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ABSTRACT
Solid polycrystalline materials undergoing diffusion creep are
usually described by Cauchy continuum models with a
Newtonian viscous rheology dependent on the grain size.
Such a continuum lacks the rotational degrees of freedom
needed to describe grain rotation. Here we provide a more
general continuum description of diffusion creep that
includes grain rotation, and identifies the deformation of
the material with that of a micropolar (Cosserat) fluid. We
derive expressions for the micropolar constitutive tensors
by a homogenisation of the physics describing a discrete
collection of rigid grains, demanding an equivalent
dissipation between the discrete and continuum
descriptions. General constitutive laws are derived for both
Coble (grain-boundary diffusion) and Nabarro-Herring
(volume diffusion) creep. Detailed calculations are
performed for a two-dimensional tiling of irregular
hexagonal grains, which illustrates a potential coupling
between the rotational and translational degrees of
freedom. If only the plating out or removal of material at
grain boundaries is considered, the constitutive laws are
degenerate: modes of deformation that involve pure
tangential motion at the grain boundaries are not resisted.
This degeneracy can be removed by including the
resistance to grain-boundary sliding, or by imposing
additional constraints on the deformation.
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1. Introduction

At high temperatures, solid polycrystalline materials can deform by diffusion
creep, where defects within the crystalline lattice move by diffusion. At scales
much larger than the grain scale the material behaves as if it were a Newtonian
viscous fluid, with an effective shear viscosity which depends on the grain size
[1–4]. At the microscale individual grains can be considered as rigid bodies,
which interact by the plating out or removal of material at grain boundaries,
leading to a macroscale strain. Rigid bodies have both translational (velocity)
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and rotational (angular velocity) degrees of freedom to describe their motion.
However, when a material is treated as a Newtonian viscous fluid at the macro-
scale, the microscale rotational degrees of freedom are lost, as the classical
Cauchy continuum is based on point particles with only translational degrees
of freedom.

The aim of this paper is to present a model of diffusion creep that goes
beyond the classical Cauchy continuum model, and instead identifies an
appropriate micropolar (Cosserat) continuum. A micropolar continuum
contains both translational and rotational degrees of freedom, and allows
one to better describe phenomena associated with grain rotations and ani-
sotropic microstructure. Micropolar models are used in a diverse range of
disciplines, e.g. to describe masonry [5,6], granular media [7], the motion
of fault-bounded blocks [8,9], rotational seismology [10,11], disclinations
[12], but as yet do not appear to have been used to describe diffusion
creep.

The present work is a natural generalisation of the work of Wheeler [13],
who studied the two-dimensional anisotropic Cauchy continuum arising
from a periodic array of irregular hexagonal grains undergoing Coble (grain-
boundary diffusion) creep. As will be discussed in detail later, the Cauchy con-
tinuum of Wheeler [13] can be seen as a reduced version of the more general
micropolar continuum considered here.

The manuscript is organised as follows. Section 2 gives a brief overview of
the governing equations of a micropolar continuum. Section 3 describes the
microscale kinematics of a collection of rigid grains. Section 4 describes the
microscale physics of diffusion. Section 5 determines the dissipation associ-
ated with diffusion creep, and uses this as a basis for identifying the consti-
tutive tensors for the equivalent micropolar continuum. Section 6 rescales
the equations for the constitutive tensors into a dimensionless form. Sim-
plified equations for Coble (grain-boundary diffusion) creep are given in
Section 7, followed by specific calculations for hexagonal grains in Section
8. An important degeneracy in the constitutive laws in discussed in
Section 9, and final conclusions are in Section 10. Three appendices give
additional mathematical details on the resistance to grain-boundary
sliding, and simplifications of the micropolar continuum under additional
assumptions.

2. Micropolar continuum

In this section we briefly review the governing equations for a micropolar con-
tinuum, and a more detailed description can be found in, e.g. [7,14–17]. A
micropolar (Cosserat) continuum represents a continuous collection of par-
ticles which have both translational (velocity field v) and rotational (microrota-
tion-rate fieldv) degrees of freedom. At each point in the continuum we define
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both a force-stress tensor s and a couple-stress tensor x. In the absence of
body-forces and body-couples, and with negligible inertia, the governing
equations of a micropolar continuum are

sij,j = 0, (1)

xij,j − eijks jk = 0, (2)

where (·),j ; ∂(·)/∂xj and eijk is the Levi-Civita symbol. Equation (1) is the
balance of linear momentum, and is identical to that of the classical Cauchy
continuum. For a micropolar continuum the force-stress tensor s need not
be symmetric, and one must be careful in how one assigns the indices. Here
we adopt the convention that the traction vector ti on an infinitesimal patch
with surface area dS and normal nj is given by ti = sijnj. Similarly the
moment vector mi is given by mi = xijnj. Equation (2) is the balance of
angular momentum: in the absence of couple-stresses this reduces to usual
statement for the Cauchy continuum that the force-stress tensor is symmetric.
But here we will not assume vanishing couple-stresses.

