre and Lewin [1995b] stress the role of the
central limit theorem and the approach to a normal distribution in such a case. The
subsequent paper [Allègre and Lewin, 1995a] models the standard deviation of isotopic
ratios in terms of these fundamental processes, and their model will be discussed in detail
in Chapter 4. For now, note that this chapter has demonstrated that the behaviour of
the standard deviation of ratios can be quite non intuitive and can not be modelled by a
simple linear evolution equation as is done in Allègre and Lewin [1995a].

2.9 Conclusions

The minimal model presented in this chapter goes some way to explaining the isotopic
heterogeneity seen in MORB. In this version of the model the heterogeneity in the model
mantle is produced by a small melt fraction (0.5%) partial melting process, where on aver-
age a parcel of mantle material undergoes such melting around every 2 Ga. In particular,
the heterogeneity observed in MORB cannot originate in the large melt fraction melting
that produces MORB. One possible place for a small melt fraction partial melting process
to occur to generate this heterogeneity would be underneath ocean island hot spots.

The simplified model does not fit well with the lead isotopes, but this is unsurprising
since lead isotopes are generally inconsistent with simple evolutionary models of the de-
pleted mantle. Any resolutions to the various “lead paradoxes” [Galer and O’Nions, 1985,
Murphy et al., 2003] should also be able to explain the variability found in the isotopic
measurements. The main message here is one of consistency. With the exception of lead,
the heterogeneity seen is consistent with a simple model of mantle processes.

The model presented is minimal, and neglects many processes that have been proposed
to account for the isotopic variability of the mantle. But it is hoped it contains the most
essential physics. Subsequent chapters will discuss further refinements of this model. In
particular, Chapter 4 will discuss the effect of not making the linear decay approximation,
not assuming a steady state, and not having a constant melt rate over the Earth’s history.



Chapter 3

Statistical box model derivations

This chapter presents the mathematical derivations behind the statistical box model dis-
cussed in the previous chapter.

3.1 The basic model

3.1.1 Radioactive decay

We track the molar concentrations of the three isotopes p, d and d′. Consider a fluid parcel
that remains outside the melting region. Suppose that initially p = pstart, d = dstart and
d′ = d′start for such a fluid parcel. Following this fluid parcel the radioactive decay law is
given by

Dp
Dt

= −λp, Dd
Dt

= λp,
Dd′

Dt
= 0, (3.1)

where the Lagrangian derivative D is to emphasise that we are following the fluid parcel.
Thus, after a time t following this fluid parcel we have

pt = pstarte−λt, (3.2)

dt = dstart + pstart

(
1− e−λt

)
, (3.3)

d′t = d′start, (3.4)

and in particular (
d

d′

)
t

=
(
d

d′

)
start

+
(
1− e−λt

)( p
d′

)
start

. (3.5)

It is often more convenient to work from the present backwards in time, especially since
we are usually much more certain of the present state than the initial one. This perspective
will be used often throughout this work. Suppose that at the present p = pfinish, d = dfinish

and d′ = d′finish for the fluid parcel. Following the fluid parcel backward in time we have

Dp
Dτ

= λp,
Dd
Dτ

= −λp, Dd′

Dτ
= 0. (3.6)

Thus, at an age τ before the present we have for the fluid parcel

pτ = pfinisheλτ , (3.7)

dτ = dfinish − pfinish

(
eλτ − 1

)
, (3.8)

d′τ = d′finish, (3.9)

25
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and (
d

d′

)
τ

=
(
d

d′

)
finish

−
(
eλτ − 1

)( p
d′

)
finish

. (3.10)

The mean isotope concentrations in the box satisfy the same radioactive decay law as a
individual fluid parcel that remains outside the melting region. We will denote by p̄, d̄ and
d̄′ the mean values at the present day, and p̄τ , d̄τ and d̄′τ the corresponding mean values
at an age τ before the present. As in (3.7-3.9) we have

p̄τ = p̄eλτ , (3.11)

d̄τ = d̄− p̄
(
eλτ − 1

)
, (3.12)

d̄′τ = d̄′. (3.13)

3.1.2 Melting

At intervals of time ∆t a melting event occurs in the melting region. In a melting event
we find the mean values of p, d and d′ over fluid parcels in the melting region and call
these our psource, dsource and d′source values. Note that in the strong stirring approximation
the mean of the melting region is the same as the mean over the whole box. That is to
say at an age τ before the present psource,τ = p̄τ , dsource,τ = d̄τ and d′source,τ = d̄′τ .

The melting region produces a melt fraction F of melt. As such, a fraction F of
material in the melting region is set with p = pmelt,τ , d = dmelt,τ and d′ = d′melt,τ , where
these values are calculated from the expressions below. Similarly, a fraction (1−F ) is set
to the appropriate residue values. The melting equations are

pmelt,τ =
Gp
F
psource,τ , pres,τ =

1−Gp
1− F

psource,τ , (3.14)

dmelt,τ =
Gd
F
dsource,τ , dres,τ =

1−Gd
1− F

dsource,τ , (3.15)

d′melt,τ =
Gd′

F
d′source,τ , d′res,τ =

1−Gd′

1− F
d′source,τ , (3.16)

where Gp, Gd and Gd′ come from the melting model used, and are related to the partition
coefficients for the relevant isotopes and the melt fraction F . G is the molar fraction of
each chemical species that goes into the melt. A good overview of different melt models
is given in Zou [1998]. Here we have used the Shaw [1970] model, where

Gp = 1−
(

1− Pp
Dp

F

)1/Pp

, (3.17)

with similar definitions for Gd and Gd′ . This is slightly confusing notation - upper case P
and D are different weighted averages of partition coefficients for a given isotope, whereas
lower case p and d refer to the parent and daughter isotopes respectively.

Dp =
∑
i

xiKi
p, (3.18)

Pp =
∑
i

qiKi
p. (3.19)

Ki
p is the mineral/ melt partition coefficient for the parent in mineral i, xi is the mass

fraction of mineral i in the source rock, and qi is the fractional contribution of mineral i
to the melt. Note that

Gp →
F

Dp
as F → 0. (3.20)
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We will assume that isotopes of the same element have the same behaviour under melting
(and thus for a given melt fraction the same G), and in particular that Gd = Gd′ .

Suppose a fluid parcel last entered the melt region at an age τ before the present, and
at that time was made as melt. Denote its present day isotopic concentrations by pmelt(τ),
dmelt(τ), and d′melt(τ). The radioactive decay law (3.2-3.4) gives

pmelt(τ) = pmelt,τe−λτ , (3.21)

dmelt(τ) = dmelt,τ +
(
1− e−λτ

)
pmelt,τ , (3.22)

d′melt(τ) = d′melt,τ . (3.23)

Similarly, for a fluid parcel that was made instead as residue at an age τ

pres(τ) = pres,τe−λτ , (3.24)

dres(τ) = dres,τ +
(
1− e−λτ

)
pres,τ , (3.25)

d′res(τ) = d′res,τ . (3.26)

Substituting the melting equations (3.14-3.16) yields

pmelt(τ) =
Gp
F
p̄, (3.27)

dmelt(τ) =
Gd
F
d̄+

Gp −Gd
F

(
eλτ − 1

)
p̄, (3.28)

d′melt(τ) =
Gd
F
d̄′. (3.29)

pres(τ) =
1−Gp
1− F

p̄, (3.30)

dres(τ) =
1−Gd
1− F

d̄− Gp −Gd
1− F

(
eλτ − 1

)
p̄, (3.31)

d′res(τ) =
1−Gd
1− F

d̄′. (3.32)

For slowly decaying isotopes λτ � 1, the radioactive decay law can be linearised (eλτ−1 ≈
λτ). In this case (3.28) and (3.31) can be written as

dmelt(τ) =
Gd
F
d̄+

Gp −Gd
F

λτp̄, (3.33)

dres(τ) =
1−Gd
1− F

d̄− Gp −Gd
1− F

λτp̄. (3.34)

For simplicity, this linear approximation will be used for the remainder of this chapter. In
the following chapter the consequences of not making this approximation will be examined
in detail.

3.1.3 Distribution of ages

Let the melting region have non-dimensional area A relative to the size of the box. Define
the iterate age s to be the number of iterates since a given parcel last entered the melting
region. Let Ŝ be a discrete random variable giving the distribution of iterate ages. If the
advection is strongly stirring, then the probability of any given parcel entering the melting
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region at that timestep is A. Considering a long time statistical steady state, Ŝ is given
by a geometric distribution, where the probability of an iterate age of s is

P(Ŝ = s) = A(1−A)s, s = 0, 1, 2... (3.35)

Note that it is thus assumed that all parcels have passed through the melting region at
some point. It is easier to work with a continuous distribution rather than a discrete
distribution. The continuous analogue of the geometric distribution is the exponential
distribution. The age τ is the time since a given parcel last entered the melting region
and so τ = s∆t, where ∆t is the time step in the discrete model. Note that

A(1−A)s = A exp
(
−τ− log(1−A)

∆t

)
, (3.36)

and so the discrete distribution has an associated melting timescale given by

τmelt =
∆t

− log(1−A)
. (3.37)

Taking the limit as ∆t → 0, A → 0 with τmelt fixed allows us to relate the discrete and
continuous distributions. Let T̂ be the continuous random variable giving the distribution
of ages. Then T̂ is distributed exponentially with mean τmelt, and melting is thus being
modelled as a Poisson process [Albarède, 2005, 2003]. Let Ê be an exponential random
variable with mean 1. Then we can write T̂ = τmeltÊ. Ê has probability density function
given by

fÊ(x) = e−x, x > 0. (3.38)

In this limit both the time interval ∆t and the melting region area A become infinitesimal.
As such the assumption that strong stirring occurs between time intervals cannot be
made. However, the continuous limit should be a reasonable approximation provided the
timescale for stirring is short compared to the melting timescale τmelt, and for calculational
convenience it is used from now on.

3.1.4 Distribution of d/d′

Hence, in terms of the random variable T̂ giving the distribution of ages we have the
following for the distribution of d/d′ in the interior of the box (using (3.29), (3.32), (3.33)
and (3.34))

d̂

d̂′
− d̄

d̄′
∼ λ (Gp −Gd)

p̄

d̄′

{
T̂ /Gd (melt)
−T̂ /(1−Gd) (res)

, (3.39)

where we have a probability F of getting a melt value, and (1 − F ) of getting a residue
value. Here hats on d̂ and d̂′ are used to denote that they are random variables. (3.39)
can also be expressed in terms of the exponential random variable Ê as

d̂

d̂′
− d̄

d̄′
∼ l

{
Ê/Gd (melt)
−Ê/(1−Gd) (res)

, (3.40)

where
l = λτmelt (Gp −Gd)

p̄

d̄′
. (3.41)
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3.2 Sampling

When we sample the mantle we do not sample directly from the distribution that has just
been derived. In fact we sample after numerous components from this distribution have
melted and mixed together. This is the “sampling under melting and averaging” (SUMA)
concept [Meibom and Anderson, 2004]. We will assume there is no bias in melting and
mixing - the likelihood of a component entering the melt is proportional to its abundance
in the source.

Suppose we mix togetherN independent identically distributed (i.i.d.) random samples
from the whole box distribution. Note in particular that the d/d′ ratio of the mixture is not
the mean of the ratios of the independent samples. Instead the individual concentrations
d and d′ are averaged and the ratio is then calculated i.e. the quantity of interest is

Ẑd =
N∑
i=1

d̂i/

N∑
i=1

d̂′i. (3.42)

Calculations are made easier if we introduce new starred variables

d? =
1
d̄′

(
d− d̄

d̄′
d′
)
, (3.43)

d′? =
1
d̄′
(
d′ − d̄′

)
, (3.44)

and note the important identity

Ẑd −
d̄

d̄′
=

∑
i d̂
?
i∑

i(1 + d̂′?i )
. (3.45)

In terms of the starred variables, the components as a function of age τ are

d?melt(τ) =
p̄

d̄′
Gp −Gd

F
λτ, (3.46)

d′?melt(τ) =
Gd
F
− 1, (3.47)

d?res(τ) = − p̄

d̄′
Gp −Gd
1− F

λτ, (3.48)

d′?res(τ) =
1−Gd
1− F

− 1. (3.49)

The d̂?i ’s are thus i.i.d. random variables with distribution

d̂?i = l

{
Êi/F (melt)
−Êi/ (1− F ) (res)

, (3.50)

where the Êi’s are i.i.d. exponential random variables with mean 1. Again, there is a
probability F of getting a melt value, and 1 − F of getting a residue value.

∑
i(1 + d̂′?i )

depends only on how many melt and how many residue components are mixed together.
Suppose we have r melt components and N − r residue components. Then

∑
i(1 + d̂′?i ) =

M(r), where

M(r) = r
Gd
F

+ (N − r)
1−Gd
1− F

. (3.51)
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Assuming the sampling is unbiased, the probability qr of getting r melt components and
N − r residue components in the mix is given by the binomial distribution

qr =
(
N

r

)
F r(1− F )N−r. (3.52)

Hence Ẑd has distribution given by

Ẑd −
d̄

d̄′
= Ŷr with probability qr, (3.53)

where Ŷr is the result of combining r melt and N−r residue components, with distribution
given in terms of the Êi’s as

Ŷr =
l

M(r)

(
r∑
i=1

Êi
F
−

N∑
i=r+1

Êi
1− F

)
. (3.54)

The above expression forms the basis of one method of estimating the probability density
function for d/d′ after sampling. Exponential random variables can be simulated easily,
and so an artificial sample from this distribution can be constructed. From this it is
possible to numerically estimate the density (e.g. by kernel smoothing, section 3.4).

3.2.1 Characteristic functions

In order to get an analytic expression for the probability density function of Ẑd it is useful
to use characteristic functions. Suppose a random variable X̂ has probability density
function f(x). Then its characteristic function φ(k) is defined by its Fourier transform

φ(k) =
∫ ∞

−∞
e−ikxf(x) dx. (3.55)

The moments of the distribution can be read off from the Taylor expansion about k = 0
of the characteristic function. If the nth moment is

αn = EX̂n =
∫ ∞

−∞
xnf(x) dx, (3.56)

where E denotes expectation, we have

φ(k) =
∞∑
n=0

αn
(−ik)n

n!
. (3.57)

Similarly, the cumulants of the distribution can be read off from the Taylor expansion
about k = 0 of the log of the characteristic function. If the nth cumulant is κn we have

log φ(k) =
∞∑
n=0

κn
(−ik)n

n!
. (3.58)

There are two important properties that we wish to exploit. If X̂ is a random variable with
characteristic function φ(k) then aX̂ + b has characteristic function e−ikbφ(ak). Also, if
X̂1, X̂2, ...X̂n are independently distributed with characteristic functions φ1(k), φ2(k), ...φn(k),
then

∑n
i=1 X̂i has characteristic function

∏n
i=1 φi(k).
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The exponential random variable Ê has characteristic function

φÊ(k) = (1 + ik)−1. (3.59)

Hence, using the two properties stated above, Ŷr has characteristic function

φŶr
(k) =

(
1 +

ikl

M(r)F

)−r(
1− ikl

M(r)(1− F )

)−(N−r)
. (3.60)

Hence Ẑd has characteristic function

φẐd
(k) = e−ikd̄/d̄

′
N∑
r=0

(
N

r

)
F r(1− F )N−rφŶr

(k). (3.61)

By Taylor expanding this expression about k = 0 the moments and cumulants of the
distribution can be found. Furthermore, by using the Fourier inversion theorem we may
recover the probability density function of Ẑd,

fẐd
(x) =

1
2π

∫ ∞

−∞
eikxφẐd

(k) dk. (3.62)

This is another way of constructing the density of d/d′ after sampling, and gives the precise
density function. Doing this Fourier inversion analytically leads to complicated sums of
a large number of terms. These are very time consuming to calculate, and difficult to
interpret. However, this integral can be done efficiently numerically using a Fast Fourier
Transform (FFT), and this method was used to produce Figure 2.2. Moreover, simpler
asymptotic results for large N can be obtained that are easier to interpret and much
quicker to evaluate.

3.3 Asymptotic results for large N

3.3.1 The asymptotics of averaging ratio quantities

This section describes some important general results on the asymptotics of averaging
ratio quantities. Consider i.i.d. pairs of random variables {x̂i, ŷi}, i = 1, 2, ...N . Suppose
ŷi > 0. We are interested in the asymptotic behaviour of the ratio of sums

Ẑ =
∑
i

x̂i/
∑
i

ŷi (3.63)

for N large. Let

x̂? =
1
ȳ

(
x̂− x̄

ȳ
ŷ

)
, (3.64)

ŷ? =
1
ȳ

(ŷ − ȳ) , (3.65)

where x̄ = E(x̂), ȳ = E(ŷ). Note that E(x̂?) = E(ŷ?) = 0. Note also that

Ẑ =
∑
x̂i∑
ŷi

=
x̄

ȳ
+

∑
x̂?i /N

1 +
∑
ŷ?i /N

. (3.66)

It can be shown [Novak, 1996] that Ẑ is asymptotically normal for large N under appro-
priate assumptions (assumptions which give the central limit theorem for

∑
x̂?i and give
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the law of large numbers for
∑
ŷi). The condition ŷi > 0 ensures that moments of Ẑ are

well defined, and Cauchy distribution problems do not arise. By Taylor expanding (3.66)
and taking expectations the following expressions for the asymptotic central moments can
be derived:

µ = Z̄ = E(Ẑ) =
x̄

ȳ
− 1
N

E (x̂?ŷ?) +O

(
1
N2

)
, (3.67)

µ2 = σ2 = E
(
Ẑ − Z̄

)2
=

1
N

E
(
x̂?2
)

+O

(
1
N2

)
, (3.68)

µ3 = E
(
Ẑ − Z̄

)3
=

1
N2

(
E
(
x̂?3
)
− 6E (x̂?ŷ?) E

(
x̂?2
))

+O

(
1
N3

)
. (3.69)

Hence the skew parameter γ1 is

γ1 =
µ3

(µ2)
3/2

=
E
(
x̂?3
)
− 6E (x̂?ŷ?) E

(
x̂?2
)

N1/2 (E (x?2))3/2
+O

(
1

N3/2

)
. (3.70)

The kurtosis and higher order moments can be derived similarly by expanding to higher
orders.