The balance of linear and angular momentum can equivalently be written as
integral statements. The linear momentum statement is the force-balance∫

sijnj dS = 0, (3)

and the angular momentum statement is the torque-balance∫
xijnj + eijkxjsklnl dS = 0, (4)

where the integrals are over the bounding surface S of any arbitrary volumeV of
the continuum, and x represents the position vector. By dotting Equation (1)
with v and (2) with v and integrating over a volume V, the following equation
of mechanical energy balance can be obtained∫

visijnj + vixijnj dS =
∫
Gijsij + Kijxij dV. (5)

The left-hand side in (5) represents the rate of working by tractions and
moments at the boundary of the given volume, and the right-hand side rep-
resents the internal power. The tensors G and K are the natural measures of
deformation rate in a micropolar continuum, and are defined by

Gij = vi,j + ekijvk, (6)

Kij = vi,j. (7)

These tensors can be shown to be objective measures of deformation rate. Note
that unlike the traditional strain-rate tensor, the Cosserat tensor G is not
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symmetric in general. However, it can be decomposed into symmetric and anti-
symmetric parts as

Gij = G(ij) + G[ij], (8)

G(ij) = 1
2

vi,j + v j,i
( )

, (9)

G[ij] = eijk vk − 1
2
Vk

( )
, (10)

where V represent the classical vorticity

Vk = (∇ × v)k = eklmvm,l. (11)

Round brackets (ij) are used to represent the symmetric part of a tensor, and
square brackets [ij] are used to represent the antisymmetric part. The additional
measures of deformation-rate a micropolar continuum has over a classical
Cauchy continuum are the relative microrotation-rate measure in (10) and
the gradient in microrotation-rate in (7).

Finally, constitutive laws are needed to relate the force- and couple-stress
tensors to the measures of deformation rate. The most general linear constitu-
tive laws take the form

sij = CijklGkl + BijklKkl, (12)

xij = BklijGkl + DijklKkl, (13)

with fourth-rank tensors Cijkl, Bijkl and Dijkl describing the resistance of the
medium to deformation. These tensors satisfy the major symmetries
Cijkl = Cklij and Dijkl = Dklij. Bijkl is formally a pseudo-tensor, whereas Cijkl

and Dijkl are proper tensors. With the constitutive laws in (12) and (13) the
viscous dissipation per unit volume in (5) can be written as

C ; sijGij + xijKij

= GijCijklGkl + 2GijBijklKkl + KijDijklKkl.
(14)

The main aim of the present work is to determine expressions for the tensors
Cijkl, Bijkl and Dijkl from a homogenisation of the grain-scale physics describing
diffusion creep.

3. Kinematics of rigid grains

Our microscale model consists of a set of identical rigid grains in motion, where
the relative motion normal to grain boundaries is accommodated by the plating
out or removal of material. Each grain has a reference point xi, which we will
choose to be the centroid of the grain. The rigid body motion of the grain is
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described by the velocity vi of the reference point, and the angular velocity vi

about the reference point xi. The velocity v inside each grain is given by

v = vi +vi × x− xi( ) (15)

where x is the position vector.
Consider the grain boundary between two grains, which we label as 1 and 2

(Figure 1). The difference in velocities between the two grains can be written as

Dv = v2 − v1( ) −v1 × x2 − x1( ) + v2 −v1( ) × x− x2( ). (16)

Let R = x2 − x1 be the vector joining the two grain centres. Suppose that the
difference in velocities of the centroids and angular velocities is linearly
related to R, such that

v2 − v1 = D · R, (17)

v2 −v1 = K · R, (18)

where D is a second rank tensor and K is a second rank pseudo-tensor. After
homogenisation we will identify D with the velocity gradient tensor, and K
with the gradient of microrotation-rate. Equation (16) can then be written as

Dv = D · R−v1 × R+ K · R
( )

× x− x2( ). (19)

It is helpful to rewrite (19) in terms of the natural deformation-rate measure G,
defined by

Gij = Dij + eijkv
1
k, (20)

in a similar manner to the definition for the micropolar continuum in (6).
Equation (19) then becomes

Dv = G · R+ K · R
( )

× d (21)

where d = x− x2. In diffusion creep, relative motion normal to the grain
boundary is accommodated by plating. What is most of interest is then the

Figure 1. The geometry of a grain boundary.
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normal component of (21), given by

Dv · n = n · G · R+ d× n( ) · K · R
( )

(22)

= G:Rn+ K:R d× n( ) (23)

We will use the symbol ṙ to denote the plating rate on a given grain boundary
for a given grain. If we assume that material is plated out symmetrically,

ṙ = 1
2
Dv · n = 1

2
G:Rn+ K:R d× n( )

( )
(24)

The above equation represents the key result of the kinematics: it gives
the linear relation between the plating rate and the deformation-rate measures
G and K.

4. Diffusion

Plating out or removal of material at grain boundaries can only occur by the
diffusion of vacancies, either diffusion within the grains (leading to Nabarro-
Herring creep), or diffusion along the grain boundaries (leading to Coble
creep). In this section we will determine the relationships between the
plating rates and the variations in vacancy concentration (or equivalently,
chemical potential) that arise from the physics of diffusion. The motion of
each grain relative to its neighbours is assumed to be well-described by constant
values of the deformation rate measures G and K for each grain. Since the
vacancy concentration is linearly dependent on the plating rate, and the
plating rate depends linearly on the deformation rate measures G and K, the
vacancy concentration c also depends linearly on G and K. This linear relation-
ship can be written as

c = gklGkl + nklKkl (25)

where gkl and nkl are spatially-variable second-rank tensors that are
determined by the geometry of the grains and the equations describing the
diffusion.

4.1. Nabarro–Herring creep (volume diffusion)

In Nabarro–Herring creep diffusion only takes place within the body of the
grains. The flux of vacancies jv within each grain is described by Fick’s law,

jv = −Dv∇c, (26)

where Dv is the diffusivity of vacancies, and c is the concentration of vacancies.
With a quasi-steady approximation, conservation of vacancies within the grain
can be expressed as ∇ · jv = 0, from which it follows that the concentration of
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vacancies c satisfies Laplace’s equation

∇2c = 0 in V, (27)

where V is the volume of a grain. Consideration of the boundary flux required
to produce a certain plating rate yields

ṙ = −Vjv · n (28)

where Ω is the atomic volume, and n is the outward normal to the grain. Sub-
stitution of (26) into (28) yields the boundary condition

∂c
∂n

= ṙ
VDv

on S (29)

where S is the surface of the grain. For a given plating rate distribution ṙ, the linear
Equations (27) and (29) can be solved to give the concentration of vacancies c
inside the grain. The plating rate in turn depends linearly on the deformation
rate measures G and K through the kinematic relationship of (24), where G and
K are assumed to be constant for the grain. The overall relationship between the
concentration c and the deformation rate measures can be written as a general
linear relationship of the form in (25). Combining (24), (25), (27), and (29) then
yields the following problems for the tensors gkl and nkl,

∇2gkl = 0 in V, (30)

∂gkl
∂n

= 1
2VDv

nk Rl on S, (31)

and

∇2nkl = 0 in V, (32)

∂nkl
∂n

= 1
2VDv

d× n( )k Rl on S. (33)

4.2. Coble creep (grain boundary diffusion)

Diffusion along grain boundaries can be described by Fick’s law in the form

jv = −Dgb
v ∇⊥c, (34)

where jv is the flux of vacancies, Dgb
v is the diffusivity of vacancies along the

grain boundary, and c is the concentration of vacancies. ∇⊥ represents the
surface gradient operator (the gradient operator with the component normal
to the grain boundary removed). Conservation of mass can be written as

1
2
Vd∇⊥ · jv = ṙ on S (35)
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where δ is the grain boundary thickness. The factor of 1/2 arises because each
grain boundary borders two grains. Substitution of (34) into (35) yield the gov-
erning equation