We are often concerned with plots of one ratio against another. So consider two sets of
i.i.d. pairs of random variables {x̂i, ŷi}1 and {x̂i, ŷi}2, i = 1, 2, ...N . Then the covariance
of Ẑ1 and Ẑ2 is given by

cov
(
Ẑ1, Ẑ2

)
= E

((
Ẑ1 − Z̄1

)(
Ẑ2 − Z̄2

))
=

1
N

E (x̂?1x̂
?
2) +O

(
1
N2

)
=

1
N

cov (x̂?1, x̂
?
2) +O

(
1
N2

)
, (3.71)

with corresponding correlation

r12 = cor
(
Ẑ1, Ẑ2

)
=

cov
(
Ẑ1, Ẑ2

)
σ1σ2

=
E (x̂?1x̂

?
2)√

E
(
x̂?21

)
E
(
x̂?22

) +O

(
1
N

)

= cor (x̂?1, x̂
?
2) +O

(
1
N

)
. (3.72)

We are particularly interested in calculating the slope of a regression line of one system
against another. There are many different methods for fitting regression lines to a cloud of
data points which make various assumptions about the underlying data. Three commonly
used estimates are

β12 = r12
σ2

σ1
=

E(x̂?1x̂
?
2)

E(x̂?21 )
+O

(
1
N

)
, (3.73)

β̄ =
σ2

σ1
=

√
E(x̂?22 )
E(x̂?21 )

+O

(
1
N

)
, (3.74)

β21 =
1
r12

σ2

σ1
=

E(x̂?22 )
E(x̂?1x̂

?
2)

+O

(
1
N

)
, (3.75)

where β12 is the slope of the linear least squares regression line of system 2 on system 1,
and β21 is the same line but for system 1 on system 2. β̄ is the slope of the geometric
mean regression line, and its sign is chosen to be the same as the correlation r12. Note
that |β12| ≤ |β̄| ≤ |β21|. If the correlation is good all three estimates will be similar.
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3.3.2 Asymptotic moments

Using the general expressions of the previous section the asymptotic moments of Ẑd can
be calculated. For example, the leading order variance can be calculated using (3.50) and
(3.68) as

varẐd = E
(
Ẑd − Z̄d

)2
∼ 1
N

E
(
d̂?2
)

=
1
N

FE

(
lÊ

F

)2

+ (1− F )E

(
− lÊ

1− F

)2


=
l2E

(
Ê2
)

NF (1− F )

=
2l2

NF (1− F )
. (3.76)

Performing a similar calculation for the other moments yields

Z̄d = EẐd =
d̄

d̄′
+

l(F −Gd)
NF (1− F )

+O

(
1
N2

)
, (3.77)

varẐd =E
(
Ẑd − Z̄d

)2
=

2l2

NF (1− F )
+O

(
1
N2

)
, (3.78)

E
(
Ẑd − Z̄d

)3
=

6l3 (1− 2Gd)
(NF (1− F ))2

+O

(
1
N3

)
. (3.79)

In particular, note that the skew parameter γ1 is (using (3.70))

γ1 = sgn(l)
3 (1− 2Gd)

(2NF (1− F ))1/2
+O

(
1

N3/2

)
. (3.80)

Most importantly from all this we see that the asymptotic standard deviation σ =
√

varẐd
of this distribution is

σ ∼ λτmelt|Gp −Gd|
p̄

d̄′

√
2

NF (1− F )
. (3.81)

Less important is the small O(1/N) correction to the mean which is not significant com-
pared with the O(1/N1/2) standard deviation.

3.3.3 Asymptotic density: Edgeworth expansion

An asymptotic expansion of the density for large N can obtained by using an Edgeworth
expansion (see Blinnikov and Moessner [1998] for a fuller discussion of these expansions).
Let Q̂ = (Ẑ − Z̄)/σ. Then the first two terms in the Edgeworth expansion for the density
of Q̂ are

fQ̂(x) =
e−x

2/2

√
2π

{
1 + σ

S3

6
He3(x) + σ2

(
S4

24
He4(x) +

S2
3

72
He6(x)

)
+O

(
σ3
)}

, (3.82)
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where Sn = κn/σ
2n−2 and κn is the nth cumulant (defined by (3.58)). Hen(x) is the nth

Chebyshev-Hermite polynomial, the relevant ones being

He3(x) = x3 − 3x, (3.83)

He4(x) = x4 − 6x2 + 3, (3.84)

He6(x) = x6 − 15x4 + 45x2 − 15. (3.85)

We have

σ = |l|

√
2

NF (1− F )
+O

(
1

N3/2

)
. (3.86)

Using the results of the previous section we can calculate the cumulants of the distribution
in powers of σ. Thus

S3 =
κ3

σ4
=

3
2l

(1− 2Gd) +O
(
σ2
)
, (3.87)

S4 =
κ4

σ6
=

3
2l2
(
14G2

d + F 2 − 8FGd − 10Gd + 3F + 2
)

+O
(
σ2
)
. (3.88)

Substituting these two expressions back in to (3.82) gives an expansion with errors of
O
(
σ3
)
. Substituting back the leading order expression for σ (3.86) gives an expansion in

powers of N with errors of O
(
1/N3/2

)
. As an example, working to first order in σ (as the

next term is more cumbersome) we get

fQ̂(x) =
e−x

2/2

√
2π

{
1 +

(1− 2Gd) sgn(l)
2
√

2NF (1− F )
He3(x) +O

(
1
N

)}
. (3.89)

The above Edgeworth expansion is a third way of estimating the distribution of d/d′ after
sampling. Its main strength is that it is the quickest to evaluate. It is an approximation
to the true density and can contain features that the true density would not. For example,
it is possible for an Edgeworth expansion of a density to become negative, although it still
always integrates to 1.

3.3.4 Isotope ratio - isotope ratio plots

Consider two isotopic systems 1 and 2 with potentially different parent and daughter
elements. Suppose we plot (d/d′)2 against (d/d′)1. For large N the correlation r12 between
the two ratios is given by (3.72)

r12 =
E
(
d̂?1d̂

?
2

)
√

E
(
d̂?21

)
E
(
d̂?22

) +O

(
1
N

)

= sgn (l1l2) +O

(
1
N

)
= sgn ((Gp1 −Gd1) (Gp2 −Gd2)) +O

(
1
N

)
. (3.90)

Hence as N →∞ the correlation is perfect (|r12| ∼ 1) with sign depending on the relative
compatibilities of parents and daughters. The slope β̄ of the geometric mean regression
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line is given by the ratio of the standard deviations, where the sign is chosen appropriately
to match r12. Using (3.74) we get

β̄ =

√
Ed?22

Ed?21

+O

(
1
N

)
=
l2
l1

+O

(
1
N

)
=
λ2 (Gp2 −Gd2)

(
p̄/d̄′

)
2

λ1 (Gp1 −Gd1)
(
p̄/d̄′

)
1

+O

(
1
N

)
. (3.91)

As N →∞ all samples will plot on a single line with this slope.
Note a particular special case - if for both systems the daughters are isotopes of the

same element (for example, both isotopes of lead), then M1(r) = M2(r) and Ŷr2/Ŷr1 =
l2/l1, and thus all samples lie on a single straight line of gradient exactly β = l2/l1,
regardless of N . In this case it is usual for the reference isotopes to be the same d′1 = d′2.
Furthermore, if it also the case that the parent elements are the same (or at least behave
similarly under melting Gp1 ≈ Gp2) then this gradient is independent of the melt model
and is simply

β =
λ2p̄2

λ1p̄1
. (3.92)

3.4 Comparison of methods for density estimation

We have outlined in the previous sections (3.2, 3.2.1, and 3.3.3) three methods of estimat-
ing the density of d/d′ in the model. The first method, numerical simulation, generates a
sample from the model distribution by using computer generated samples from an expo-
nential distribution. The probability density is then estimated using a kernel smoothed
estimate for this sample. Given n independent observations x1, x2, ..., xn from the random
variable X̂, the kernel density estimator f̃h(x) of the density value f(x) is defined as

f̃h(x) =
1
nh

n∑
i=1

K

(
xi − x

h

)
, (3.93)

where h is the bandwidth and K(u) the kernel function. For a gaussian kernel

K(u) =
1√
2π

exp
(
−1

2
u2

)
. (3.94)

The function density in R (R Development Core Team [2006]) was used to calculate this
efficiently. One advantage of using kernel smoothed estimates, over plotting a histogram
for example, is that it is easy to plot more than one density on the same plot. In this
work, the default gaussian kernel was used, with optimal bandwidth as chosen by R.
Kernel smoothed estimates are sensitive to choices of kernel and bandwidth, see Sheather
and Jones [1991], Silverman [1986], and the R documentation for a fuller discussion.

The second method involves calculating the full analytic distribution by numerically
doing the Fourier inversion of (3.62). The advantage of this method is that you get the
density precisely.

The third method is to use the asymptotic approximation provided by the Edgeworth
expansion of 3.89. This is an approximation to the true density, but is the quickest of the
three methods to calculate, and becomes more accurate as N is increased.
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Figure 3.1: Plot comparing the three methods of density estimation in the model for
143Nd/144Nd, with F=0.5%, τmelt=1.7 Ga, and N=500. For the numerical sample, the
sample size n is shown along with the bandwidth of the kernel smoother. The Edgeworth
expansion is to second order (up to and including terms of order σ2).
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Figure 3.1 uses these three methods to produce model densities for 143Nd/144Nd. All
three methods produce very similar shapes, clearly showing similar standard deviations
and skews. The analytic density contains a small scale spike at 0.51322. The area under
this spike is small compared with 1. The spike is not seen in the kernel smoothed estimate
because it is a feature of smaller scale than the bandwidth. Similarly it is not seen in
the Edgeworth expansion because there are not enough terms in the expansion to express
such a feature. Our interest in this work is in broad features of the distributions, and such
small features are liable to be disturbed by other factors (for example, measurement error)
and so this spike is not an important feature. Note also that the Edgeworth expansion
becomes negative on the far right of the plot, which is a disadvantage in using such an
expansion far from the mean.

When demonstrating the behaviour of the model distribution with varying N in Fig-
ure 2.2 numerical Fourier inversion was used for greatest accuracy. However, when com-
paring the model with measured data in Figure 2.3 we have opted to use kernel smoothed
densities to provide a more like-for-like comparison between the model and measured
data. When generating a model sample, a sample size of 1000 was used to provide a close
comparison with the measured data used which is of a similar size.

3.5 Remarks on the central limit theorem

As has been discussed in section 3.2, when we sample from our model mantle we do so after
averaging over a number of components. For a set of independent identically distributed
random variables X̂1, X̂2, ..., X̂N with mean µ0 and standard deviation σ0, the central
limit theorem states that the distribution of

∑
X̂i/N will approach a normal distribution

with mean µ0 and standard deviation σ0/
√
N . However, this cannot directly be applied in

mixing isotopic ratios since it is the individual concentrations of d and d′ that are averaged
and then the ratio taken, i.e.

∑
d̂i/
∑
d̂′i 6=

∑
(d̂i/d̂′i)/N . As always in geochemistry, great

care must be taken in dealing with ratios of quantities. However, it does turn out that
in our model we do approach a normal distribution, but the standard deviation is quite
different from a naive use of the central limit theorem. As an example, using Meibom and
Anderson’s notation, the standard deviation σum of the d/d′ distribution before averaging
is

σum = |l|
√

(F −Gd)2 + 2F (1− F )
Gd(1−Gd)

(3.95)

whereas the standard deviation σmeas we would measure after the averaging is

σmeas = |l|

√
2

NF (1− F )
+O

(
1

N3/2

)
(3.96)

and in particular it is clear that
σmeas 6=

σum√
N

(3.97)

In fact, for the model values for Nd, there is a factor of 15 difference between the left and
right hand sides of the above expression when N is large. It is also important to note that
the approach to a normal distribution is governed by NF (1−F ) and not N , as indicated
by the expression for the skew of the distribution (3.80) and the first correction to the
normal distribution in the Edgeworth expansion (3.82). Since F is small, the distributions
we observe are significantly skewed despite N being large.



Chapter 4

Mantle pseudo-isochrons

4.1 Introduction

When 207Pb/204Pb is plotted against 206Pb/204Pb for data from mid-ocean ridge basalt
(MORB) or ocean island basalt (OIB) an approximate linear relationship is found (Fig-
ure 4.1). The slope of a regression line through these data points can be used to an infer an
age by treating the regression line as if it were an isochron [Brooks et al., 1976, Tatsumoto,
1978]. Formally an isochron age dates a single fractionation event, which is not the case
for MORB and OIB; the isotopic systematics of these basalts result from multiple frac-
tionations due to repeated melting and recycling over the course of the Earth’s history. As
such the ages calculated by the isochron method are often referred to as pseudo-isochron
ages, and the aim of this chapter is to relate the pseudo-isochron ages to real physical
parameters.

Recall that the isotopic systems we are studying consist of a parent isotope p which
decays to a daughter isotope d with decay constant λ. There is a reference isotope d′ with
respect to which these isotopes are measured. The reference isotope is of the same element
as the daughter d, but neither decays nor is a decay product. There are two particular
isochrons we will focus on, and we will refer to these as the parent-daughter isochron and
the daughter-daughter isochron.

The parent-daughter isochron involves plotting d/d′ against p/d′. The parent-daughter
isochron age τpdi is related to the slope β of the regression line by

eλτpdi − 1 = β. (4.1)

An example of this is the 147Sm/144Nd-143Nd/144Nd diagram. In practice parent-daughter
isochrons are not very useful for analysing basalt as the melting that occurs shortly before
sampling fractionates parent from daughter, destroying the underlying p/d′ signal. As such
our main focus will be on the daughter-daughter isochron which is not affected in this way
by the melting that occurs before sampling. This is where (d/d′)2 is plotted against (d/d′)1
for two different isotopic systems which have the same parent and daughter elements.
In practice there is just one case in which this applies: the 206Pb/204Pb-207Pb/204Pb
diagram. The lead-lead (daughter-daughter) isochron age τddi is related to the slope β of
the regression line by

235U
238U

· eλ235τddi − 1
eλ238τddi − 1

= β, (4.2)

where λ235 and λ238 are the decay constants of 235U and 238U respectively, and the ratio
235U/238U has constant value of 1/137.88 at the present day throughout the solar system.

38
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Figure 4.1: Scatterplot of measured MORB data (see Appendix A for a list of data sources).
Three regression lines are plotted, and the corresponding pseudo-isochron ages shown.
Linear regression of 207Pb/204Pb against 206Pb/204Pb gives a pseudo-isochron age of 1.41
Ga. Linear regression of 206Pb/204Pb against 207Pb/204Pb gives a pseudo-isochron age of
2.47 Ga. The geometric mean regression line has a pseudo-isochron age of 1.96 Ga.

Measured MORB data leads to pseudo-isochron ages around 2.0 Ga (Figure 4.1) and it is
this age that we are most keen on understanding.

There have been a number of attempts to model the MORB and OIB pseudo-isochrons,
and they have all been based on the same physical principles of radioactive decay, stirring,
melting and mixing. There have been three main approaches: mean box models [Albarède,
2001, Allègre and Lewin, 1995a, Donnelly et al., 2004], statistical box models [Kellogg,
2004], and numerical simulations of mantle convection [Christensen and Hofmann, 1994,
Xie and Tackley, 2004a]. This work aims to unite the different approaches and show that
most of the modelling work that has been done so far can be best explained by some simple
equations derived from a statistical box model of mantle processes. For easier reading, this
chapter discusses the pseudo-isochron equations resulting from the model, and compares
them to previous work. The following chapter presents the model derivations.

4.2 The model

The model used is a generalisation of the simple statistical box model described in the
previous two chapters. Recall that the model treats the mantle as a box containing a
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melting region which is visited by parcels of mantle material on an average time scale τmelt.
When parcels enter the melting region a melting event is performed which fractionates
parent from daughter, producing a fraction F of melt and a fraction 1− F of residue. G
is the molar fraction of a chemical species that enters the melt, and depends on partition
coefficients and the melt fraction F . For a given concentration C of species entering the
melting region the concentration of the melt produced is CG/F and of the residue is
C(1−G)/(1− F ) (Section 3.1.2). The melt and residue produced are then recycled back
into the box. Importantly, we assume that the stirring in the box is strong, and this
allows us to treat melting as a Poisson process [Albarède, 2005, 2003] with the statistics of
material entering the melting region being the same as those over the whole box. Sampling
is modelled by drawing N samples from the box and averaging [Meibom and Anderson,
2004], representative of the mixing that occurs after melting.

There are three crucial differences in the generalised model of this chapter from that
described in the previous chapters. Firstly, the decay constant λ is no longer assumed
small which allows 207Pb/204Pb to be modelled. Secondly, a steady state is not assumed,
but instead the box is assumed to start with uniform concentrations of isotopes at an age
τs before the present. Finally, the melt rate is no longer assumed constant over time but
instead given by some function of age γmelt(τ). For constant melt rate γmelt(τ) = 1/τmelt,
and we now redefine τmelt as just the melting time scale at the present day.

A number of key analytic results can be derived from the model in the asymptotic
limit where N →∞ (heavy averaging), and all the results in the next section are based on
this limit (Section 5.2). Numerical simulation suggests that the dependence of the pseudo-
isochron age on N is fairly weak (Figure 4.2), and so using the N →∞ asymptotics seems
well justified. In this limit the distribution of isotopic ratios tends to a multivariate normal
distribution, and expressions for the corresponding covariance matrix can be derived. In
particular these expressions allow us to estimate the slopes of regression lines in plots of
one isotopic ratio against another, and thus to derive expressions for the model pseudo-
isochron ages.

There are many different ways of fitting a line to a cloud of data points. Following
Allègre and Lewin [1995a] we have focused on the geometric mean regression line (also
known as the reduced major axis regression line) whose slope is given by the ratio of the
standard deviations of the two isotopic ratios in question (solid line in Figure 4.1). To give
an estimate of the uncertainty in fitting a line we have also included results from using
the two linear regression lines (dotted lines in Figure 4.1) in some of the figures. If the
correlation is good all three lines should be similar.

4.3 The pseudo-isochron equations

The key to determining the pseudo-isochron ages in the model is the random variable T̂m

which gives the distribution of parcel ages for those parcels that have passed through the
melting region. The age of a parcel is defined as the time since last visit to the melting
region. The parcels that have not visited the melting region are referred to as primordial
parcels, and are not assigned an age. Let E be an expectation over a random variable, so
that

Ef(T̂m) =
∫ τs

0
f(τ)qm(τ) dτ, (4.3)

where qm(τ) is the probability density function of parcel ages, and f(τ) is an arbitrary
given function. The subscript ‘m’ is to emphasise that we consider only those parcels that
have passed through the melting region. In this model the primordial parcels make no
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contribution to the pseudo-isochron ages, since primordial parcels have uniform isotopic
concentrations equal to the mean over the whole box. In terms of T̂m the model pseudo-
isochron equations are simply (Sections 5.3 and 5.4)

(eλτpdi − 1)2 = E(eλT̂m − 1)2, (4.4)

(eλ235τddi − 1)2

(eλ238τddi − 1)2
=

E(eλ235T̂m − 1)2

E(eλ238T̂m − 1)2
, (4.5)

where τpdi and τddi are the parent-daughter and lead-lead pseudo-isochron ages respec-
tively. Note that these expressions depend only on the decay constants and the distribution
of parcel ages. The expressions clearly show that the pseudo-isochron ages are just particu-
lar weighted averages over the parcel ages. In fact the pseudo-isochron ages are examples of
“generalised means” [Hardy et al., 1934, Qi, 2000] (Section 5.5). It also follows from these
expressions that the pseudo-isochron ages are always greater than or equal to τ̄m = ET̂m

the mean age of parcels that have passed through the melting region. This is an important
result as it means that models with τ̄m greater than the observed lead-lead pseudo-isochron
age of around 2.0 Ga cannot be compatible with the isotopic observations (such as the

Davies [2002] model). If the parcel ages � 1/λ then (4.4) reduces to τpdi =
√

ET̂ 2
m,

a result which is independent of λ. Hence parent-daughter pseudo-isochron ages will
be the same for all slowly decaying isotopes, namely for the 147Sm/144Nd-143Nd/144Nd,
87Rb/86Sr-87Sr/86Sr, 176Lu/177Hf-176Hf/177Hf, and 232Th/204Pb-208Pb/204Pb diagrams.