− 1
2
VdDgb

v ∇2
⊥c = ṙ on S (36)

where ∇2
⊥ represents the surface Laplacian operator. Equation (36) has to be

supplemented by boundary conditions at the junctions where grain boundaries
meet. Combining (36) with (24) and (25) leads to the following problems for
the tensors gkl and nkl,

−∇2
⊥gkl =

1

VdDgb
v

nkRl on S, (37)

and

−∇2
⊥nkl =

1

VdDgb
v

d× n( )kRl on S. (38)

5. Dissipation

The upscaling technique used in this work is based on the notion of a homo-
geneous equivalent continuum [18]. The discrete collection of grains is
replaced with a micropolar continuum that (1) shares the same kinematics
as the discrete collection and (2) shares the same dissipation of energy. The
kinematic mapping is achieved by the continuum field for the velocities v
and angular velocities v matching the grain velocities vi and vi at the refer-
ence points xi of each grain. The energetics of diffusion can be described by
the balance law

C = kT
c0V

1
V

∫
ṙc dS (39)

where Ψ is the dissipation and the right-hand side represents the rate of
working at the grain boundaries. c0 is the equilibrium concentration of
vacancies, k is the Boltzmann constant, T is temperature, and V is the grain
volume. The surface integral is over the boundary of the grain. Explicit inte-
gral expressions for the dissipation Ψ due to Nabarro-Herring creep and
Coble creep are given below in (43) and (47).

The condition of equal dissipation between the discrete collection of
grains and the continuum is imposed by demanding that the micropolar dis-
sipation in (14) matches that in the balance law (39). By substituting the
linear relationships (24) and (25) into the rate of working integral in (39),
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one can obtain expressions for the tensors Cijkl, Bijkl, and Dijkl as

Cijkl = kT
2c0VV

∫
niRjgkl dS, (40)

Bijkl = kT
2c0VV

∫
niRjnkl dS = kT

2c0VV

∫
gij d× n( )kRl dS, (41)

Dijkl = kT
2c0VV

∫
d× n( )iRjnkl dS. (42)

Since the expression for the rate of working is the same for both Nabarro-
Herring and Coble creep, the above expressions for the constitutive
tensors are valid for both forms of creep. However, one can also express
these tensors in alternative, equivalent forms based on the explicit integral
expressions of the dissipation for the two forms of creep.

5.1. Nabarro–Herring creep

For Nabarro–Herring creep we can write the dissipation in (39) explicitly as

C ;
kTDv

c0

1
V

∫
|∇c|2 dV, (43)

where the balance law in (39) is as a consequence of the divergence theorem and
the governing Equations (27) and (29). Matching (43) with (14) gives an
alternative expression for the tensors for Nabarro-Herring creep as

Cijkl = kTDv

c0

1
V

∫
∇gij · ∇gkl dV, (44)

Bijkl = kTDv

c0

1
V

∫
∇gij · ∇nkl dV, (45)

Dijkl = kTDv

c0

1
V

∫
∇nij · ∇nkl dV. (46)

In this representation the major symmetries Cijkl = Cklij and Dijkl = Dklij are
clear.

5.2. Coble creep

For Coble creep we can write the dissipation in (39) explicitly as

C ;
kTdDgb

v

c0

1
2V

∫
|∇⊥c|2 dS, (47)

where the balance law in (39) is a consequence of the divergence theorem and
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the governing equation in (36). Matching (47) with (14) gives an alternative
expression for the tensors for Coble creep as

Cijkl = kTdDgb
v

c0

1
2V

∫
∇⊥gij · ∇⊥gkl dS, (48)

Bijkl = kTdDgb
v

c0

1
2V

∫
∇⊥gij · ∇⊥nkl dS, (49)

Dijkl = kTdDgb
v

c0

1
2V

∫
∇⊥nij · ∇⊥nkl dS, (50)

where again the major symmetries are clear.