The history of the rate of melting can be directly related to the distribution of par-
cel ages in the model. If γmelt(τ) is the melt rate as a function of age then qm(τ) =
q(τ)/

∫ τs
0 q(τ) dτ where (Section 5.6)

q(τ) = γmelt(τ) exp
(
−
∫ τ

0
γmelt(τ) dτ

)
. (4.6)

An important special case is where melt rate is constant γmelt(τ) = 1/τmelt, where τmelt

is a constant melting time scale. In this case qm(τ) = e−τ/τmelt/(τmelt(1− e−τs/τmelt)) and
the model parent-daughter pseudo-isochron equation is (Section 5.7)

(eλτpdi − 1)2 =

∫ τs
0 (eλτ − 1)2e−τ/τmelt dτ
τmelt

(
1− e−τs/τmelt

) . (4.7)

The most important feature of this equation is that it depends only on the three time
scale parameters in the problem: the melting time scale τmelt, the start age τs, and the
decay constant λ; and not on any of the other parameters. Figure 4.3 plots solutions
to (4.7) for 143Nd/144Nd-147Sm/144Nd (λ = 0.00654 Ga−1) in two different ways. Figure
4.4 shows similar graphs for 235U/204Pb-207Pb/204Pb (λ = 0.985 Ga−1), a case for which
the decay is not linearisable. Note that there is a reasonable uncertainty in the parent-
daughter pseudo-isochron ages indicated by the wide grey region in Figures 4.3b and 4.4b.
This expected (and indeed observed) lack of very good correlation is another reason why
parent-daughter pseudo-isochron ages are not particularly useful.

The more useful pseudo-isochron equation is the lead-lead pseudo-isochron equation
given for constant melt rate by (Section 5.8)

(eλ235τddi − 1)2

(eλ238τddi − 1)2
=

∫ τs
0 (eλ235τ − 1)2e−τ/τmelt dτ∫ τs
0 (eλ238τ − 1)2e−τ/τmelt dτ

. (4.8)
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Figure 4.5 plots solutions to (4.8). Note that the lead-lead pseudo-isochron ages are fairly
well constrained as the model correlation is good (as indicated by the narrow grey regions
of Figure 4.5b).

The pseudo-isochron equations only encode age information, and do not involve the
parameters G and F . However, if we are concerned with the variance of isotopic ratios, or
the slopes in plots of one isotopic ratio against another which do not have common parent
and daughter elements, then these parameters are involved. This was the main focus
of the previous chapters, and the corresponding generalisation of (2.1) for the standard
deviation σ of d/d′ ratios after sampling is (Section 5.2)

σ =
p̄

d̄′
· |Gp −Gd|√

NF (1− F )
·

√∫ τs

0
(eλτ − 1)2 q(τ) dτ , (4.9)

where p̄/d̄′ is the ratio of mean parent isotope concentration to mean reference isotope
concentration over the whole box at the present day.

4.4 Linear pseudo-isochron equations

There are three models based on linear evolution equations that have recently been pro-
posed for the pseudo-isochrons [Albarède, 2001, Allègre and Lewin, 1995a, Donnelly et al.,
2004]. In fact, all three models produce identical pseudo-isochron equations and are closely
related. Albarède [2001] and Donnelly et al. [2004] both consider a two reservoir model,
and derive the pseudo-isochron equations in precisely the same way. Allègre and Lewin
[1995a] consider a different set of linear evolution equations for isotopic dispersion, which
with some rearranging are almost equivalent to the two interacting reservoir equations.

The governing equations for two interacting reservoirs derived by Albarède [2001] and
Donnelly et al. [2004] are

dn1

dt
= −n1

τ1
+
n2

τ2
− λn1, (4.10)

dn2

dt
=
n1

τ1
− n2

τ2
− λn2, (4.11)

dm1

dt
= −m1

θ1
+
m2

θ2
+ λn1, (4.12)

dm2

dt
=
m1

θ1
− m2

θ2
+ λn2, (4.13)

ds1
dt

= −s1
θ1

+
s2
θ2
, (4.14)

ds2
dt

=
s1
θ1
− s2
θ2
, (4.15)

where the notation of Albarède [2001] has been followed. ni, mi and si are the total number
of moles of parent, daughter and reference isotopes respectively in reservoir i (these should
not be confused with p, d and d′ used throughout to represent concentrations). τi is the
residence time of the parent element in reservoir i, θi the corresponding residence time
for the daughter element. Let Σn, Σm and Σs be the total number of moles of parent,
daughter and reference isotopes in both reservoirs: Σn = n1 + n2, Σm = m1 + m2, and
Σs = s1 + s2. Then

dΣn

dt
= −λΣn,

dΣm

dt
= λΣn,

dΣs

dt
= 0, (4.16)
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and the governing equations for reservoir 1 can be rewritten as

dn1

dt
= −n1

τ
+

Σn

τ2
− λn1, (4.17)

dm1

dt
= −m1

θ
+

Σm

θ2
+ λn1, (4.18)

ds1
dt

= −s1
θ

+
Σs

θ2
, (4.19)

where τ and θ are the relaxation times of the two elements: the harmonic means of the
residence times in the two reservoirs

1
τ

=
1
τ1

+
1
τ2
,

1
θ

=
1
θ1

+
1
θ2
. (4.20)

We now rewrite these equations for closer comparison with Allègre and Lewin [1995a].
Introduce new variables n?1 and m?

1 defined by

n?1 =
1
Σs

(
n1 − s1

(n
s

)
1+2

)
, (4.21)

m?
1 =

1
Σs

(
m1 − s1

(m
s

)
1+2

)
, (4.22)

where the subscript 1+2 refers to the total system: (n/s)1+2 = Σn/Σs and (m/s)1+2 =
Σm/Σs. Note that n?2 = −n?1 and m?

2 = −m?
1. The governing equations in the starred

variables can then be written as

dn?1
dt

=
(

1
τ2
− 1
θ2

)(n
s

)
1+2

− λn?1 −
1
Σs

(
n1

τ
− s1

θ

(n
s

)
1+2

)
, (4.23)

dm?
1

dt
= λn?1 −

m?
1

θ
. (4.24)

These governing equations take on a particularly simple form if the relaxation times for
parent and daughter elements are the same, τ = θ = 1/γ say. For later convenience, define
gn = τ/τ1 and gm = θ/θ1, and note that 0 ≤ gn, gm ≤ 1. Then

dn?1
dt

= − (gn − gm) γ
(n
s

)
1+2

− (λ+ γ)n?1, (4.25)

dm?
1

dt
= λn?1 − γm?

1. (4.26)

These can be compared to the governing equations (1) and (2) of Allègre and Lewin [1995a]

d〈µ〉(t)
dt

= A(t)− (λ+M(t)) 〈µ〉(t), (4.27)

d〈α〉(t)
dt

= λ〈µ〉(t) +B(t)−M(t)〈α〉(t). (4.28)

These governing equations are identical to (4.25) and (4.26) if the chemical dispersion
〈µ〉(t) = n?1, the isotopic dispersion 〈α〉(t) = m?

1, the rate of injection of chemical het-
erogeneity A(t) = − (gn − gm) γ (n/s)1+2, the rate of injection of isotopic heterogeneity
B(t) = 0, and the stirring parameter M(t) = γ. The appendix of Allègre and Lewin
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[1995a] discusses solutions to these equations in the simplified form ((A1-1) and (A1-2) of
Allègre and Lewin [1995a])

d〈µ〉(t)
dt

=
∆〈µ〉e−λt

R
−
(
λ+ τ−1

stir

)
〈µ〉(t), (4.29)

d〈α〉(t)
dt

= λ〈µ〉(t) +
∆〈α〉
R

− 〈α〉(t)
τstir

, (4.30)

where by comparison ∆〈µ〉/R = − (gn − gm) γ(n/s)1+2(0), ∆〈α〉 = 0, and τstir = γ−1.
These are solved subject to initial conditions 〈µ〉(0) = 0, 〈α〉(0) = 0 which corresponds
to the two reservoirs having initially identical isotopic ratios (n/s)1(0) = (n/s)2(0) =
(n/s)1+2(0) and (m/s)1(0) = (m/s)2(0) = (m/s)1+2(0). Allègre and Lewin define the
slope of their parent-daughter pseudo-isochron by the ratio 〈α〉(t)/〈µ〉(t). However,

〈α〉(t)
〈µ〉(t)

=
m?

1

n?1
=
m1 − s1 (m/s)1+2

n1 − s1 (n/s)1+2

=
(m/s)1 − (m/s)1+2

(n/s)1 − (n/s)1+2

. (4.31)

Hence the definition of the slope by the ratio 〈α〉(t)/〈µ〉(t) is the same as the slope of
the line through the reservoirs 1, 2 and 1+2 on the parent-daughter isochron diagram.
Thus provided the relaxation times are equal in the two reservoir model, and there is no
excess isotopic heterogeneity ∆〈α〉 in the Allègre and Lewin model, the pseudo-isochron
equations are exactly the same. Importantly, the stirring time τstir of Allègre and Lewin
can be reinterpreted as the common relaxation time in the two reservoir model.

In one sense the Allègre and Lewin model is more general than the two reservoir model
because of the excess isotopic heterogeneity term ∆〈α〉, but in practice this was always
set to zero for their pseudo-isochron calculations. On the other hand, the two reservoir
model can be thought of as more general since it allows the parent and daughter elements
to have different relaxation times. If parent and daughter are fractionated by the same
melting process we might expect relaxation times to be the same. Also, note that in
secular equilibrium only the relaxation time θ of the daughter element determines the
pseudo-isochron [Albarède, 2001].

Standard deviations are not conservative and should not be modelled by linear evolu-
tion equations such as (4.27) and (4.28). The justification of these equations by Allègre
and Lewin is rather ad hoc. The two reservoir model and the Allègre and Lewin model
are both linear models and thus essentially concerned with mean values, whereas standard
deviations are fundamentally nonlinear. In the statistical box model it possible to discuss
standard deviations, variances and covariances, as well as means, because the underly-
ing probability distributions are being modelled. Note that the starred variables which
relate the Allègre and Lewin model to the two reservoir model arise naturally from the
linearisation

x

y
− x̄

ȳ
≈ 1
ȳ

(
x− y

x̄

ȳ

)
, (4.32)

valid for |x − x̄| � x̄ and |y − ȳ| � ȳ. The starred variables turn out to be particularly
useful when considering asymptotics for large N in the statistical box model (Section
3.3.1).

We can make an important connection between the statistical box model and the
two reservoir model by dividing the parcels in the box into two groupings. Labelling the
residue parcels and a fraction 1−F of the primordial parcels as one reservoir, and the melt
parcels and a fraction F of the primordial parcels as another reservoir, gives a two reservoir
system with a common relaxation time. The connection is made if γ = γmelt, gn = Gp and
gm = Gd (Section 5.9). Furthermore, this suggests an alternative way of writing the linear
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pseudo-isochron equations of Allègre and Lewin in terms of an age distribution. These are
the same as (4.4) and (4.5) except with the squareds removed

eλτpdil − 1 = E(eλT̂m − 1), (4.33)

eλ235τddil − 1
eλ238τddil − 1

=
E(eλ235T̂m − 1)

E(eλ238T̂m − 1)
, (4.34)

where τpdil and τddil are the linear parent-daughter and lead-lead pseudo-isochron ages
respectively. It should be noted that the linear pseudo-isochron ages will always be less
than the corresponding ages obtained from (4.4) and (4.5). The pseudo-isochron equations
(4.4) and (4.5) for our problem are different because they involve the variance of a mixture
of melt, residue and primordial parcels, whereas the above equations result from mean
values of reservoirs. The squareds reflect the difference between looking at a mean value
and looking at a variance. To emphasise the similarities and differences between the linear
pseudo-isochron equations and our pseudo-isochron equations, Figures 4.3, 4.4, and 4.5
mimic Figures 3, 4 and 9 of Allègre and Lewin [1995a].

A key result used in Allègre and Lewin [1995a] to estimate a stirring time for the mantle
is the lead-lead pseudo-isochron age relationship τddil ∼ 2τstir for vigorous stirring. In the
context of the quadratic pseudo-isochron equations the corresponding asymptotic result
is τddi ∼ 3τmelt for rapid remelting. In practice this result is only accurate for very rapid
remelting, as it requires that τmelt � τs and τmelt � 1/λ235 = 1.0 Ga. Hence comparison
between the linear pseudo-isochron equations and our pseudo-isochron equations is best
done using the full equations rather than any rapid remelting asymptotics. Using (A2-9)
of Allègre and Lewin [1995a], if τs = 4.5 Ga then τstir = 0.82 Ga is needed to produce a
lead-lead pseudo-isochron age of 2.0 Ga. Using our (4.8), if τs = 4.5 Ga then τmelt = 0.45
Ga is needed, which is almost a factor of 2 less. For parent-daughter isochrons the vigorous
stirring relationship τpdil ∼ τstir in Allègre and Lewin [1995a] becomes τpdi ∼

√
2τmelt for

rapid remelting (τmelt � τs and 1/λ).
The statistical model of Kellogg et al. [2002] also has a τstir parameter, but note that

this takes on a different meaning to the τstir of the Allègre and Lewin [1995a] model. The
Kellogg et al. τstir reduces the length scale of heterogeneities before sampling: essentially
it relates to the parameter N in our model. The τstir in the Allègre and Lewin model
describes the destruction of heterogeneity by repeated melting, and thus is τmelt in our
model.

4.5 Numerical simulations of mantle convection

Christensen and Hofmann [1994] put isotopic tracers into a numerical simulation of mantle
convection. 252,000 tracers were used, and sampling was performed by dividing the domain
into 40 × 20 sampling cells, and averaging over those cells. Thus N for their model is
around 300, although note that their model is slightly different to that presented here
as different cells may have different numbers of tracers. They have a constant rate of
melting in their model, so (4.8) applies. Their standard model has τs = 3.6 Ga and
τmelt = −1.36/ log(1−0.9) = 0.59 Ga (inferred from the statement “in 1.36 Ga, statistically
90% of the total basalt content has been cycled through a melting zone in the model”).
They found a lead-lead pseudo-isochron age of 2.10 Ga which compares very favourably
to the figure of 2.15 Ga that is predicted by (4.8) (and not as favourably with the figure
of 1.39 Ga predicted by the linear pseudo-isochron equation (A2-9) of Allègre and Lewin
[1995a]).
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Xie and Tackley [2004a] used a similar approach to Christensen and Hofmann [1994] for
a different numerical simulation. Their model differs in having a melt rate which changes
over time; melting being more vigorous in the past. 400,000 tracers were used, and the
domain divided into 256 × 64 sampling cells, and thus N for their model is around 25. This
smaller amount of averaging probably explains why their arrays show less correlation than
the Christensen and Hofmann arrays. Their model has less frequent remelting than the
Christensen and Hofmann model, which is why larger isotopic ages are observed. A rough
rule of thumb for less frequent melting (τmelt = 1-2 Ga) is τddi ≈ 0.75τs (Figure 4.5a).
The rule works reasonably well at estimating the pseudo-isochron ages they found, but
the simple constant melt rate formula of (4.8) does not actually apply in this case. To do
a more accurate comparison we need to examine carefully the distribution of ages the Xie
and Tackley model produces.

In Figures 5c and 5e of Xie and Tackley [2004a] the integrated crustal production and
crustal production rate are plotted against time for a τs = 4.5 Ga run. We can use this
information in our statistical box model to predict the distribution of ages (Section 5.6).
Figure 4.6 shows there is good agreement between these calculated distributions and the
age distribution observed (Figure 10a of Xie and Tackley [2004a]). Using (4.4) and (4.5) we
can use these age distributions to calculate pseudo-isochron ages. The integrated crustal
production gives a lead-lead pseudo-isochron age of 3.58 Ga, the crustal production rate
an age of 3.76 Ga, and the observed age distribution an age of 3.67 Ga. These estimates
are all slightly greater than the observed pseudo-isochron age of 3.39 Ga (Figure 8a of
Xie and Tackley [2004a]). The small differences may be due to various factors, including
differences in line fitting, the effects of binning and windowing, and the small value of N
used in their simulations.

Xie and Tackley discussed the effect of greater rates of melting in the past on pseudo-
isochron age. To examine this they introduced a box model and calculated a mean parcel
age for three different scenarios. Using our statistical box model we can go further and
calculate not only the mean age but also the age distributions and pseudo-isochron ages.
Their three different scenarios were (1) melt rate constant, (2) melt rate proportional to
the square of mantle heating rate (referred to as H2), and (3) as H2 but also proportional
to depth of melting (referred to as H2d). Mantle heating rate was assumed to decay with
a half-life of 2.247 Ga. This corresponds to an exponentially growing history of melt rate
γmelt(τ) = eντ/τmelt where ν = (2 log 2)/2.247 = 0.62 Ga−1 and τmelt is the melting time
scale at the present day. We have approximated the H2d case by a similar exponential
growth with ν = 0.74 Ga−1; only a small discrepancy in the mean ages results from
this approximation. The age distributions are plotted in Figure 4.7 and the mean and
pseudo-isochron ages are given in Table 4.1.

An important distinction should be drawn between the two mean ages given in Ta-
ble 4.1. Xie and Tackley [2004a] calculated the mean mantle age τ̄total which includes
all parcels, and in particular it includes the primordial parcels which are assigned an age
of τs. This is a misleading mean age to relate to the pseudo-isochron ages, since for the
pseudo-isochron ages it is only the parcels that have passed through the melting region
which matter. Hence of greater interest is τ̄m = ET̂m which is a mean age that only in-
cludes the parcels that have passed through the melting region. It can be formally shown
that the pseudo-isochron ages must be greater than or equal to τ̄m, but there is no such
constraint on τ̄total. Indeed Table 4.1 shows pseudo-isochron ages both greater than and
less than τ̄total.

Note that the smallest Pb-Pb pseudo-isochron age in Table 4.1 is 2.97 Ga, so none
of the scenarios are compatible with the measured MORB data. Furthermore note that
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Figure 4.6: Plot of cumulative distribution function Qm(τ) =
∫ τ
0 qm(τ) dτ for a Xie and

Tackley [2004a] numerical simulation. The solid line shows the observed age distribution
(their Figure 10a), where residue and basalt tracers have been lumped together. The
dashed line is a calculated age distribution (Section 5.6) based on their observed integrated
crustal production (solid line of their Figure 5c). The dotted line is a calculated age
distribution based on their observed crustal production rate (solid line of their Figure
5e), although note that this rate is actually an average over three slightly different runs.
The three age distributions are very similar. Using (4.4) and (4.5), the age distributions
correspond to lead-lead pseudo-isochron ages τddi of 3.67 Ga, 3.58 Ga, and 3.76 Ga, Sm-Nd
pseudo-isochron ages τpdi of 3.00 Ga, 2.88 Ga, and 3.06 Ga, and mean ages τ̄m of 2.81 Ga,
2.67 Ga, and 2.86 Ga respectively.
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Table 4.1: Age calculations for varying melt rate γmelt(τ) = eντ/τmelt (compare with
Table 4 of Xie and Tackley [2004a]). The three cases are constant (ν = 0 Ga−1), H2

(ν = 0.62 Ga−1), and H2d (ν = 0.74 Ga−1). The present day crustal production rate
b/τmelt = 1/46 Ga−1 in all cases. b = 0.1, 0.2, and 0.3, and hence τmelt = 4.6 Ga, 9.2 Ga
and 13.8 Ga. τs = 4.5 Ga and all ages are quoted in Ga.

Constant H2 H2d
τmelt 4.6 9.2 13.8 4.6 9.2 13.8 4.6 9.2 13.8
τ̄total 2.87 3.56 3.84 1.82 2.54 2.96 1.67 2.31 2.72
τ̄m 1.89 2.07 2.13 1.81 2.39 2.64 1.67 2.27 2.58

τpdi[Sm-Nd] 2.28 2.44 2.50 2.09 2.66 2.89 1.92 2.53 2.82
τddi[Pb-Pb] 3.72 3.77 3.78 3.29 3.69 3.81 2.97 3.54 3.73

more frequent remelting in the past can have the effect of both increasing and decreasing
the pseudo-isochron age (e.g. τmelt = 13.8 Ga in Table 4.1). This is due to two competing
effects: if melting is more rapid in the past it can mean a lot of the early heterogeneity
is destroyed, but it can also mean that a lot of heterogeneity is created early on. For
ν = 0.62 Ga−1 and ν = 0.74 Ga−1 to get lead-lead pseudo-isochron ages of 2.0 Ga the
present melting time scale τmelt must be 1.45 Ga and 1.83 Ga respectively.

4.6 Conclusions

The key results of this work are the simple pseudo-isochron equations (4.4) and (4.5) which
relate in a straightforward way melting history and pseudo-isochron age. The equations
are similar to those examined by previous authors but differ in certain important details.
In the case of constant melt rate these relationships can expressed in terms of just two
unknown parameters: the age τs at which you begin the model, and τmelt the melting
time scale. The natural choice for τs is the age of the Earth, but the unmodelled process
of continent formation motivates younger choices for τs such as 3.6 Ga [Christensen and
Hofmann, 1994]. To produce the observed lead-lead pseudo-isochron ages of 2.0 Ga values
of τmelt = 0.45 Ga (for τs = 4.5 Ga) or τmelt = 0.52 Ga (for τs = 3.6 Ga) are needed. If
the melt rate is not constant but is instead greater in the past, then slower present day
melting time scales may be needed, for example τmelt = 1.45 Ga found earlier when the
rate of melting was proportional to the square of mantle heating rate. Figure 4.8 plots the
corresponding probability density functions for a constant melt rate case and a variable
melt rate case.

There is quantitative agreement between the predictions of this simple statistical box
model and the much more complicated mantle convection calculations that have been
done by previous authors. This helps justify some of the key assumptions that are made
in the statistical box model, and in particular the neglect of the particular details of the
underlying flow. Statistical box models are still in their infancy, but they seem to provide
a powerful way of approaching the problem of isotopic heterogeneity in the mantle. A
great advantage is that general analytical results can derived which can lead to better
understanding of the problem without the need to run lots of numerical simulations.
However, mantle convection simulations still have an important role to play; of most
interest for the pseudo-isochron problem is knowing the kinds of melting history that
they can produce. Future simulations should investigate further the validity of these
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Figure 4.8: Plot of probability density function qm(τ). Two cases are shown which both
yield a lead-lead pseudo-isochron age of 2.0 Ga. The solid line has constant melt rate
γmelt(τ) = 1/τmelt where τmelt = 0.45 Ga. The dashed line has varying melt rate γmelt(τ) =
eντ/τmelt where ν = 0.62 Ga−1 and τmelt = 1.45 Ga. While the lead-lead ages are identical
for the two cases, the parent-daughter and mean ages are not. Sm-Nd τpdi = 0.64 Ga and
1.10 Ga, and τ̄m = 0.45 Ga and 0.90 Ga respectively. Note that in both cases the very old
(> 3.0 Ga) heterogeneity has been essentially eliminated.
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simple analytic relationships between melt rate and age distribution, and between age
distribution and pseudo-isochron age.

An important caveat to bear in mind when using this model, and indeed in the con-
vection simulations as well, is that no attempt is made to model continent formation.
This is an important process to consider as early heterogeneity may become locked up
in the continents and not be recycled into the mantle. It is this idea which prompts the
use of younger values of τs. The multi-reservoir statistical box models of Kellogg [2004]
have made some attempt at addressing this issue, although as is remarked it is somewhat
difficult to see through the myriad of parameters used in that model. A key problem in
modelling continent formation is that it requires modelling properly the mean lead isotopic
evolution of mantle, which in itself is still not clearly understood. There is still yet to be
any consensus on the resolution of the various lead paradoxes.

For isotopic ratios d/d′ for which the decay is linearisable the outcome of the model we
present here is little changed from that described in the previous chapters. In particular
the slopes in plots of one isotopic system against another are unchanged (2.6). There
thus remains the fundamental inconsistency between the Pb isotopes and the Nd, Sr and
Hf isotopes. Furthermore, the value of τmelt ∼ 0.5 Ga inferred here from the lead-lead
pseudo-isochron is a factor of 3 different from the value of τmelt ∼ 1.7 Ga inferred from the
standard deviations of the Nd, Sr and Hf isotopic ratios in chapter 2. In fact, τmelt ∼ 0.5
Ga provides a much better match to the observed standard deviations of the Pb isotopic
ratios than τmelt ∼ 1.7 Ga (in chapter 2, model lead isotopic standard deviations were
around 3 times larger than observed). Note that the pseudo-isochron is a much more
robust way of estimating τmelt as it depends only on the decay constants and start age,
whereas the standard deviation of isotopic ratios depends on all the parameters in the
model. It is still not possible in the model as it stands to match both the Pb isotopes and
the Nd, Sr and Hf isotopes with a single set of parameters.



Chapter 5

Pseudo-isochron derivations

This chapter presents the mathematical derivations that lead to the pseudo-isochron equa-
tions discussed in the previous chapter.

5.1 Statistical box model

The simple statistical box model described in chapter 3 now has three restrictions lifted:
the decay is no longer linearised, a steady state is not assumed, and the melt rate may vary
with time. There are now three types of parcel in our model mantle: melt parcels (parcels
last formed as melt in the melting region), residue parcels (parcels last formed as residue
in the melting region), and primordial parcels. Melt and residue parcels have an associated
age τ of when they last visited the melting region. The distribution of parcel ages is given
by a random variable T̂ , which is defined so that those parcels of age ≥ τs are primordial.
Let q(τ) be the probability density function of T̂ . Thus a fraction 1−

∫ τs
0 q(τ) dτ of parcels

are primordial.
We track the concentrations of a parent isotope p, a daughter d, and a reference d′. G

is the molar fraction of a chemical species that enters the melt, and depends on the melt
fraction F and the partition coefficients (3.17). The corresponding concentrations of the
three parcel types at the present day are (from (3.27-3.32)):

pprim = p̄, (5.1)
dprim = d̄, (5.2)
d′prim = d̄′. (5.3)

pmelt(τ) =
Gp
F
p̄, (5.4)

dmelt(τ) =
Gd
F
d̄+

Gp −Gd
F

(
eλτ − 1

)
p̄, (5.5)

d′melt(τ) =
Gd
F
d̄′. (5.6)

pres(τ) =
1−Gp
1− F

p̄, (5.7)

dres(τ) =
1−Gd
1− F

d̄− Gp −Gd
1− F

(
eλτ − 1

)
p̄, (5.8)

d′res(τ) =
1−Gd
1− F

d̄′, (5.9)

56
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where p̄, d̄, and d̄′ are the mean concentrations of the isotopes in the box at the present
day, and λ is the decay constant.

5.2 Calculating the asymptotic moments

Based on the general analysis of section 3.3.1, introduce new variables p?, d? and d′?

defined by:

p? =
1
d̄′

(
p− p̄

d̄′
d′
)
, (5.10)

d? =
1
d̄′

(
d− d̄

d̄′
d′
)
, (5.11)

d′? =
1
d̄′
(
d′ − d̄′

)
. (5.12)

In these new variables the different parcel types are given by

p?prim = 0, (5.13)

d?prim = 0, (5.14)

d′?prim = 0. (5.15)

p?melt(τ) =
p̄

d̄′
Gp −Gd

F
, (5.16)

d?melt(τ) =
p̄

d̄′
Gp −Gd

F

(
eλτ − 1

)
, (5.17)

d′?melt(τ) =
Gd − F

F
. (5.18)

p?res(τ) = − p̄

d̄′
Gp −Gd
1− F

, (5.19)

d?res(τ) = − p̄

d̄′
Gp −Gd
1− F

(
eλτ − 1

)
, (5.20)

d′?res(τ) = −Gd − F

1− F
. (5.21)

Key moments are then

E(p̂?2) =
( p̄
d̄′

)2 (Gp −Gd)
2

F (1− F )

∫ τs

0
q(τ) dτ, (5.22)

E(d̂?p̂?) =
( p̄
d̄′

)2 (Gp −Gd)
2

F (1− F )

∫ τs

0

(
eλτ − 1

)
q(τ) dτ, (5.23)

E(d̂?2) =
( p̄
d̄′

)2 (Gp −Gd)
2

F (1− F )

∫ τs

0

(
eλτ − 1

)2
q(τ) dτ. (5.24)

Let Ẑd =
∑

i d̂i/
∑

i d̂
′
i be the random variable giving the distribution of isotopic ratios

d/d′ after averaging, and Ẑp =
∑

i p̂i/
∑

i d̂
′
i be the random variable giving the distribution

of isotopic ratios p/d′ after averaging. From (3.68) we have that

var Ẑd ∼
1
N

E
(
d̂?2
)

=
( p̄
d̄′

)2 (Gp −Gd)
2

NF (1− F )

∫ τs

0

(
eλτ − 1

)2
q(τ) dτ, (5.25)

var Ẑp ∼
1
N

E
(
p̂?2
)

=
( p̄
d̄′

)2 (Gp −Gd)
2

NF (1− F )

∫ τs

0
q(τ) dτ. (5.26)
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(5.25) is the generalisation of (3.76). A similar generalisation for the skew (3.80) can
obtained using (3.70).

5.3 Parent-daughter isochrons

It is convenient to introduce T̂m: this is the random variable giving the distribution
of parcel ages restricted to those parcels that have passed through the melting region.
qm(τ) = q(τ)/

∫ τs
0 q(τ) dτ is then the probability density function of T̂m. Suppose we plot

d/d′ against p/d′. Then the correlation is estimated by (3.72) as

rpd ∼
E(d̂?p̂?)√

E(d̂?2)E(p̂?2)
=

E(eλT̂m − 1)√
E
(
eλT̂m − 1

)2
. (5.27)

The slopes of the regression lines are estimated by (3.73), (3.74), and (3.75) as

βpd ∼
E(d̂?p̂?)
E(p̂?2)

= E
(
eλT̂m − 1

)
, (5.28)

β̄ ∼

√
E(d̂?2)
E(p̂?2)

=

√
E
(
eλT̂m − 1

)2
, (5.29)

βdp ∼
E(d̂?2)

E(d̂?p̂?)
=

E
(
eλT̂m − 1

)2

E
(
eλT̂m − 1

) . (5.30)

The parent-daughter pseudo-isochron age is related to the slope of the regression line by

eλτpdi − 1 = β, (5.31)

and thus using the geometric mean regression line (5.29) the model parent-daughter
pseudo-isochron equation is (

eλτpdi − 1
)2

= E
(
eλT̂m − 1

)2
. (5.32)

Note that when the decay is linearisable (T̂m � 1/λ) (5.27) and (5.32) reduce to rpd =

ET̂m/

√
ET̂ 2

m and τpdi =
√

ET̂ 2
m.

5.4 Daughter-daughter isochrons

Now suppose we plot (d/d′)2 against (d/d′)1 for two different isotopic systems 1 and 2.
Key moments are then

E(d̂?21 ) =
(
p̄1

d̄′1

)2 (Gp1 −Gd1)
2

F (1− F )

∫ τs

0

(
eλ1τ − 1

)2
q(τ) dτ, (5.33)

E(d̂?1d̂
?
2) =

(
p̄1

d̄′1

)(
p̄2

d̄′2

)
(Gp1 −Gd1)(Gp2 −Gd2)

F (1− F )

∫ τs

0

(
eλ1τ − 1

)(
eλ2τ − 1

)
q(τ) dτ,

(5.34)

E(d̂?22 ) =
(
p̄2

d̄′2

)2 (Gp2 −Gd2)
2

F (1− F )

∫ τs

0

(
eλ2τ − 1

)2
q(τ) dτ. (5.35)
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The correlation is then given by

r12 ∼
E(eλ1T̂m − 1)(eλ2T̂m − 1)√

E
(
eλ1T̂m − 1

)2
E
(
eλ2T̂m − 1

)2
sgn ((Gp1 −Gd1)(Gp2 −Gd2)) . (5.36)

Note that |r12| ∼ 1 if the decay is linearisable (T̂m � 1/λ1 and 1/λ2), which is why in
Figure 2.4 the model data form almost perfect straight lines. However, when the decay
is not linearisable we will not get perfect correlation. The slope of the geometric mean
regression line is given by

β̄ ∼
(
p̄2/d̄

′
2

)
(Gp2 −Gd2)(

p̄1/d̄′1
)
(Gp1 −Gd1)

√√√√√√E
(
eλ2T̂m − 1

)2

E
(
eλ1T̂m − 1

)2 . (5.37)

Note that if the decay is linearisable this reduces to

β̄ ∼
(
p̄2/d̄

′
2

)
(Gp2 −Gd2)λ2(

p̄1/d̄′1
)
(Gp1 −Gd1)λ1

, (5.38)

which is precisely (3.91). (5.37) is the generalisation of (3.91). Hence for those isotopic
systems for which a linear decay approximation is valid the slopes are unchanged.

We are particularly interested in a special case of (5.37). If the parent and daughter
elements are the same, and the reference isotope is also the same, then (5.37) reduces to

β̄ ∼ p̄2

p̄1

√√√√√√E
(
eλ2T̂m − 1

)2

E
(
eλ1T̂m − 1

)2 . (5.39)

This is the generalisation of (3.92). The other estimates of the slope of the regression line
in this special case are given by

β12 ∼
p̄2

p̄1
· E(eλ1T̂m − 1)(eλ2T̂m − 1)

E
(
eλ1T̂m − 1

)2 , β21 ∼
p̄2

p̄1
·

E
(
eλ2T̂m − 1

)2

E(eλ1T̂m − 1)(eλ2T̂m − 1)
. (5.40)

The daughter-daughter pseudo-isochron age is related to the slope of the regression
lines by

p̄2

p̄1
· eλ2τddi − 1
eλ1τddi − 1

= β. (5.41)

Hence, combining (5.39) and (5.41) the model pseudo-isochron age τddi satisfies the simple
relationship

(eλ2τddi − 1)2

(eλ1τddi − 1)2
=

E(eλ2T̂m − 1)2

E(eλ1T̂m − 1)2
. (5.42)

Note that when the decay is linearisable (T̂m � 1/λ1 and 1/λ2) (5.42) reduces to τddi =
ET̂ 3

m/ET̂ 2
m (by Taylor series expansion).
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5.5 Means

It is important to distinguish between different definitions of the mean age of parcels.
Since the heterogeneity we are interested in is generated by fractionation on melting, an
important mean age is τ̄m = ET̂m, the mean age of the parcels that have passed through
the melting region. Primordial parcels do not contribute to the pseudo-isochron ages. The
mean mantle age τ̄total is often defined by including the primordial parcels and assigning
them an age of τs, and it is this definition that is used in Xie and Tackley [2004a]. Hence
τ̄total ≥ τ̄m. We have

τ̄total =
∫ τs

0
τq(τ) dτ + τs

(
1−

∫ τs

0
q(τ) dτ

)
, (5.43)

τ̄m = ET̂m =
∫ τs

0
τqm(τ) dτ. (5.44)

The parent-daughter pseudo-isochron age τpdi is an example of a generalised mean

[Hardy et al., 1934]. A generalised mean Mφ is defined by Mφ(X̂) = φ−1
(
Eφ(X̂)

)
,

where φ is a strictly monotonic function, and X̂ is a random variable. Commonly en-
countered examples include φ(x) = x (arithmetic mean), φ(x) = xr (power mean), and
φ(x) = log x (geometric mean). In the case of the parent-daughter pseudo-isochron (5.32),
φ(x) =

(
eλx − 1

)2. Generalised means have a number of important properties, but of
most interest to us is the notion of ‘comparability’: whether there is always an inequal-
ity between different means regardless of the distribution of the random variable X̂. A
common example of comparability is the arithmetic mean - geometric mean inequality.
There is an important theorem which states that if ψ and χ are monotonically increasing
functions, φ = χψ−1, and φ′′ > 0, then Mψ ≤Mχ (Theorem 96 of Hardy et al. [1934]). By
use of this theorem we find the following inequalities are satisfied by the parent-daughter
pseudo-isochron age:

min T̂m ≤ τ̄m ≤
√

ET̂ 2
m ≤ τpdi(λ1) ≤ τpdi(λ2) ≤ max T̂m, (5.45)

where 0 < λ1 < λ2, and min T̂m and max T̂m are the smallest and largest ages respectively
with any probability mass.

The daughter-daughter pseudo-isochron age τddi is not a generalised mean as de-
scribed by Hardy et al. [1934], but it is an example of a generalised abstracted mean
(Definition 2.4 of Qi [2000]). A generalised abstracted mean is defined by Mφ1,φ2(X̂) =

(φ1/φ2)−1
(
Eφ1(X̂)/Eφ2(X̂)

)
where φ1/φ2 is a strictly monotonic function. In the case of

the daughter-daughter pseudo-isochron equation (5.42), φ1(x) =
(
eλ1x − 1

)2 and φ2(x) =(
eλ2x − 1

)2. The generalised abstracted mean shares many of the properties of the gener-
alised mean of Hardy et al. [1934], and under a suitable transformation of the probability
density function can be written in the same form. However, for our purposes what is of
most interest is the inequality

τpdi(λ2) ≤ τddi(λ1, λ2) ≤ max T̂m. (5.46)

The above inequalities (5.45) and (5.46) are strict inequalities unless all the probability
mass is concentrated at a single age. In this case all the inequalities are equalities, and all
the means yield this single age.
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5.6 Relating melt rate and parcel ages

Suppose melt rate as a function of age τ is γmelt(τ). Define τmelt to be the melting time
scale at the present day, so that γmelt(0) = 1/τmelt. Let Q(τ) = P(T̂ ≤ τ) be the proportion
of material in the box with age less than τ (the cumulative distribution function), with
1−Q(τs) being the proportion of primordial material. Q(τ) satisfies

dQ(τ)
dτ

= γmelt(τ) (1−Q(τ)) , Q(0) = 0, (5.47)

and thus

Q(τ) = 1− exp
(
−
∫ τ

0
γmelt(τ) dτ

)
. (5.48)

Hence the probability density functions are

q(τ) =
dQ(τ)

dτ
= γmelt(τ) exp

(
−
∫ τ

0
γmelt(τ) dτ

)
, (5.49)

qm(τ) =
q(τ)
Q(τs)

=
1

Q(τs)
dQ(τ)

dτ
. (5.50)

In some cases it is more convenient to work with the cumulative distribution function (cdf)
rather than the pdf. Note that if f(0) = 0 (as it is for all functions we consider) then

Ef(T̂m) =
∫ τs

0
f ′(τ)(1−Qm(τ)) dτ, (5.51)

where the cdf Qm(τ) is given by

Qm(τ) =
∫ τ

0
qm(τ) dτ =

Q(τ)
Q(τs)

. (5.52)

Xie and Tackley [2004a] quote results from their numerical simulations in terms of the
crustal production rate given by bγmelt(τ), where b is their basalt fraction (b = 0.3 in their
standard runs). Their integrated crustal production (integrated forward in time) is given
as a function of age by

c(τ) = 1− exp
(
−
∫ τs

τ
bγmelt(τ) dτ

)
, (5.53)

which implies

exp
(
−
∫ τ

0
γmelt(τ) dτ

)
=
(

1− c(0)
1− c(τ)

)1/b

. (5.54)

Hence the cdf Qm(τ) (and thus also pseudo-isochron ages) can be calculated directly from
their integrated crustal production or their crustal production rate.