6. Dimensionless equations

It is helpful to make the equations dimensionless to separate out the part of the
behaviour that can be determined simply by scaling, and that which describes
the geometrical effects of the microstructure. If d is a typical measure of grain
size, then a scaling for a typical viscosity is h0 = kTd2/(VD) for Nabarro-
Herring creep and h0 = kTd3/(VdDgb) for Coble creep, where D = Vc0Dv

and Dgb = Vc0D
gb
v are the self-diffusion coefficients. Dimensionless versions

of the fourth-rank tensors can be obtained by scaling Cijkl by h0, Bijkl by dh0

and Dijkl by d2h0. In dimensionless form, (40), (41), (42) become

Cijkl = 1
2V

∫
niRjgkl dS, (51)

Bijkl = 1
2V

∫
niRjnkl dS = 1

2V

∫
gij d× n( )kRl dS, (52)

Dijkl = 1
2V

∫
d× n( )iRjnkl dS. (53)

6.1. Nabarro–Herring creep (dimensionless)

The corresponding dimensionless problem for Nabarro–Herring creep is

∇2gkl = 0 in V, (54)

∂gkl
∂n

= 1
2
nkRl on S, (55)
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and

∇2nkl = 0 in V, (56)

∂nkl
∂n

= 1
2
d× n( )kRl on S. (57)

6.2. Coble creep (dimensionless)

The corresponding dimensionless problem for Coble creep is

−∇2
⊥gkl = nkRl on S, (58)

and

−∇2
⊥nkl = d× n( )kRl on S. (59)

7. Simplified Coble creep calculations

Further simplifications can be made for Coble creep, where with additional
assumptions simpler expressions for the relevant tensors can be obtained.
We will assume now that all grain boundaries are planar, and that the
triple lines where different grain boundaries meet are at a constant chemical
potential (‘shorted’ in the language of Rudge [19]). In the work of Rudge
[19], shorted boundary conditions were introduced to mimic the effect of
a small amount of melt lying along the triple lines. The melt acts as a fast
path for diffusion, and allows for bulk deformation to occur. With shorted
boundary conditions, the diffusion problem for each grain boundary is inde-
pendent of the other boundaries. Let us label each grain boundary by an
index α. Since the normal vector n and the vector R joining centroids are
constant over each grain boundary, the Coble creep problem in (58) can
be reduced to

gkl = wnkRl, (60)

−∇2
⊥w = 1 on S(a), (61)

where the shorted boundary conditions imply that w vanishes along the
bounding curve of the grain boundary. Similarly, the problem (59) can be
reduced to

nkl = gkRl, (62)

−∇2
⊥gk = d× n( )k on S(a), (63)

where the vector gk vanishes on the bounding curve of each grain boundary.
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The fourth-rank tensors can then be expressed as

Cijkl = 1
2V

∑
a

n(a)i R(a)
j n(a)k R(a)

l W(a), (64)

Bijkl = 1
2V

∑
a

n(a)i R(a)
j F(a)k R(a)

l , (65)

Dijkl = 1
2V

∑
a

G(a)
ik R(a)

j R(a)
l , (66)

where the sums are over each of the grain boundaries for the given grain, and

W(a) =
∫
S(a)

w dS, (67)

F(a)k =
∫
S(a)

w d× n( )k dS =
∫
S(a)

gk dS, (68)

G(a)
ik =

∫
S(a)

d× n( )igk dS, (69)

where it should be noted that the tensor G(a)
ik is symmetric.

8. Coble creep of hexagons

To give a concrete example, we now consider the specific case of Coble creep of a
tiling of hexagonal grains. We restrict the motion to two-dimensions, so that
v = (v1, v2, 0) and v = (0, 0, v3). In two-dimensions G3j = Gi3 = 0, and the
only non-zero components of Kij are K31 and K32. Thus only Cijkl, Bij3l, and
D3j3l are non-zero for i,j,k,l = 1,2. With two-dimensional grains, the Coble creep
diffusion problems are one-dimensional and are simple to solve analytically.

8.1. Regular hexagons

The simplest hexagonal tiling is that of regular hexagons, with the wallpaper
group p6m. With this hexagonal symmetry, Neumann’s principle implies that
the tensors Cijkl and D3j3l are isotropic, and the pseudo-tensor Bij3l vanishes.
Moreover, for the regular hexagons, the vector R between centroids is in the
same direction as the normal vector n. It follows from (64) that there are the
further minor symmetries Cijkl = Cjikl = Cijlk, along with the Cauchy relation
symmetry Cijkl = Cikjl. As a consequence of these symmetries, the constitutive
tensors reduce to

Cijkl = h dijdkl + dikd jl + dild jk
( )

, (70)
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Bij3l = 0, (71)

D3j3l = md jl, (72)

in terms of two constants η and μ, where dij represents the two-dimensional
Kronecker delta. η represents the effective shear viscosity. The effective bulk vis-
cosity z = 2h, a consequence of the Cauchy relation symmetry [19]. Solution of
the diffusion problem leads to h = 1/144 if lengths are made dimensionless on
the perpendicular distance between opposite sides of the hexagon. This value is
exact agreement with previous calculations (e.g. [19–21]). The new behaviour is
captured by the constant μ, which describes the resistance to relative rotation of
the grains. As will be seen in the next section, m = h/45 in the dimensionless
variables.