For a constant melt rate γmelt(τ) = 1/τmelt and T̂ is an exponential random variable
with parameter 1/τmelt. The corresponding probability density functions are

q(τ) = e−τ/τmelt/τmelt, (5.55)

qm(τ) = e−τ/τmelt/
(
τmelt

(
1− e−τs/τmelt

))
, (5.56)
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and corresponding means are

τ̄total = τmelt(1− e−τs/τmelt), (5.57)

τ̄m = ET̂m = τmelt
1− e−τs/τmelt(1 + τs/τmelt)

1− e−τs/τmelt
, (5.58)

√
ET̂ 2

m =
√

2τmelt

√√√√1− e−τs/τmelt

(
1 + τs/τmelt + 1

2 (τs/τmelt)
2
)

1− e−τs/τmelt
. (5.59)

5.7 Constant melt rate: Parent-daughter isochrons

For constant melt rate the parent-daughter pseudo-isochron equation is

(eλτpdi − 1)2 =

∫ τs
0 (eλτ − 1)2e−τ/τmelt dτ
τmelt

(
1− e−τs/τmelt

) . (5.60)

To gain some insight into the behaviour of this equation we now consider some simple
asymptotics.

5.7.1 Asymptotics when τmelt or τs � 1/λ

Since we often study slowly decaying isotopes, the most important asymptotics are when
τmelt or τs � 1/λ. In this limit the correlation becomes

rpd =
1− e−τs/τmelt(1 + τs/τmelt)√

2
(
1− e−τs/τmelt

) (
1− e−τs/τmelt

(
1 + τs/τmelt + 1

2 (τs/τmelt)
2
)) . (5.61)

Furthermore, if τs/τmelt � 1 then rpd ∼ 1/
√

2 ≈ 0.71. Alternatively if τs/τmelt � 1 then
rpd ∼

√
3/2 ≈ 0.87. For linearisable decay rpd always lies between these two values. It is

important to note that there is thus never a perfect correlation between d/d′ and p/d′.
When τmelt or τs � 1/λ the parent-daughter pseudo-isochron age becomes simply

τpdi =
√

ET̂ 2
m, which is given for constant melt rate by (5.59). If τs/τmelt � 1 (5.59)

simplifies to τpdi ∼
√

2τmelt, which determines the slope of curves near the origin in
Figures 4.3b and 4.4b, and the asymptotes for large τs in Figure 4.3a. On the other hand,
if τs/τmelt � 1 (5.59) simplifies to τpdi ∼ τs/

√
3, which determines the slope of curves near

the origin in Figures 4.3a and 4.4a, and the asymptotes for large τmelt in Figure 4.3b.

5.7.2 Asymptotics when τs � τmelt

When the decay is not linearisable, asymptotics based solely on τs � τmelt can be found.
The pseudo-isochron equation (5.60) becomes

(eλτpdi − 1)2 =
2λτs + 3− 4eλτs + e2λτs

2λτs
, (5.62)

which is independent of τmelt. This equation determines the τmelt = ∞ Ga curve in Figures
4.3a and 4.4a, and asymptotes for large τmelt in Figures 4.3b and 4.4b.
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5.7.3 Asymptotics when τs � τmelt

(5.60) has two regimes of asymptotic behaviour when τs/τmelt � 1. If λτmelt > 1/2 then

e2λτpdi =
e(2λτmelt−1)τs/τmelt

2λτmelt − 1
, (5.63)

whereas if λτmelt < 1/2 then

(eλτpdi − 1)2 =
2(λτmelt)2

(1− λτmelt)(1− 2λτmelt)
. (5.64)

Note that (5.63) depends on τs whereas (5.64) is independent of τs. This is why in Fig-
ure 4.4a curves with τmelt < 1/2λ flatten out for large τs, while curves with τmelt > 1/2λ
grow linearly for large τs with slope 1− 1/2λτmelt.

5.8 Constant melt rate: Daughter-daughter isochrons

The constant melt rate daughter-daughter pseudo-isochron equation is

(eλ2τddi − 1)2

(eλ1τddi − 1)2
=

∫ τs
0 (eλ2τ − 1)2e−τ/τmelt dτ∫ τs
0 (eλ1τ − 1)2e−τ/τmelt dτ

. (5.65)

Again, insights into the behaviour of (5.65) can be gained by some simple asymptotics,
although linearising the decay is not as relevant here. We will assume without loss of
generality that λ2 > λ1 for the subsequent asymptotics.

5.8.1 Asymptotics when τs � τmelt

When τs � τmelt the pseudo-isochron equation (5.65) becomes

(eλ2τddi − 1)2

(eλ1τddi − 1)2
=
λ1

λ2
· 2λ2τs + 3− 4eλ2τs + e2λ2τs

2λ1τs + 3− 4eλ1τs + e2λ1τs
. (5.66)

Note that this equation is independent of τmelt. This equation determines the asymptotes
for large τmelt in Figure 4.5b, and the τmelt = ∞ Ga curve in Figure 4.5a. Furthermore, if
it is also the case that λτs � 1, we can Taylor expand both sides to find

λ2
2

λ2
1

(1 + (λ2 − λ1)τddi + ...) =
λ2

2

λ2
1

(
1 +

3(λ2 − λ1)
4

τs + ...

)
, (5.67)

and thus get the simple result that τddi ∼ 3
4τs, which determines the slope of curves near

the origin in Figure 4.5a. If instead λτs � 1 then we can approximate both sides as

e2(λ2−λ1)τddi =
λ1

λ2
e2(λ2−λ1)τs , (5.68)

which demonstrates that the slope of the τmelt = ∞ Ga curve in Figure 4.5a will approach
1 for large τs.
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5.8.2 Asymptotics when τs � τmelt

We have three different regimes of asymptotic behaviour for (5.65) when τs � τmelt. If
τmelt > 1/2λ1 the pseudo-isochron equation is

e2(λ2−λ1)τddi = e2(λ2−λ1)τs 2λ1τmelt − 1
2λ2τmelt − 1

, (5.69)

if 1/2λ2 < τmelt < 1/2λ1 then

e2(λ2−λ1)τddi =
e(2λ2τmelt−1)τs/τmelt(1− λ1τmelt)(1− 2λ1τmelt)

(λ1τmelt)
2 (2λ2τmelt − 1)

, (5.70)

and if τmelt < 1/2λ2 then

(eλ2τddi − 1)2

(eλ1τddi − 1)2
=
λ2

2(1− λ1τmelt)(1− 2λ1τmelt)
λ2

1(1− λ2τmelt)(1− 2λ2τmelt)
. (5.71)

The most important feature of (5.71) is that it is independent of τs, whereas in the other
two asymptotic regimes there is a dependence on τs. This is why for values of τmelt < 1/2λ2

in Figure 4.5a the curve flattens out for large τs whereas in the other regimes they grow
linearly for large τs with slopes (λ2− 1/2τmelt)/(λ2−λ1) and 1 respectively. (5.71) can be
further simplified if λτmelt � 1. Both sides can be Taylor expanded to yield

λ2
2

λ2
1

(1 + (λ2 − λ1)τddi + ...) =
λ2

2

λ2
1

(1 + 3(λ2 − λ1)τmelt + ...) , (5.72)

leading to the simple result that τddi ∼ 3τmelt, which determines the slope of curves near
the origin in Figure 4.5b.

5.9 Relationship to linear evolution models

There is an important connection between our statistical box model and the pseudo-
isochron equations derived from linear evolution models by previous authors [Albarède,
2001, Allègre and Lewin, 1995a, Donnelly et al., 2004]. Suppose we divide the box into
two based on parcel type. Let all the residue parcels and a fraction 1−F of the primordial
parcels be called reservoir 1, and all the melt parcels and a fraction F of the primordial
parcels be reservoir 2. These two reservoirs do not change in size over time. Reservoir
1 is a fraction 1 − F of the box, and reservoir 2 a fraction F . At an age τs before the
present all parcels are primordial and thus both reservoirs have the same uniform isotopic
concentrations. The mean concentrations of p, d and d′ at the present in each reservoir
can be calculated by integrating (5.1-5.9) over the age distribution of parcels. For the
isochron calculation it is simplest to consider instead the p? and d? values. Let p̂?1 be the
random variable giving the distribution of p? in reservoir 1, and d̂?1, p̂

?
2 and d̂?2 be defined

similarly. Note that the subscripts 1 and 2 now refer to the different reservoirs, rather
than the different isotopic systems as in earlier sections. Integration of (5.13-5.21) yields
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the mean values as

Ep̂?1 = − p̄

d̄′
Gp −Gd
1− F

∫ τs

0
q(τ) dτ, (5.73)

Ed̂?1 = − p̄

d̄′
Gp −Gd
1− F

∫ τs

0

(
eλτ − 1

)
q(τ) dτ, (5.74)

Ep̂?2 =
p̄

d̄′
Gp −Gd

F

∫ τs

0
q(τ) dτ, (5.75)

Ed̂?2 =
p̄

d̄′
Gp −Gd

F

∫ τs

0

(
eλτ − 1

)
q(τ) dτ. (5.76)

By multiplying these expressions by the fraction of the box each reservoir occupies these
can be converted into molar values n? and m? ((4.21) and (4.22)) as

n?1 = (1− F ) Ep̂?1 = − p̄

d̄′
(Gp −Gd)

∫ τs

0
q(τ) dτ, (5.77)

m?
1 = (1− F ) Ed̂?1 = − p̄

d̄′
(Gp −Gd)

∫ τs

0

(
eλτ − 1

)
q(τ) dτ. (5.78)

where n?2 = −n?1 and m?
2 = −m?

1. (5.77) and (5.78) are solutions of (4.25) and (4.26),
and are the backward in time versions of (A1-4) and (A1-5) of Allègre and Lewin [1995a]
with ∆〈α〉 = 0. The number of moles of each isotope species in the two reservoirs must
be modelled by the linear evolution equations (4.10-4.15); the only question is finding
expressions for the residence times. Here the relaxation times for parent and daughter are
both given by 1/γmelt, since they are both fractionated by the same melting process on
the same timescale. The individual residence times for each reservoir are determined by
the fraction of moles G that enter the melt for each chemical species as

τ1 =
1

Gpγmelt
, τ2 =

1
(1−Gp) γmelt

, (5.79)

θ1 =
1

Gdγmelt
, θ2 =

1
(1−Gd) γmelt

. (5.80)

Consider a pseudo-isochron defined by the where the two reservoirs and the whole box lie
on the isochron diagram. The slope in the parent-daughter isochron diagram is given by

(m/s)1 − (m/s)1+2

(n/s)1 − (n/s)1+2

=
m?

1

n?1
=

∫ τs
0 (eλτ − 1)q(τ) dτ∫ τs

0 q(τ) dτ
= E

(
eλT̂m − 1

)
. (5.81)

Hence the corresponding pseudo-isochron equations are

eλτpdil − 1 = E(eλT̂m − 1), (5.82)

eλ2τddil − 1
eλ1τddil − 1

=
E(eλ2T̂m − 1)

E(eλ1T̂m − 1)
, (5.83)

which are just (5.32) and (5.42) with squareds removed, and hence we will refer to these
as the linear pseudo-isochron equations.

An alternative reservoir representation is to consider the box split into three reser-
voirs, one with all the melt parcels, one with all the residue parcels, and one with all the
primordial parcels. These three reservoirs change in size over time, with the melt and
residue reservoirs growing at the expense of the primordial reservoir. This is analogous to
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model I of Jacobsen and Wasserburg [1979] where their depleted mantle reservoir 2 and
crust reservoir 3 grow from an homogeneous undepleted mantle reservoir 1. Compare the
statistical box model result, obtained by integrating (5.4-5.9),

Ed̂res

Ed̂′res
− d̄

d̄′
= − p̄

d̄′
Gp −Gd
1−Gd

E
(
eλT̂m − 1

)
, (5.84)

Ed̂melt

Ed̂′melt

− d̄

d̄′
=
p̄

d̄′
Gp −Gd
Gd

E
(
eλT̂m − 1

)
, (5.85)

with (19) of Jacobsen and Wasserburg [1979], rewritten using an integration by parts,

Nd,j(τ)
Ns,j(τ)

−
Nd,1(τ)
Ns,1(τ)

=
Nr,1(τ)
Ns,1(τ)

f
r/s
j

∫ τ

0

(
eλ(τ−ξ) − 1

) 1
Mj(τ)

dMj(ξ)
dξ

dξ. (5.86)

(5.84) and (5.85) are equivalent to (5.86), although note that (5.86) is written with τ
running forward in time. The fractionation factors relate through 1+f2 = (1−Gp)/(1−Gd)
and 1 + f3 = Gp/Gd. The corresponding probability density function of parcels ages is
(1/Mj(τ))dMj(ξ)/dξ (compare with (5.50)). Note that the relationship between melt
rate and age distribution will be slightly different between the two models, since there
is recycling in the statistical box model (a melt parcel may become a residue parcel and
vice-versa), but not in model I. The pseudo-isochron equations that result from where the
three reservoirs plot on the isochron diagram are also (5.82) and (5.83).

The linear parent-daughter pseudo-isochron age τpdil is also an example of a generalised
mean, with φ(x) = eλx − 1. The linear pseudo-isochron ages satisfy

min T̂m ≤ τ̄m ≤ τpdil(λ1) ≤ τpdil(λ2) ≤ τddil(λ1, λ2) ≤ max T̂m, (5.87)

where 0 < λ1 < λ2. For linearisable decay (T̂m � 1/λ) the linear parent-daughter pseudo-
isochron equation (5.82) reduces to τpdil = ET̂m = τ̄m, and the linear daughter-daughter
pseudo-isochron equation (5.83) to τddil = ET̂ 2

m/ET̂m. It can be shown that the linear ages
are always less than the corresponding quadratic ages, namely that τpdil(λ) ≤ τpdi(λ), and
τddil(λ1, λ2) ≤ τddi(λ1, λ2).

For the case of constant melt rate the linear parent-daughter pseudo-isochron equation
is

eλτpdil − 1 =

∫ τs
0 (eλτ − 1)e−τ/τmelt dτ
τmelt(1− e−τs/τmelt)

=
λτmelt + (1− λτmelt)e−τs/τmelt − e(λτmelt−1)τs/τmelt

(1− λτmelt)
(
1− e−τs/τmelt

) , (5.88)

which is the parent-daughter pseudo-isochron equation (A2-4) of Allègre and Lewin [1995a].
This should be compared with our (5.60). The corresponding linear daughter-daughter
pseudo-isochron equation is

eλ2τddil − 1
eλ1τddil − 1

=

∫ τs
0 (eλ2τ − 1)e−τ/τmelt dτ∫ τs
0 (eλ1τ − 1)e−τ/τmelt dτ

=
1− λ1τmelt

1− λ2τmelt
· (1− λ2τmelt)e−τs/τmelt + λ2τmelt − e(λ2τmelt−1)τs/τmelt

(1− λ1τmelt)e−τs/τmelt + λ1τmelt − e(λ1τmelt−1)τs/τmelt
, (5.89)
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which is precisely the daughter-daughter pseudo-isochron equation (A2-9) of Allègre and
Lewin [1995a]. This should be compared with our (5.65). Furthermore, when τmelt � τs
and λτmelt < 1 (5.88) and (5.89) become

eλτpdil − 1 =
λτmelt

1− λτmelt
=⇒ τpdil = − 1

λ
log (1− λτmelt) , (5.90)

eλ2τddil − 1
eλ1τddil − 1

=
λ2 (1− λ1τmelt)
λ1 (1− λ2τmelt)

, (5.91)

which are the pseudo-isochron equations (A2-6) and (A2-10) of Allègre and Lewin [1995a],
(31) and (32) of Albarède [2001], and (7) and (9) of Donnelly et al. [2004]. The corre-
sponding equations in our model are (5.64) and (5.71). The τmelt � τs and λτmelt < 1
limit is precisely the same as the conditions for secular equilibrium in Albarède [2001]
and Donnelly et al. [2004]. Allègre and Lewin [1995a] explores various other asymptotic
regimes for (5.88) and (5.89), as we have for our constant melt rate equations in sections
5.7 and 5.8.



Chapter 6

Future generalisations

The statistical box model of chapters 2 to 5 is consistent with many features of the observed
isotopic heterogeneity of MORB, but not all. This chapter examines where the model fails,
and suggests useful future generalisations.

6.1 Decorrelations

The most striking discrepancy is that the present model has all the isotopic ratios correlat-
ing well with each other. In fact, in the large N limit the model predicts perfect correlation
(except when the half-lives are short, which only significantly affects 207Pb/204Pb). In con-
trast, the measured MORB data does not correlate perfectly, and there is a particularly
noticeable decorrelation between the Pb isotopic ratios and the others. While there is
a little decorrelation in the model due to finite N , it is not sufficient to account for the
observed decorrelations.

The most natural way of causing decorrelation is through differences in the melting
process. In the model as it stands, melting is highly simplified: there is just one melt
region, with one melt fraction, and one set of partition coefficients. Real mantle melting
takes place over a wide range of melt fractions, and in different melting environments. A
simple generalisation of the model can be considered to investigate this.

Suppose the different melting environments are labelled by a number u, say between
0 and 1, and suppose there is a corresponding random variable Û giving the probability
of being in such an environment. Let the partition coefficients and melt fractions be func-
tions of this random variable, so that we now have the functions F (u), Gp(u) and Gd(u).
Assuming that sampling of the different components is still unbiased, (5.34) generalises to

E(d̂?1d̂
?
2) =

(
p̄1

d̄′1

)(
p̄2

d̄′2

)∫ 1

0

(Gp1(u)−Gd1(u))(Gp2(u)−Gd2(u))
F (u) (1− F (u))

qÛ (u) du

×
∫ τs

0

(
eλ1τ − 1

)(
eλ2τ − 1

)
qT̂ (τ) dτ, (6.1)

where qÛ (u) is the probability density function of Û , and qT̂ (τ) the probability density
function of T̂ . The correlation r12 between two isotopic ratios d/d′ can then be written
for large N as

r12 ∼ rmeltrdecay (6.2)

68
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where

rdecay =
E(eλ1T̂m − 1)(eλ2T̂m − 1)√

E
(
eλ1T̂m − 1

)2
E
(
eλ2T̂m − 1

)2
, (6.3)

rmelt =
Ef1(Û)f2(Û)√

E
(
f1(Û)

)2
E
(
f2(Û)

)2
, (6.4)

and

f1(u) =
Gp1(u)−Gd1(u)√
F (u) (1− F (u))

, (6.5)

f2(u) =
Gp2(u)−Gd2(u)√
F (u) (1− F (u))

. (6.6)

(6.2) expresses the idea that decorrelation can come from two sources: either from the
melting process, or from differing decay constants. For the long-lived isotopes rdecay ∼ 1,
and only the differences in melting can cause the decorrelation. The form of the functions
f1(u) and f2(u) determine the amount of decorrelation. If f1(u) and f2(u) are the same
or proportional, there will be perfect correlation. Generally, if the relative compatibilities
are similar in behaviour then there will be good correlation.