8.2. Irregular hexagons

Wheeler [13] presented a thorough discussion of Coble creep for a periodic
tiling of irregular hexagonal grains and determined the constitutive laws for
an equivalent Cauchy continuum. In this section, we determine the corre-
sponding micropolar constitutive tensors for these irregular hexagons. The
grain shape is a hexagon with parallel sides, where the sides are given by the
three vectors B1, B2, and B3 (Figure 2). The vectors joining grain centroids

Figure 2. Periodic tiling of irregular hexagonal grains as considered by Wheeler [13]. Note that
the centroid of each grain, and the midpoint of each grain boundary is a rotation centre of order
two (the tiling is invariant under a rotation by 180◦ about these points). The symmetry of the
tiling is the wallpaper group p2. All triple junctions in the tiling are indistinguishable owing to
this symmetry.
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are given by

R1 = B2 − B3, (73)

R2 = B3 − B1, (74)

R3 = B1 − B2. (75)

The area of the hexagon is

V = 1
2

∑3
i=1

|Ri × Bi|, (76)

and unit normal vectors to the grain boundaries are given by

N f = ẑ× B̂f (77)

for f = 1,2,3, where B̂f = Bf /|B̂f | is a unit vector.

8.2.1. Diffusion problems
Suppose the centroid of the grain is the origin of the coordinate system. The
position vector along the edge with normal N1 in Figure 2 is

x = 1
2
R1 − sB̂1, − l1

2
≤ s ≤ l1

2
, (78)

where l1 = |B1|. Now d1 = x− R1, from which it follows that

d1 × n = d1 · B̂1
( )

ẑ = − R1 · B̂1

2
+ s

( )
ẑ. (79)

The diffusion problem in (61) becomes

−d2w
ds2

= 1, w = 0 at s = +
l1
2

(80)

with solution

w = 1
8

l21 − 4s2
( )

. (81)

The diffusion problem in (63) becomes

−d2g3
ds2

= − R1 · B̂1

2
+ s

( )
, g3 = 0 at s = +

l1
2

(82)

with solution

g3 = − 1
48

3R1 · B̂1 + 2s
( )

l21 − 4s2
( )

. (83)
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From (81) and (83) it follows that the relevant moments in Equations (67), (68),
and (69) are

W =
∫l1/2
−l1/2

w ds = l31
12

, (84)

F3 =
∫l1/2
−l1/2

w d1 × n( )3 ds =
∫l1/2
−l1/2

g3 ds = − R1 · B1( )l21
24

, (85)

G33 =
∫l1/2
−l1/2

g3 d1 × n( )3 ds =
1
720

15 R1 · B1( )2l1 + l51
( )

. (86)

Thus from (64), (65), and (66) the constitutive tensors are

Cijkl = 1
12V

∑3
f=1

N f
i R

f
j N

f
k R

f
l l

3
f , (87)

Bij3l = − 1
24V

∑3
f=1

N f
i R

f
j R

f
l Rf · Bf
( )

l2f , (88)

D3j3l = 1
720V

∑3
f=1

Rf
j R

f
l 15 Rf · Bf

( )2
lf + l5f

( )
, (89)

where N f
i denotes the ith component of the vector Nf , and Rf

j denotes the jth

component of the vector Rf .
For the case of regular hexagons, the expressions in (87), (88), and (89) sim-

plify to those in (70), (71), and (72). For regular hexagons Rf · Bf = 0. In
dimensionless units where the perpendicular distance between sides is 1,
Rf = Nf , V = 



3
√

/2 and lf = 1/



3

√
. One can calculate η in (70) from the invar-

iant Ciikk = 1/18 = 8h, to yield h = 1/144. μ in (72) can be calculated from the
invariant D3j3j = 1/3240 = 2m and hence m = 1/6480 = h/45.

The constitutive tensors in (87), (88), and (89) can be seen as a generalisation
of the constitutive tensors derived by Wheeler [13]. Appendix 2 describes how
the constitutive tensors here reduce to those of Wheeler [13] with the additional
assumptions that are made in that work.