It is straightforward to envisage a model situation where the lead isotopic ratios decor-
relate from the others. Suppose we have just two melting environments. Suppose that in
one environment Nd is fractionated from Sm, Hf from Lu, and Rb from Sr; but Th, U
and Pb are not fractionated. In the other environment suppose we have the reverse: Th
and U are fractionated from Pb, but the others are not fractionated. Suppose system 1
is 143Nd/144Nd and system 2 is 208Pb/204Pb. Then f2(u) = 0 in the first environment,
and f1(u) = 0 in the second environment. Thus f1(u)f2(u) ≡ 0, and from (6.4) there
is thus zero correlation between 143Nd/144Nd and 208Pb/204Pb. On the other hand, the
correlation will be near perfect between 143Nd/144Nd, 87Sr/86Sr and 177Hf/176Hf. The
correlation will also be very good between the Pb isotopic ratios, although some small
decorrelation is expected due to the shorter half-lives.

This simple model situation suggests that the most likely explanation for the decorre-
lation of the lead isotopic ratios is that there is some process that fractionates Pb from U
and Th, but does not fractionate the other parents from their daughters. The question is
now a geochemical one, as to what this process might be. The geochemical behaviour of
lead is still not fully understood, and it is thought that some of the strange behaviour is
due to partitioning in sulphide phases.

Note that this generalisation does not change the pseudo-isochron results, and the
pseudo-isochron ages will be still be given by the same expressions in terms of T̂m. However,
more care is needed in interpreting the age distribution. It is best interpreted in terms
of a time scale for the destruction of heterogeneity. For example, again suppose we have
two melting environments, one which fractionates parent from daughter, the other which
does not. By the way the model is defined, both environments destroy heterogeneity, but
only one of them creates it. Thus heterogeneity is now created on a different time scale to
its destruction, but it is the time scale of destruction that the pseudo-isochron age relates
to. This is somewhat analogous to the definition of residence time in reservoir modelling:
it is the time scale for exiting the reservoir, not entering, that determines the residence
time. Of course, the overall variances of the isotopic ratios will be reduced by having an
environment which only destroys heterogeneity and does not fractionate.
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Having different melting environments overcomes another shortcoming of the model.
Most melting of the mantle occurs at mid-ocean ridges, and indeed this is where we are
sampling from. However, melting at mid-ocean ridges involves large melt fractions, and
thus does not create significant fractionation. Melting at ocean islands, on the other hand,
does involve small melt fractions, and can cause the necessary fractionation. These two
types of melting environment could be described by this generalisation.

There are other ways in which melt modelling could be improved. Taking account
of the variation in melting behaviour with depth is likely to be important. At present,
the partition coefficients used for the single melt region are an average of the garnet and
spinel partition coefficients. Better modelling the range of melt fractions and behaviour
with depth may have significant effect: particularly for the Lu-Hf system, where Lu has
significantly different partition coefficients depending on whether garnet or spinel is the
stable mineral.

6.2 Ocean island basalt

No attempt has yet been made to model the complex isotopic systematics of ocean is-
land basalt (OIB) with the statistical box model. First it is important to note that the
mean of the isotopic ratios for OIB is slightly different to that of MORB (OIB is more
towards the enriched end: lower 143Nd/144Nd). This either means OIB taps a different
source to MORB, or that there is some difference in the melting process that causes some
components to more readily enter the melt than others. The second of these suggestions,
a system of preferential melting, could be modelled by a biased system of sampling of the
components [Ito and Mahoney, 2005]. For example, melt components may be more likely
to melt again, and thus more likely to be sampled. Such preferential melting effects will
be more important at ocean islands, where only a small fraction of the underlying mantle
melts, than at the mid-ocean ridges, where there is much more melting.

A further complication with OIB is that it varies significantly between different islands,
whereas MORB is much more similar between different ridges. This may be a result of dif-
ferent islands tapping different sources, or of the more variable melting processes occurring
under the different islands. As such, OIB should not be considered a single population.
Different ocean islands are likely to have different amounts of preferential melting, and
different amounts of mixing before sampling (different N) leading to the different means
and variances. It would also be worthwhile to examine further how well MORB can be
considered as a single population: investigating the small differences between ridges of
different spreading rates. These can probably be modelled by different amounts of mixing
before sampling (different N). For example, slower spreading ridges have smaller ranges of
isotopic ratios which probably reflects greater amounts of mixing before sampling (larger
N).

6.3 Continental crust

The statistical box model makes no attempt to model the extraction of the continental
crust. The depleted mantle is simply treated as one statistical reservoir made up of
enriched, depleted and primordial components; and interpreted in terms of oceanic crust
recycling. As discussed in the introduction, the continental crust has formed over Earth’s
history, and indeed this is why the depleted mantle is depleted. An important future
investigation would be to add statistical distributions to a mean reservoir model that is
compatible with our understanding of the mean isotopic evolution of the Earth.
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A simple generalisation can be motivated by the work of Albarède [2005]. Suppose that
in a melting event we now permanently remove a fraction ζ of the atoms of a given element,
and recycle the remaining 1 − ζ back into the box. This fraction ζ can be thought of as
going to the continental crust, and this will lead to a corresponding depletion of the box
over time. Assuming there is no significant mass loss due to the formation of continental
crust, the mantle parcels will remain of the same size and have the same age distribution.

Albarède [2005] derives residence time distributions for atoms in the mantle reservoir in
such a situation. It should be noted that these are different, but related, to the distribution
of parcel ages. Recall that the cumulative distribution function (cdf) for the distribution
of parcels ages satisfies (section 5.6)

dQ(τ)
dτ

= γmelt(τ) (1−Q(τ)) , Q(0) = 0, (6.7)

and thus
Q(τ) = 1− e−Γmelt(τ), (6.8)

where
Γmelt(τ) =

∫ τ

0
γmelt(τ) dτ. (6.9)

Q(τs) is the fraction of parcels that are primordial. Now, instead of considering parcels of
mantle material, consider atoms of a given element. The corresponding cdf Qa(τ) for the
atomic age distribution satisfies the similar equation

dQa(τ)
dτ

= (1− ζ)γmelt(τ) (1−Qa(τ)) , Qa(0) = 0, (6.10)

which takes account of the fact that only a fraction 1−ζ of atoms survive a melting event.
Thus

Qa(τ) = 1− e−(1−ζ)Γmelt(τ). (6.11)

For constant melt rate, Γmelt(τ) = τ/τmelt and thus

Qa(τ) = 1− e−(1−ζ)τ/τmelt , (6.12)

which is the analogue of (13) of Albarède [2005]. Note that Albarède [2005] works with
the fraction of recycled atoms ω = 1− ζ, and gives the result for the fraction of atoms of
age greater than τ rather than the cdf (the fraction of atoms of age less than τ). Note
also that the mass fraction of the mantle that is primordial is e−τs/τmelt , but the fraction
of atoms of a given element that are primordial is e−(1−ζ)τs/τmelt . For example, if all of
an element is extracted to the continents in a melting event, then ζ = 1 and thus all the
atoms of that element in the mantle box must be primordial. Alternatively, if there is no
removal in a melting event, then ζ = 0 and the age distribution of parcels is the same as
age distribution of atoms.

The mean isotopic evolution of the box is given by( p̄
d̄′

)
τ

=
p̄

d̄′
eλτ+(ζp−ζd)Γmelt(τ), (6.13)(

d̄

d̄′

)
τ

=
d̄

d̄′
− p̄

d̄′

∫ τ

0
λeλτ+(ζp−ζd)Γmelt(τ) dτ, (6.14)
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where d̄/d̄′ is the present day value, and
(
d̄/d̄′

)
τ

is the value at an age τ before the present.
For constant melt rate these become( p̄

d̄′

)
τ

=
p̄

d̄′
e(λ+k)τ , (6.15)(

d̄

d̄′

)
τ

=
d̄

d̄′
− p̄

d̄′
λ

λ+ k

(
e(λ+k)τ − 1

)
, (6.16)

where k = (ζp − ζd)/τmelt. These are the same equations derived by Allègre [1969], and
have commonly been used in constructing depleted mantle models. For example, Work-
man and Hart [2005] model the evolution of the depleted mantle by continuous extraction
of continental crust over the last 3.0 Ga using the above equations. To generalise the
Workman and Hart [2005] model to a statistical box model, we just need the appropriate
melting law. The simplest case would be to let melt parcels have concentrations (G−ζ)/F
and the residue parcels (1 − G)/(1 − F ) relative to the source values. This reflects the
depletion of the recycled melt due to continent formation. Note that 0 ≤ ζ ≤ G ≤ 1. Ex-
plicit expressions for the concentrations of the different parcels types can then be written,
but are rather cumbersome.

Generalisations to take into account the evolution of the depleted mantle are likely
to affect the isotopic heterogeneity of some systems more than others. For example, the
Sm/Nd ratio of the depleted mantle changes very little over time with the extraction of
continental crust. Since the parent/daughter ratio is a key control on the variance of
the isotopic ratios we might expect the variance of 143Nd/144Nd to be little affected by
continent formation. On the other hand, Rb/Sr is quite drastically affected by continent
formation, and so this could substantially alter the variance of 87Sr/86Sr. However, it is
important to note that the isotopic heterogeneity only records a portion of the crustal
evolution history, which depends on the melting time scale τmelt. If τmelt is very small
then only the very recent history of continental formation can affect the spread of the
isotopic ratios. Since there is thought to be much less exchange of material between the
crust and the mantle at present, this may mean the effects of continental formation on
isotopic heterogeneity are not that significant.

There have been a wide variety of different models for the mean isotopic evolution
of the depleted mantle, and there has yet to be any clear consensus. For example, it is
known that models which have simple unidirectional transport of material from mantle
to crust are not compatible with observations of εNd for older rocks. It seems the mantle
acquired a significant positive εNd very early on in the Earth’s history, and the evolution
of εNd in the depleted mantle has been fairly linear since. Unidirectional transport models
cannot satisfy this [Galer et al., 1989], and thus there must have been some recycling of
the continental crust.

More complicated reservoir models do involve crustal recycling, but there are further
problems. The lead isotopic systems in particular cause difficulties, and these difficulties
are referred to as the lead paradoxes. Solutions to these paradoxes usually rely on a hidden
reservoir in the Earth that cannot be sampled, e.g. the lower continental crust, or the D”
layer. While hidden reservoirs can solve the problem, they are poorly constrained. The
mean isotopic evolution of the Earth may need to be better understood before we add the
complexities associated with the statistical distributions.

An important generalisation when considering crustal evolution would be to exam-
ine non-Poisson models. Reservoir models are based on a Poisson process assumption,
whereby each atom in a reservoir has an equal probability of being extracted. It would be
interesting to consider transport models that do not make this assumption. For example,
the probability of extraction could be a function of the time an atom spends in a reservoir.
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This could be used to make older crust less likely to recycle than younger crust, and could
be important in understanding the age distribution of continental rocks.

6.4 Helium

Isotopes of noble gases, such as helium, can place further constraints on mantle evolution,
particularly of the history of degassing. 4He is produced through the alpha decay of 232Th,
238U and 235U. 3He is a stable reference isotope. The isotopic ratio 4He/3He is thus of a
similar form to the other isotopic ratios we have studied except that it has three different
parent isotopes instead of just one. The other key difference is that helium is a gas, and is
lost to the atmosphere after melt comes to the surface. Traditionally, the isotopic ratio is
reported upside down as R = 3He/4He, and is reported relative to the atmospheric value
RA = 1.4× 10−6.

MORB records a fairly narrow range of 3He/4He values, around 7-9 R/RA. OIB
records a much wider range of values, with some very large values (e.g. 35 R/RA reported
in Iceland) and some smaller values (e.g. 4 R/RA reported in the Azores). The high
values of 3He/4He have traditionally been associated with tapping of primordial material,
or at least relatively less degassed material. An alternative viewpoint is that the source
of MORB and OIB are the same, and the differences in 3He/4He result from differences
in the sampling process [Meibom and Anderson, 2004]. For example, the extreme values
could be the result of a less averaged distribution, or result from preferential extraction of
certain components.

Extensions of the statistical box model may be able to help tackle this problem. The
outgassing of helium could be modelled by the generalisation discussed in the previous
section, by removing most of the helium from the melt in a melting event. Unfortunately
there are many uncertainties in the helium system, and the overall helium budget is not
well constrained. The initial parent/daughter ratios such as 238U/3He are not know, nor is
the partitioning behaviour of helium well understood (in particular, it is not known for sure
whether He is more or less compatible than Th and U). The mantle convection simulations
of Xie and Tackley [2004b] have attempted to model the distributions of helium isotopes.
Preliminary results from a generalisation of the statistical box model suggest that good
agreement can be found with the distributions obtained from their convection simulations.
Thus it seems that the key features of the 3He/4He distribution do not depend strongly
on the details of the underlying flow, and the statistical box model may provide a neater
way of attacking the problem, and a faster way of exploring parameter space.

6.5 Spatial structure

The statistical box model takes no account of spatial structure. The stirring of mantle
convection reduces the length scales of heterogeneity, and redistributes heterogeneity. So
far, a highly simplified approach to this has been taken: modelling melting as a Poisson
process. The melting before sampling has a mixing effect, and the simplified modelling
of this has been the averaging over N components. Both of these modelling approaches
deserve careful further study.

The validity of Poisson process approximations are probably best assessed by compar-
ison with numerical mantle convection simulations. Results so far seem to indicate that
Poisson process models capture a lot of the important detail. However, the comparisons
in this thesis were made indirectly without access to the actual simulations, and a much
more detailed study should be made by those running the simulations. An intermediate
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approach might be useful too: studying geochemical tracers in idealised flows for which
the stirring behaviour is well understood.

Sampling is currently modelled fairly crudely by the single mixing parameter N . More
sophisticated sampling algorithms have been developed by other authors. For example,
the Kellogg et al. [2002] model takes into account the fact that older heterogeneities are
likely to have shorter length scales due to larger amounts of stretching and folding over
their history. Mixing in the Kellogg et al. [2002] model is parameterised in terms of a
stirring time τstir and a sampling length scale ls. It will be interesting to investigate how
the schemes compare, particularly in the limiting case of large amounts of mixing (large
N , large ls). In this limit, both schemes approach normal distributions, so it is likely this
would help justify the more simplistic approach taken here.

A perhaps more fruitful approach to understanding the length scales of mantle het-
erogeneity is to examine the observed spatial distribution of isotopic data. High quality
isotopic data with accurate geographical sampling co-ordinates is now available for large
regions of the mid-ocean ridge system [Agranier et al., 2005, Graham et al., 2006]. This
may potentially provide clues as to length scales of mantle heterogeneity and is an area of
active research. How to best model this data is not yet clear. It should be reiterated that
we cannot observe the length scales of heterogeneity of the mantle directly, and can observe
only through the filter of melting and mixing. This makes the problem of understanding
length scales of mantle heterogeneity much more challenging.

6.6 Statistical methodology

There are a number of problems where a similar statistical methodology might be applied.
For example, more can be made of the U-series disequilibria data than just the mean
values: there are again variances, correlations, and distributions that can be exploited.
There have been several fluid dynamical approaches to modelling U-series disequilibria
[McKenzie, 1985, Richardson and McKenzie, 1994, Spiegelman and Elliott, 1993, Williams
and Gill, 1989], but it would be interesting to see how far simple statistical approaches
can go. The U-series problem is essentially one of residence times: disequilibrium values of
(230Th/238U) > 1 arise from Th having a shorter residence time than U in melt extraction.
Isochron dating can also be applied to activity ratios, and this suggests that the pseudo-
isochron work might be relevant.

This thesis has focused on a rather narrow set of geochemical observations, those of
certain radiogenic isotopes. Much more information is likely to be gained from using
combinations of other geochemical observables such as major elements, trace elements,
and U-series disequilibria. Unfortunately it not always the case that all measurements are
made on all samples, but this is beginning to change. Correlations between isotopic ratios
and trace elements were exploited by McKenzie et al. [2004], and it is likely there is more
to be gained by further statistical modelling of different combinations of geochemical data.



Chapter 7

Conduit waves

7.1 Introduction

An important problem in geophysics is to understand the processes whereby melt, pro-
duced at depths of around 100 km in the Earth’s mantle, reaches the surface. Geochemical
measurements, notably of uranium series disequilibria, show that the melt migration pro-
cess has to happen quickly (∼ 100 years). Furthermore, there must be little interaction of
the melt with the surrounding matrix as it travels to the surface, in order to preserve this
disequilibrium signal.

Early physical models of melt migration considered transport by diffuse porous flow
along grain boundaries; but this neither transports melt fast enough, nor is likely to pre-
serve the disequilibrium signal. To overcome this difficulty it was proposed that the melt
is organised into a network of high porosity conduits which allows much faster transport
[Kelemen et al., 1997]. This motivated the theoretical study of the behaviour of an open
melt conduit in a deformable porous matrix by Richardson et al. [1996], and this chapter
revisits their work. The conduit was shown to support solitary waves of elevation with
a region of trapped melt travelling with the wave. However, the analysis presented here
shows that in some parameter regimes the conduit will only support solitary waves of
depression. These parameter regimes include that thought appropriate to melt migration
in the Earth’s mantle. The waves of depression do not contain trapped melt and may have
slightly different geochemical consequences.

The analysis largely follows that of Richardson et al. [1996] with two important modi-
fications. Instead of assuming a constant bulk viscosity we assume a power law behaviour
with porosity (this turns out to be of particular importance when considering waves of
depression). We also do not assume that the porosities are small, as this does not sig-
nificantly complicate the analysis. A list of the notation used is given at the end of this
chapter.

7.2 Compaction equations

Consider an axisymmetric conduit of radius a(z, t). The conduit is pure melt of viscosity
µ and density ρf . Outside the conduit is a deformable porous matrix. In this section we
study the dynamics of the deformable porous matrix in order to find expressions for the
pressure and leakage flux across the conduit wall. In the following section the dynamics
inside the conduit is studied using these expressions.