9. Degeneracy

In this section we will show that the constitutive laws that have been derived are
in some sense unsatisfactory because they are degenerate. Ultimately this arises
because there are modes of deformation that can occur without plating, and
thus without any dissipation.

It is helpful to begin by noting the difference between the isotropic con-
stitutive laws derived for the 2D tiling of regular hexagons in (70), (71),
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and (72) and that of the most general two-dimensional linear isotropic
micropolar continuum, which can be written in terms of four material con-
stants as

Cijkl = zdijdkl + h dikd jl + dild jk − dijdkl
( )+ k dikd jl − dild jk

( )
, (90)

Bij3l = 0, (91)

D3j3l = md jl. (92)

By comparing the above to (70), (71), and (72), we see that the Coble creep
model of regular hexagons here is a special case of the general two-dimen-
sional linear isotropic micropolar continuum with z = 2h, and k = 0. The
degeneracy in the rheology is that associated with k = 0. Substitution of
(90), (91), and (92) into (12) and (13) yields the isotropic constitutive laws

sij = zGkkdij + 2hG{(ij)} + 2kG[ij], (93)

x3j = mK3j, (94)

where G{(ij)} denotes the trace-free part of the symmetric tensor G(ij), given
explicitly in 2D by

G{(ij)} = 1
2

Gij + G ji − Gkkdij
( )

. (95)

ζ and η represent the conventional bulk and shear viscosities; κ and μ are
the new constants associated with the micropolar medium. We will refer to
κ as the microrotational viscosity, and μ as the angular viscosity. Substi-
tution of the constitutive laws (93) and (94) into the conservation laws
(1) and (2) leads to the 2D isotropic governing equations

z∇ ∇ · v( ) + h∇2v+ k∇ × 2v− ∇ × v( ) = 0, (96)

m∇2v− 2k 2v−∇ × v( ) = 0. (97)

Note that since in 2D, v = (v1, v2, 0) and v = (0, 0, v3), the angular momen-
tum balance in (97) reduces to a scalar equation for v3. When k = 0, the govern-
ing equation for the velocity field v in (96) is decoupled from that for the
microrotation rate field v in (97). When k = 0, (93) shows that the stress
tensor is symmetric, and the combination of (93) and (1) gives the 2D Navier
equation for the velocity field v. Equations (94) and (2) then lead simply to a
2D Laplace’s equation for the microrotation rate v3.

To formulate a full problem for the flow of a micropolar fluid, the governing
equations in (96) and (97) have to be supplemented with boundary conditions.
For a micropolar fluid, possible choices include setting on the boundaries the
velocities v and microrotation-rate v, or the tractions s · n and the
moments x · n. For the 2D case, only the v3 component of the
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microrotation-rate is non-zero, and the corresponding non-zero moment is
m ∂v3/∂n.

Even with k = 0, (96) and (97) can be solved to give unique velocity and
microrotation fields if the velocities and microrotations are set along the
boundary. However, if instead the tractions and moments are specified at the
boundaries, then the solutions are non-unique. With k = 0, the solution for
v in the Navier equation in (96) is then only unique up to a rigid body
motion, and the solution to Laplace’s equation for v3 in (97) is only unique
up to an arbitrary constant, and thus the microrotations can be arbitrarily
large. This non-uniqueness under certain choices of boundary condition has
been noted in previous grain-scale models of Coble creep [e.g. 22–24].

To see why the microrotation viscosity κ vanishes for regular hexagonal
grains, consider a situation where all the grain centres are fixed, and all
grains have the same constant microrotation rate v. At the grain boundaries
the relative motion between grains is purely tangential, and thus involves no
plating, and no dissipation. There is thus no resistance to such a motion in
the model. The plating rate is independent of the antisymmetric tensor G[ij].

The independence of the plating rate (and thus the constitutive laws) on the
antisymmetric tensor G[ij] will be seen for a number of grain geometries, in par-
ticular those geometries where the vectors R joining grain centres are parallel to
the normals n of the grain boundaries. Mathematically, this is straightforward
to see from the plating rate expression in (24): the second rank tensor Rinj is a
symmetric tensor if R is parallel to n, and thus will yield zero when contracted
with the antisymmetric tensor G[ij]. Again, with the grain centres fixed, a
uniform microrotation of the grains leads to purely tangential motion at the
grain boundary.