The behaviour of melt and matrix outside the conduit is described by the compaction
equations [McKenzie, 1984, Spiegelman, 1993]. In their most general form with no melting
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the compaction equations are

∂ (ρfφ)
∂t

+∇ · (ρfφv) = 0, (7.1)

∂ (ρs (1− φ))
∂t

+∇ · (ρs (1− φ)V) = 0, (7.2)

φ (v −V) = −
kφ
µ
∇P, (7.3)

∇ · σ = ∇P + (1− φ) ∆ρgẑ, (7.4)
σ = 2ηφE +

(
ζφ − 2

3ηφ
)
CI, (7.5)

E = 1
2

(
∇V + (∇V)T

)
, (7.6)

C = ∇ ·V. (7.7)

(7.1) and (7.2) describe conservation of mass for melt and matrix, where ρf , ρs and v, V are
the densities and velocities of melt and matrix respectively. φ is the porosity, the volume
fraction of melt. (7.3) is the appropriate form of Darcy’s law, where kφ is the permeability,
and P is the piezometric pressure (the pressure in excess of hydrostatic pressure for the
melt P = p+ ρfgz). (7.4) is the momentum equation where ∆ρ = ρs − ρf . Finally (7.5)
gives the constitutive law for the behaviour of the matrix where (7.6) and (7.7) define the
matrix rate of strain tensor E and the compaction rate C respectively. To complete this
set of equations constitutive laws are needed expressing the dependence on porosity φ of
the matrix shear viscosity ηφ, the matrix bulk viscosity ζφ, and the permeability kφ. We
will assume ηφ = η is constant, and that

kφ = k0

(
φ

φ0

)n
, ζφ + 4

3η =
(
ζ0 + 4

3η
)( φ

φ0

)−m
, (7.8)

where k0, ζ0 and φ0 are the respective constant background state values. Typical values
of the exponents are n = 3 and m = 1. Assuming further that ρf , ρs and µ are constants,
the compaction equations then simplify to

∇P = − µ

kφ
q, (7.9)

∇ · q = −C, (7.10)
∇ ·V = C, (7.11)

∂φ

∂t
+ V · ∇φ = (1− φ) C, (7.12)

∇P = −η∇× ω +∇
(
ζφ + 4

3η
)
C − (1− φ) ∆ρgẑ, (7.13)

where the matrix vorticity ω = ∇×V and the Darcy flux q = φ (v −V).
Far from the conduit we assume the background steady state solution of uniform

buoyancy driven flow φ = φ0, V = 0, q = ∆ρgk0 (1− φ0) ẑ/µ, C = 0, P = P∞ ≡
− (1− φ0) ∆ρgz. To simply further, we assume that the compaction driven flow is purely
radial (this will turn out to be a long wavelength assumption). The validity of this approxi-
mation has to be checked after the analysis. Letting P = P−P∞ = p+ ρ̄0gz (the pressure
in excess of hydrostatic pressure for the background melt and matrix, which has mean
density ρ̄0 = φ0ρf + (1− φ0) ρs) the above equations then reduce to the 1-D compaction
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equations

∂P

∂r
= − µ

kφ
qr, (7.14)

1
r

∂

∂r
(rqr) = −C, (7.15)

1
r

∂

∂r
(rVr) = C, (7.16)

∂φ

∂t
+ Vr

∂φ

∂r
= (1− φ) C, (7.17)

P =
(
ζφ + 4

3η
)
C, (7.18)

where qr and Vr are the radial components of the Darcy flux q and matrix velocity V
respectively.

On the conduit wall the matrix velocity must match the expansion rate of the conduit.
This gives the boundary condition

Vr =
∂a

∂t
, (r = a). (7.19)

The melt pressure must balance the matrix stress on the conduit wall, which from (7.5)
gives

0 = 2η
∂Vr
∂r

+ (ζφ − 2
3η)C, (r = a). (7.20)

Using (7.16) and (7.18) this can be simplified to

P =
2η
a

∂a

∂t
, (r = a). (7.21)

The final boundary condition is to match the background state far from the conduit

P → 0, (r →∞). (7.22)

Along with initial conditions for φ, the three boundary conditions (7.19), (7.21) and (7.22)
and the governing equations (7.14-7.18) completely describe the dynamics outside the
conduit.

7.2.1 Non-dimensional equations

Introduce the non-dimensional parameters

δ20 =
k0

(
ζ0 + 4

3η
)

µa2
0

, B0 =
η

ζ0 + 4
3η
. (7.23)

δ0 is the compaction length of the background state non-dimensionalised on the undis-
turbed conduit radius a0. B0 is a ratio of matrix viscosities for the background state.
Note that 0 ≤ B0 ≤ 3/4. Introduce scaled variables a = a0a

′, r = a0r
′, P = P0P

′,
Vr = V0V

′
r , qr = V0q

′
r, C = C0C′, and φ = φ0φ

′ where

P0 =
ζ0 + 4

3η

a0

∂a

∂t
, C0 =

1
a0

∂a

∂t
, V0 =

∂a

∂t
. (7.24)
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With this rescaling the problem in the original variables (r, t) becomes one in the new
variables (r′, a′) with governing equations

∂P ′

∂r′
= − 1

δ20
φ′
−n
q′r, (7.25)

1
r′

∂

∂r′
(
r′q′r

)
= −C′, (7.26)

1
r′

∂

∂r′
(
r′V ′

r

)
= C′, (7.27)

∂φ′

∂a′
+ V ′

r

∂φ′

∂r′
=

1− φ0φ
′

φ0
C′, (7.28)

C′ = P ′φ′
m
, (7.29)

and boundary and initial conditions

V ′
r = 1, P ′ =

2B0

a′
, (r′ = a′), (7.30)

P ′ → 0 (r′ →∞), (7.31)
φ′ = 1 (a′ = 1). (7.32)

These equations are straightforward to solve numerically. (7.28) can be marched forward
or backward from the initial condition (7.32) at a′ = 1 (the undisturbed radius) where at
each a′-step the two point boundary value problem specified by the remaining equations
is solved.

Of particular interest for the next section is the leakage flux of melt from the conduit
F (a) = qr(r = a). Letting f(a′) = q′r(r

′ = a′) be found by the solution of the above, we
have that

F (a) =
∂a

∂t
f (a/a0) . (7.33)

Note that the form of the non-dimensional function f(a′) depends on the five non-dimensional
parameters δ0, B0, φ0, n and m.

7.2.2 Porosity on the conduit wall

It is interesting to note that we can directly find the porosity of the matrix on the conduit
wall using (7.28), (7.29) and (7.30). Let φ′i(a) = φ′(a, a) be the scaled porosity on the
wall, and φi = φ0φ

′
i the corresponding unscaled porosity. Then

dφ′i
da′

=
2B0

a′
1− φ0φ

′
i

φ0
φ′i
m
. (7.34)

For m = 0 (as used by Richardson et al. [1996]) this can be integrated to give

φ′i(a) = 1 +
1− φ0

φ0

(
1− a′

−2B0
)
. (7.35)

This has the problem that φi becomes negative as a′ → 0, which is unphysical: it implies
that the matrix continues to compact even when all the melt has been squeezed out.
Richardson et al. [1996] only considered waves of elevation, where a′ ≥ 1 and so this did
not pose a problem. However, for a wave of depression a′ ≤ 1 and this will be important.
For m ≥ 1 this problem is avoided, e.g. m = 1 gives

φ′i(a) =
(
φ0 + (1− φ0) a′

−2B0/φ0
)−1

. (7.36)

This is well behaved both as a′ → 0 and as a′ →∞ with φi → 0 and φi → 1 respectively.
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7.3 Conduit equations

Inside the conduit the behaviour is governed by the following three equations

Q = −πa
4

8µ
∂P
∂z

, (7.37)

∂Q

∂z
= −2πa

(
∂a

∂t
+ F (a)

)
= −2πa

∂a

∂t
(1 + f (a/a0)) , (7.38)

P = P (r = a) + P∞ =
2η
a

∂a

∂t
− (1− φ0) ∆ρgz. (7.39)

(7.37) is Poiseuille’s law for flow in a pipe. (7.38) expresses conservation of mass: the flux
in the conduit changes due to changes in the conduit radius and through leakage into the
pores of the matrix. Finally (7.39) gives that the pressure in the conduit must match that
on the conduit walls, using the boundary condition (7.21).

It is more convenient to work with the conduit area rather than the conduit radius.
Let b = πa2 be the conduit area. The conduit equations then become

Q = − b2

8πµ
∂P
∂z

, (7.40)

∂Q

∂z
= −∂b

∂t

(
1 + f

((
b/πa2

0

)1/2))
, (7.41)

P =
η

b

∂b

∂t
− (1− φ0) ∆ρgz. (7.42)

7.3.1 Non-dimensional equations

Let z = z0z
′, t = t0t

′, b = πa2
0b
′, Q = Q0Q

′, P = P0P ′ where

z0 = a0

(
η

8 (1 + f(1))µ

)1/2

, (7.43)

t0 =
(8 (1 + f(1)) ηµ)1/2

a0(1− φ0)∆ρg
, (7.44)

c0 =
z0
t0

=
a2

0 (1− φ0) ∆ρg
8µ (1 + f(1))

, (7.45)

Q0 =
πa4

0 (1− φ0) ∆ρg
8µ

, (7.46)

P0 = (1− φ0) ∆ρgz0. (7.47)

Note that this is a different non-dimensionalisation to that used by Richardson et al.
[1996], but allows for easier comparison with the standard conduit equations. The conduit
equations reduce to

Q′ = −b′2∂P
′

∂z′
, (7.48)

∂Q′

∂z′
= −h(b′)∂b

′

∂t′
, (7.49)

P ′ = 1
b′
∂b′

∂t′
− z′, (7.50)

where

h(b′) =
1 + f

(
b′1/2

)
1 + f(1)

. (7.51)
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Note that h(1) = 1. These equations can be combined to give a single nonlinear wave
equation for the non-dimensional conduit area

h(b′)
∂b′

∂t′
+

∂

∂z′

(
b′2
(

1− ∂

∂z′

(
1
b′
∂b′

∂t′

)))
= 0. (7.52)

If h(b′) ≡ 1 then this is the standard conduit solitary wave equation [Helfrich and White-
head, 1990, Olson and Christensen, 1986, Whitehead and Helfrich, 1986]. This same
equation also governs porosity solitary waves (‘magmons’) and has been studied exten-
sively by many previous authors [Barcilon and Lovera, 1989, Barcilon and Richter, 1986,
Richter and McKenzie, 1984, Scott and Stevenson, 1984, 1986, Scott et al., 1986]. Our
interest is in how the form of h(b′) changes the problem. From now on we will drop the
primes and unless otherwise stated are working with non-dimensional variables.

7.4 Solitary waves

The governing equation (7.52) can be written as

bbzzt − bzzbt − h(b)bt − 2bbz = 0. (7.53)

This equation admits small amplitude linear wave solutions b = 1+εei(kx−ωt), ε� 1 which
are dispersive with dispersion relationship

ω =
2k

1 + k2
. (7.54)

Note that long wavelength waves (k � 1) have phase and group velocity equal to 2.
Of greater interest is that (7.53) also admits nonlinear solitary wave solutions. We

seek solutions of the form b(z, t) = b(ξ) where ξ = z − ct. Then (7.53) becomes

bbξξξ − bξξbξ − h(b)bξ +
2
c
bbξ = 0. (7.55)

This can be integrated once to give

bbξξ − b2ξ −H(b) +
1
c
b2 = M, (7.56)

and integrated a second time to give

b2ξ
2b2

− G(b)
2b2

+
1
c

log b = −M

2b2
+N, (7.57)

where

H(b) =
∫ b

1
h(β) dβ, G(b) = 2b2

∫ b

1
β−3H(β) dβ. (7.58)

Note that for the standard conduit equations h(b) = 1, H(b) = b− 1 and G(b) = (b− 1)2.
The integration constants M and N depend on boundary conditions. We impose the
standard solitary wave boundary conditions

b = 1, bξ = 0, bξξ = 0, (ξ → ±∞), (7.59)
b = B, bξ = 0, (ξ = 0). (7.60)
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Here B is the wave amplitude. The boundary condition (7.59) implies M = c−1, N =
(2c)−1. (7.57) then becomes

b2ξ = G(b)− 1
c

(
2b2 log b− b2 + 1

)
. (7.61)

(7.60) then determines the dispersion relation of the solitary wave, relating wave speed to
wave amplitude as

c = c(B) =
2B2 logB −B2 + 1

G(B)
. (7.62)

In terms of the dispersion relationship (7.62), (7.61) can be rewritten as

b2ξ =
(
2b2 log b− b2 + 1

)( 1
c(b)

− 1
c(B)

)
. (7.63)

This equation can be integrated numerically to find the mode shape b(ξ). In order for
solutions of this form to exist b2ξ ≥ 0. Since

(
2b2 log b− b2 + 1

)
≥ 0 for b ≥ 0, this implies

that in terms of the dispersion relationship we require c(B) ≥ c(b) for all values of b on
the wave. Hence from a plot of the dispersion relationship the existence of solitary wave
solutions of a given amplitude can readily be determined.

7.5 Streamfunction

The method of Helfrich and Whitehead [1990] can be used to find the streamfunction
inside the conduit. Denote the components of velocity inside the channel by ur, uz. We
are assuming Poiseuille flow in the conduit, which in dimensional form is

uz =
2Q
πa4

(
a2 − r2

)
. (7.64)

Non-dimensionalising uz = u′zc0 using (7.45), and noting that for the solitary wave Q =
1 + cH(b) yields the non-dimensional equation

uz =
2
b2

(1 + f(1)) (1 + cH(b))
(
b− r2

)
. (7.65)

Introduce the streamfunction ψ in the frame moving with the wave as

ur = −1
r

∂ψ

∂ξ
, uz − c =

1
r

∂ψ

∂r
. (7.66)

The Poiseuille velocity field (7.65) can then be integrated to find the streamfunction as

ψ =
2
b2

(1 + f(1)) (1 + cH(b))
(
br2

2
− r4

4

)
− cr2

2
. (7.67)

We are particularly interested in the stagnation points of this flow. Since ur = −bξψb/r,
then the radial component of velocity is zero when bξ = 0, in particular at b = 1 and
b = B. Stagnation points will occur when we also have uz = c. Thus at

b = 1, r2 = 1− c

2 (1 + f(1))
, (7.68)

b = B, r2 = B − cB2

2 (1 + f(1)) (1 + cH(B))
, (7.69)

there will be stagnation points, where these roots exist. There are possibly other stagnation
points in the flow where ψb = 0 and uz = c. Of particular interest is the stagnation point
(7.69). If this stagnation point is a centre there will be a region of closed streamlines, and
thus a region of trapped melt will be transported along with the wave. If the stagnation
point is a saddle there will be no such region of trapped melt.
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7.6 Small amplitude solitary waves

The equations of the previous sections can be used to numerically calculate the shape and
streamline pattern for solitary waves of given amplitude. Further insight can be gained
by looking at the particular limit of small amplitude solitary waves B = 1 + ε, ε� 1. By
Taylor expanding the dispersion relationship (7.62) we find

c = c(1 + ε) = 2 +
2
3
(
1− h′(1)

)
ε+O(ε2). (7.70)

Note that the condition for existence of solutions c(B) ≥ c(b) implies that for a small
amplitude wave of elevation (ε > 0) we require h′(1) < 1 whereas for a wave of depression
(ε < 0) we require h′(1) > 1. Note also that in terms of f(a)

h′(1) =
f ′(1)

2 (1 + f (1))
. (7.71)

Furthermore, for small amplitudes the governing equation (7.53) can be approximated by
the Korteweg-deVries equation [Whitehead and Helfrich, 1986]. Letting b = 1+εb1+ε2b2+
..., and introducing stretched time and length scales as T = |ε|3/2t, Z = |ε|1/2(z− 2t) then
the leading order governing equation is

b1T + 2(1− h′(1)) sgn(ε)b1b1Z + 2b1ZZZ = 0, (7.72)

which is of KdV form. We seek solitary wave solutions with b1(Z, T ) = b1(χ) where
χ = Z − CT . The boundary conditions are

b1 = 0, b1χ = 0, b1χχ = 0, (χ→ ±∞), (7.73)
b1 = 1, b1χ = 0, (χ = 0), (7.74)

which imply the familiar sech2 soliton solution

C =
2
3
(
1− h′(1)

)
sgn(ε), (7.75)

b1 = sech2

(
1
2

(
(1− h′(1)) sgn(ε)

3

)1/2

χ

)
. (7.76)

Hence the approximate solution for b is

b ∼ 1 + ε sech2

(
1
2

(
(1− h′(1)) ε

3

)1/2

(z − ct)

)
. (7.77)

The stagnation points found in (7.68) and (7.69) are located to O (ε) at

b = 1, r2 =
f(1)

1 + f(1)
+

h′(1)− 1
3 (1 + f(1))

ε+O
(
ε2
)
, (7.78)

b = 1 + ε, r2 =
f(1)

1 + f(1)
+
(

1 +
h′(1)− 1

3 (1 + f(1))

)
ε+O

(
ε2
)
. (7.79)

For f(1) > 0 and ε sufficiently small, these stagnation points always exist. Furthermore,
the character of the stagnation points can be classified in terms of the determinant D =
ψξξψrr −ψ2

ξr. If D > 0 then the stagnation point is a centre, whereas if D < 0 then it is a
saddle. When bξ = 0, D = bξξψbψrr. For small amplitude waves D = −4bξξ(f(1))2+O (ε).
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Now for a wave of elevation, ε > 0 and bξξ < 0 at b = B, and thus the stagnation point
there is a centre and there is a region of trapped melt. However, for a wave of depression,
ε < 0 and bξξ > 0 at b = B, and thus the stagnation point is a saddle and there is no
trapped melt.

It is important to note that in practice the values of ε for which the above approxima-
tions are reasonable may be quite small. For example, it will depend on how large higher
derivatives of h(b) are. However, for given values of the five non-dimensional parameters
a small enough ε can always be found so that the approximation is good. While this small
amplitude analysis may not always be a good approximation in practice, it nevertheless
provides good insight into the features of the solution we expect to see.

7.6.1 Series expansion to find f(1) and h′(1)

To calculate the key values f(1) and h′(1) we return to the 1-D compaction equations
outside the conduit. Let a = 1 + ε and seek a solution of the form

φ(r, a) = 1 +εφ1(r) + ε2φ2(r)+ · · · , (7.80)

P (r, a) = P0(r)+εP1(r) + ε2P2(r)+ · · · , (7.81)

qr(r, a) = q0(r) +εq1(r) + ε2q2(r) + · · · , (7.82)

Vr(r, a) = V0(r)+εV1(r) + ε2V2(r)+ · · · . (7.83)

Note that since f(a) = qr(a, a) we have that

f(1) = qr(1, 1) = q0(1), (7.84)

f ′(1) =
dqr(a, a)

da

∣∣∣∣
a=1

= q′0(1) + q1(1), (7.85)

h′(1) =
q′0(1) + q1(1)
2 (1 + q0(1))

. (7.86)

From the governing equations (7.25-7.28) the leading order problem is

dP0

dr
+

1
δ20
q0 = 0, (7.87)

1
r

d
dr

(rq0) + P0 = 0, (7.88)

1
r

d
dr

(rV0)− P0 = 0, (7.89)

φ1 =
1− φ0

φ0
P0, (7.90)

with boundary conditions from (7.30) and (7.31) as

V0(1) = 1, P0(1) = 2B0, P0 → 0 as r →∞. (7.91)

This has an explicit solution in terms of the modified Bessel function of the second kind
as

P0(r) = 2B0
K0(r/δ0)
K0(1/δ0)

, (7.92)

q0(r) =
2B0K1(r/δ0)

(1/δ0)K0(1/δ0)
, (7.93)

V0(r) =
1
r

+
2B0

(1/δ0)K0(1/δ0)

(
K1(1/δ0)

r
−K1(r/δ0)

)
. (7.94)
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Hence
f(1) = q0(1) =

2B0K1(1/δ0)
(1/δ0)K0(1/δ0)

. (7.95)

Note that f(1) ≥ 0, and that f(1) = 0 only if B0 = 0 or δ0 = 0 (the impermeable limit).
Note also that f(1) ∼ 2B0δ0 for δ0 � 1 and that f(1) ∼ 2B0δ

2
0/ log δ0 for δ0 � 1.

To find q1 we need to solve the next order problem

dP1

dr
+

1
δ20
q1 =

n(1− φ0)
δ20φ0

q0P0, (7.96)

1
r

d
dr

(rq1) + P1 = −m(1− φ0)
φ0

P 2
0 , (7.97)

with boundary conditions

P1(1) = −P ′0(1)− 2B0, P1 → 0 as r →∞. (7.98)

This problem can be solved numerically, and h′(1) calculated. While an explicit expression
for h′(1) has not been found, asymptotic expressions can be found. For δ0 � 1, h′(1) is
given asymptotically by

h′(1) ∼
(
−B0 +

2
3
B2

0(n+m)
1− φ0

φ0

)
δ0 +O

(
δ20
)
. (7.99)

For δ0 � 1 there is the corresponding expression

h′(1) ∼ −1 +
nB0

2
1− φ0

φ0
+O

(
1

log δ0

)
, (7.100)

although this is not as useful in practice due to the slow decaying 1/log δ0 terms.
Of particular interest is finding the parameter values for which h′(1) = 1. These divide

parameter space into those regions which allow small amplitude waves of elevation and
those which allow small amplitude waves of depression. A calculation of this line for
particular parameter values is shown in Figures 7.1 and 7.2.

7.7 Results

We now turn to numerical solutions of the equations. Figures 7.3 and 7.4 plot the disper-
sion relationship (7.62) relating wave speed to wave amplitude for some example parameter
values. These dispersion curves demonstrate that in some parameter regimes waves of el-
evation are admissible solutions whereas in other regimes waves of depression are.

Figure 7.5 shows streamline plots inside the conduit for different parameter values.
These are plotted in the frame moving with the wave and so are also particle paths. In
each case the background matrix bulk viscosity is assumed to be the same as the shear
viscosity, namely B0 = 3/7. The key difference between the figures on the left on those
on the right is the value of the background porosity: φ0 = 0.01 for the figures on the left,
φ0 = 0.3 for those on the right. These differences in porosity lead to waves of depression
(here A = 0.95) being possible in the first case, and waves of elevation (here A = 1.05)
possible in the second.

A number of the features seen in the streamline plots are as expected from the small
amplitude analysis of the previous section. Figure 7.1 shows that we expect small ampli-
tude waves of elevation and depression in the parameter regimes we see them. Moreover
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Figure 7.1: Critical line where h′(1) = 1 for n = 3, m = 1 and B0 = 3/7. Above the solid
line h′(1) < 1 and there are small amplitude solitary waves of elevation. Below the solid
line h′(1) > 1 and there are small amplitude solitary waves of depression. The dotted line
shows the small δ0 asymptotic result given by (7.99).
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Figure 7.2: As Figure 7.1 showing the critical lines where h′(1) = 1 for n = 3, m = 1, but
for different values of B0.

we expect the waves of elevation to have a centre stagnation point on ξ = 0, and the
waves of depression to have a saddle stagnation point on ξ = 0. As δ0 is increased the
stagnation point at ξ = 0 moves towards the conduit wall as expected from (7.68) and
(7.69), although note that it never moves outside the conduit. It is also worth noting that
the small amplitude analysis is a good approximation for the waves of elevation, but less
so for the waves of depression. The reason for this is that h(b) grows much more rapidly
for the waves of depression due to the large changes in permeability.

Figure 7.6 shows the corresponding contour plots of porosity outside the conduit. The
porosity profiles for the waves of depression are quite different from those of elevation.
Notably for the waves of depression there is a large central region where the porosity
varies very little with ξ. This is due to the fact that as the matrix compacts it becomes
more difficult to extract further melt as the bulk viscosity of the matrix increases. As δ0
is increased there is remarkably little qualitative change in the porosity profiles, although
the changes in porosity do extend further into the matrix as expected.

Of particular interest is the behaviour for δ0 � 1, since it is thought that in the mantle
regime the conduits will have radius much smaller than the compaction length. Figure 7.7
plots streamlines inside the conduit and melt flow lines outside the conduit for δ0 = 100.
The pictures remain qualitatively similar for larger values of δ0. Note that the stagnation
points lie very close to the edge of the conduit. Figure 7.8 shows the corresponding porosity
profiles.

The flows shown in Figure 7.7 can be divided into three distinct regions. First is the
fast flowing inner region in the centre of the conduit which has no interaction with the
surrounding matrix. Second is the middle region where melt flows between the conduit
and the matrix. Third is the slow flowing outer region which is solely in the matrix.
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Figure 7.3: Plot of the dispersion relationship (7.62), where φ0 = 0.3, δ0 = 1.0, B0 = 3/7,
n = 3 and m = 1. Here c is plotted as a function of A the non-dimensional conduit radius
rather than the non-dimensional conduit area B = A2. The condition c(B) ≥ c(b) for all
values of b on the wave implies that waves of elevation (on this plot 1.0 < A < 2.0) are
admissible solutions, but waves of depression (on this plot 0.0 < A < 1.0) are not.
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Figure 7.4: Plot of the dispersion relationship (7.62) as in Figure 7.3, except now φ0 = 0.01.
The condition c(B) ≥ c(b) for all values of b on the wave now implies that waves of
depression (on this plot 0.95 < A < 1.0) are admissible solutions, but waves of elevation
(on this plot 1.0 < A < 1.05) are not.
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Figure 7.5: Streamlines inside the conduit in the frame moving with the wave. The thicker
lines show the outline of each wave. Note that the r (horizontal) and ξ (vertical) axes are
non-dimensionalised on a0 and z0 respectively. In all cases n = 3, m = 1, and B0 = 3/7.
a), b) and c) show waves of depression where φ0 = 0.01 and amplitude A = 0.95. d), e)
and f) show waves of elevation where φ0 = 0.3 and amplitude A = 1.05. a) and d) have
δ0 = 0.333, b) and e) have δ0 = 1.0, and c) and f) have δ0 = 3.33. (cf. Richardson et al.
[1996] Figure 3.)
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Figure 7.6: Unscaled porosity profiles outside the conduit for parameter values given
in Figure 7.5. Diagrams on the left have a background porosity φ0 = 0.01, those on
the right φ0 = 0.3. Note that waves of depression are surrounded by a region of lower
porosity relative to the background value, whereas waves of elevation have a region of
higher porosity.
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Figure 7.7: Streamlines inside the conduit (left diagrams) and melt flow lines outside the
conduit (right diagrams) in the frame moving with the wave for n = 3, m = 1, B0 = 3/7,
and δ0 = 100. The melt flow lines outside the conduit are found by directly following the
velocity field v. The top diagrams show a wave of depression with φ0 = 0.01, A = 0.95,
and the bottom diagrams a wave of elevation with φ0 = 0.3, A = 1.05. (cf. Richardson
et al. [1996] Figure 4.)

The important difference between the waves of elevation and depression only occurs in
this second region. For a wave of elevation there are closed loops with melt constantly
circulating between the conduit and the matrix, and thus a region of conserved fluid
travelling with the wave. There are no such loops for a wave of depression, and each flow
line crosses the boundary of the conduit only once.

Richardson et al. [1996] did not find solitary waves of depression, despite discussing
mantle parameter values n = 3, m = 0, B0 = 3/7, φ0 = 0.01, δ0 � 1 in which the present
analysis shows are the solutions. Two reasons can be suggested for this. First they found a
linear solution whereby compaction was allowed to take place, but the variation in porosity
that this generates was ignored. This is essentially the same as setting n = m = 0, and
the linear solution takes on a similar form to the solution of the leading order problem
(7.92-7.94). In particular, this linear solution has h′(1) ≤ 0, and only allows waves of
elevation. However, solitary waves are fundamentally a nonlinear phenomenon, and even
for a solitary wave of infinitesimal amplitude the solution depends crucially on the details
of this nonlinearity. The linear approximation would be fine were we just considering
linear waves (7.54), but for the nonlinear solitary waves it is certainly not.
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Figure 7.8: Unscaled porosity profiles for the parameter values given in Figure 7.7. The
top diagram has background porosity φ0 = 0.01, the bottom diagram has φ0 = 0.3. (cf.
Richardson et al. [1996] Figure 6.)
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Secondly Richardson et al. [1996] claimed to have solved the full problem including
this nonlinearity numerically, and yet found very similar results to their linear solution,
and did not find the waves of depression. The reason for this is likely to be a belief that
the porosity φ should simply scale with φ0 as it does for the similar problem of porosity
solitary waves. We assume this to be the case since the numerical value of φ0 is not
mentioned until near the end of the paper, and their porosity profiles (their Figure 6) are
claimed to be contoured in levels of φ0. In fact, as this analysis has shown, there is no
such simple scaling and the problem depends nonlinearly on φ0. Since the problem was
assumed to scale with φ0 it is likely that the numerical simulations simply did not include
this as a parameter, effectively setting its value to 1. For large values of the background
porosity φ0 we are in the regime where only waves of elevation are possible (Figure 7.1)
which explains why these were the only waves they found. This is seen in the φ0 = 0.3
plots, which are very similar to those in Richardson et al. [1996]. φ0 = 0.3 is rather high
to be observed in practice: at this porosity the matrix will start to disaggregate, and the
model will break down. It is possible to have more realistic background porosities and
still get waves of elevation, but only if B0 is much smaller (Figure 7.2). However, this
will produce waves of elevation that are more similar to the impermeable case with the
circulating region lying further inside the conduit.

It is important to note that this transition from waves of elevation to waves of depres-
sion is found in many other solitary wave problems, including Russell’s original problem of
solitary waves in a channel. By increasing the surface tension of the fluid in the channel,
solitary waves of depression rather than elevation can be found [Miles, 1980].

7.8 Conclusions

There are a number of pieces of analysis that should still be done. Firstly, it is important
to check the conditions under which the present analysis holds, and particularly the long
wavelength approximation. This approximation is justified provided the non-dimensional
parameter µ/η is sufficiently small, but it is important to determine how sufficiently small
in terms of the other non-dimensional parameters. This isn’t quite as straightforward as
proposed by Richardson et al. [1996] as in general it depends on the amplitude of the
wave and some of the nonlinear details, for example the wavelength of small amplitude
waves depends on h′(1) (see (7.77)). However, (7.77) also shows that for sufficiently
small amplitude waves, the wavelength of the waves will be sufficiently long to justify the
approximation. As Richardson et al. [1996] mention, an interesting problem for further
study would be where this approximation breaks down. Here we expect the conduit to
become a less important feature, and the waves to become more like the porosity solitary
waves (‘magmons’).

There may be some useful analysis of large amplitude waves that can be done. It is
interesting to note that the dispersion relation comes to a peak for small values of a in some
parameter regimes, leading to a minimum amplitude for the solitary wave. Small values of
a are fairly difficult to tackle numerically because the very small porosities involved cause
the numerical scheme to fail. It may be possible to analyse this situation more closely by
considering similarity solutions.

The time dependent problem is also worth further study. For the standard conduit
equations, an initial disturbance in the channel breaks up into a train of solitary waves, and
it will be interesting to see if this also occurs in the modified problem. Certainly for small
amplitude disturbances we expect a train of solitary waves, since the governing equations
can be approximated by the KdV equations. However, for larger amplitude disturbances



CHAPTER 7. CONDUIT WAVES 94

the behaviour may well be different, and it should be straightforward to develop numerical
simulations to test this.

It is not known whether the open conduits that have been studied here exist in the
mantle. An alternative is localised vertical regions of high porosity. These would be
expected to behave similarly, but without doing the full analysis of this situation we do
not know in which parameter regimes we expect waves of depression or elevation. The
relevant important non-dimensional parameter may be the relative porosity of the high
porosity region to the low porosity region, rather than simply the background porosity φ0

as it is for the pure melt conduits. In which case, we might expect waves of elevation to
be more likely if the porosity contrast is less.

The main geochemical result of Richardson et al. [1996] is unchanged by this new
possibility of solitary waves of depression. It is still the case that there is fast flowing
central region of the conduit which will not interact greatly with the surrounding matrix.
This allows a radioactive disequilibrium signal to propagate unaffected to the Earth’s
surface in a short time, which we know from the observations must be the case. Of
secondary importance is the trapped region of melt which travels with the wave, which it
now appears may not exist.

The study of the dynamics of melt conduits perhaps misses the more important physical
questions: how does melt begin to separate from its residue, and what are the processes
that lead to the network of channels? Here it is necessary to investigate physics on the
grain scale, which are averaged out when considering the compaction equations.

Notation

A non-dimensional wave amplitude (radius) -
a conduit radius m
a0 steady conduit radius m
B0 background matrix viscosity ratio (7.23) -
B non-dimensional wave amplitude (area) = A2 -
b conduit area m2

b0 steady conduit area m2

C matrix compaction rate = ∇ ·V s−1

C0 compaction scale (7.24) s−1

c wave velocity m s−1

c0 velocity scale (7.45) m s−1

E matrix rate of strain tensor (7.6) s−1

g acceleration due to gravity m s−2

k linear wave number m−1

kφ permeability m2

k0 background permeability m2

n permeability exponent (7.8) -
m matrix bulk viscosity exponent (7.8) -
P piezometric pressure = p+ ρfgz Pa
P0 piezometric pressure scale (7.47) Pa
P excess pressure = p+ ρ̄0gz Pa
P0 excess pressure scale (7.24) Pa
Q conduit volume flux m3 s−1

Q0 volume flux scale (7.46) m3 s−1

q Darcy flux = φ (v −V) m s−1
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r radius m
t time s
t0 time scale (7.44) s
ur conduit radial velocity m s−1

uz conduit vertical velocity m s−1

V matrix velocity m s−1

V0 matrix velocity scale (7.24) m s−1

v melt velocity m s−1

z vertical co-ordinate m
z0 vertical length scale (7.43) m
∆ρ density difference = ρs − ρf kgm−3

δ0 compaction length / a0 (7.23) -
ζφ matrix bulk viscosity Pa s
ζ0 background matrix bulk viscosity Pa s
η matrix shear viscosity Pa s
µ melt viscosity Pa s
ξ moving frame co-ordinate = z − ct m
ρf melt density kgm−3

ρs matrix density kgm−3

ρ̄0 mean background density = φ0ρf + (1− φ0)ρs kgm−3

σ matrix stress tensor Pa
φ porosity -
φ0 background porosity -
ω matrix vorticity = ∇×V s−1

ω linear wave frequency s−1



Chapter 8

Conclusions

This thesis has successfully tackled a few narrow problems associated with the study
of the Earth’s mantle. The work has been driven by the geochemical, geophysical and
geological observations, and in particular by radiogenic isotope geochemistry. The goal has
been to better understand the physical processes of melting, melt migration, and mantle
convection. Key to this has been the construction of highly idealised and analytically
tractable models to explore the essential physical processes involved without including
unnecessary detail.

Statistical modelling has formed the core of the thesis, and has proved a powerful tool
for understanding the isotopic heterogeneity of mid-ocean ridge basalt. The observations
have been used to constrain aspects of mantle convection and melt generation. For ex-
ample, a 0.5 Ga time scale for remelting was inferred from the observed 2.0 Ga lead-lead
pseudo-isochron, and small melt fractions were shown to be necessary to generate the ob-
served heterogeneity. The statistical box model has led to a new interpretation of mantle
pseudo-isochrons in terms of age distributions, and has also helped unify the different
approaches to modelling mantle geochemistry, from simple geochemical reservoir models
to complex geodynamic convection simulations. There are many possibilities for future
work based on this statistical approach.

Continuum mechanics formed the basis for the last part of the thesis, and in particular
the fluid dynamics of two phase flow was studied to model melt migration in the partially
molten regions of the mantle. Knowledge of fluid dynamics is vital to understanding the
physical processes that occur in the Earth. Indeed, much of our current understanding
of mantle convection, from the fact the convection actually occurs, to the existence of
plumes, comes from simple fluid dynamical considerations.

While the problems focused on in this thesis have been rather narrow and specialised,
the techniques and methods used have much wider application. Isotope geochemistry
pervades all modern Earth science. Indeed, as was remarked by Karl K. Turekian, “No
field is immune to the invasion of isotope geochemistry”. While the geochemistry of the
solid earth has been the focus of this thesis, similar geochemical arguments are exploited
in a diverse range of disciplines such as cosmology, oceanography and climate science.
A number of these disciplines are, like mantle geochemistry, observation-rich and model-
poor, and there is plenty of scope for some good applied mathematics to be done. The
powerful techniques from continuum mechanics and statistics can be brought to bear on so
many different problems, that no field is immune to the invasion of applied mathematics.
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Appendix A

Data sources

Table A.1 gives the raw data from which some of the data in Table 2.1 was calculated.
The weighted partition coefficients P and D given in Table 2.1 are a linear combination
of 60% the garnet and 40% the spinel coefficients given in Table A.1.

The MORB data set was a compilation by A. Stracke from the work of Bach et al.
[1994], Chauvel and Blichert-Toft [2001], Dosso et al. [1988, 1991, 1993, 1999], Douglass
et al. [1999], Fontignie and Schilling [1996], Frey et al. [1993], Hamelin and Allègre [1985],
Hamelin et al. [1986], Hanan et al. [1986], Hegner and Tatsumoto [1987], Ito et al. [1987],
Kempton et al. [2000], Klein et al. [1988, 1991], MacDougall and Lugmair [1986], Mahoney
et al. [1989, 1994, 2002], Mertz and Haase [1997], Mertz et al. [1991], Michard et al. [1986],
Newsom et al. [1986], Price et al. [1986], Pyle et al. [1992], Rehkämper and Hofmann
[1997], Salters [1996], Salters and Hart [1991], Salters and White [1998], Schilling et al.
[1994, 1999], Shirey et al. [1987], Sims et al. [2002], Vlastelic et al. [1999], Wendt et al.
[1999], White et al. [1987], Yu et al. [1997].
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Table A.1: Elemental concentrations, garnet/spinel partition coefficients and isotopic
abundances.

parent isotope p 147Sm 87Rb 176Lu 232Th 238U 235U
daughter isotope d 143Nd 87Sr 176Hf 208Pb 206Pb 207Pb
reference isotope d′ 144Nd 86Sr 177Hf 204Pb 204Pb 204Pb

parent element conc. /ppma 0.272 0.0930 0.0550 0.00420 0.00170 0.00170
daughter element conc. /ppma 0.677 14.0 0.237 0.0150 0.0150 0.0150

par./dau. elemental ratioa 0.402 0.00664 0.232 0.280 0.113 0.113
p isotope abundance /%b 15.0 27.84 2.60 100.0 99.27 0.72
d′ isotope abundance /%b 23.8 9.86 18.6 1.40 1.40 1.40

parent Dspinel
a 0.03477 0.00039 0.05077 0.00016 0.00012 0.00012

parent Pspinel
a 0.10634 0.00056 0.12193 0.00052 0.00036 0.00036

parent Dgarnet
a 0.04760 0.00039 0.66733 0.00028 0.00118 0.00118

parent Pgarnet
a 0.15028 0.00062 2.18507 0.00091 0.00391 0.00391

daughter Dspinel
a 0.02778 0.03454 0.02888 0.03198 0.03198 0.03198

daughter Pspinel
a 0.08592 0.10403 0.08878 0.08393 0.08393 0.08393

daughter Dgarnet
a 0.02801 0.02277 0.06939 0.02186 0.02186 0.02186

daughter Pgarnet
a 0.08745 0.06666 0.22516 0.05348 0.05348 0.05348

(a) McKenzie and O’Nions [1991]
(b) Lide [2003]
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