In 3D there is an additional degeneracy in the rheology. When R and n are
parallel, the plating rate (24) is also independent of Kkk = ∇ ·v, and thus so is
the dissipation. This arises because a relative rotation of neighbouring grains
about an axis perpendicular to the grain boundary involves purely tangential
motion at the boundary, and thus no plating. Such a mode of deformation
does not occur in 2D. For a 2D isotropic medium there is only a single
angular viscosity coefficient that describes the resistance to relative rotation
of grains; for a 3D isotropic medium there are in general three such viscosity
coefficients, where the one associated with ∇ ·v will vanish when R and n
are parallel.

A wide range of artificial grain geometries have the property that the vectors
R joining grain centres are parallel to the normals n of the grain boundaries. For
example, an artificial grain geometry could be obtained from a Voronoi tessel-
lation, and this tessellation has the property that the lines joining the generator
points across each cell boundary are normal to the boundary, and thus allow
pure tangential motion to occur with a uniform microrotation of the grains
[23]. Moreover, generalisations of the Voronoi tessellation, such as Laguerre
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tessellations, also have this property, and thus grain geometries produced by
software such as Neper [25] would also allow uniform microrotations of
grains about their generator points to occur without plating. In 3D, all
normal tessellations with convex grains are Laguerre tessellations (see
Theorem 3.2 of [26]).

However, not all artificial grain geometries have R and n parallel, and
indeed the 2D irregular hexagons described by Wheeler [13] give an
example where R and n are not parallel. The tiling of irregular hexagons
is not in a general a Voronoi or Laguerre tiling, although a subset are.
Even for the geometries where R and n are not parallel there are modes
of deformation that can occur without plating. However, these modes
now include both the symmetric and antisymmetric parts of the tensor
Gij. It was shown in [13] that for the irregular hexagon any constant mul-
tiple of

G = B̂2 ·N3

( )
B1 ⊗ N1 + B̂3 · N1

( )
B2 ⊗ N2 + B̂1 ·N2

( )
B3 ⊗ N3 (98)

can occur without plating.

9.1. Grain boundary sliding

It seems rather unsatisfactory to have a rheological model that allows some
modes of deformation to occur without any resistance. It suggests that
additional physical processes should be considered that describe resistance to
such modes. An obvious example of such an additional process is the resistance
to grain boundary sliding [4,27]. This is often modelled as if there were a thin
layer of fluid of viscosity hgb at the grain boundary that resists shearing motion.
The effective viscosity tensors for this process can be derived in exactly the same
way as those for the plating resistance by matching the dissipation, and the
detailed calculations are given in Appendix 1. In the case of 2D regular hexa-
gons, the relevant viscosities including both plating resistance and sliding resist-
ance are given in dimensional form as

z = 1
72

kTd3

dDgbV
, (99)

h = 1
144

kTd3

dDgbV
+ 1

4
hgb

d
d
, (100)

k = 1
2
hgb

d
d
, (101)

m = 1
6480

kTd5

dDgbV
+ 1

4
hgb

d3

d
. (102)
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Figure 3 illustrates the grain-scale deformation associated with each viscosity
coefficient. The expressions for the effective bulk and shear viscosity for regular
hexagons are well-established results (e.g. [20,21,27]); the novel results here are
explicitly identifying the microrotational viscosity κ and the angular viscosity μ.
Both the plating and sliding resistance to relative rotation of grains has been
described by other authors in the context of determining the rotation rate of
an individual grain when a torque is applied [28–30]. The novelty here is to
relate this resistance to relative rotation to the angular viscosity μ of a micropo-
lar fluid. The inclusion of resistance to grain boundary sliding leads to a non-
zero microrotational viscosity κ, and formally removes the degeneracy in the
rheology. However, having significant resistance to grain boundary sliding
also changes the effective shear viscosity (100), with the consequence that if
hgb ≫ kTd2/(DgbV) the effective shear viscosity depends linearly on the
grain size rather than the cubic dependence typical for Coble creep. But if
the resistance to sliding is weak, one will still then find modes of deformation
which are only weakly resisted [13].

An important feature of a micropolar continuum that is distinct from a clas-
sical Cauchy continuum is the existence of a characteristic length scale of the
medium. One way of defining this characteristic length scale is from the

Figure 3. Examples of the different modes of deformation for a tiling of regular hexagons. In
each case the frame of reference is such that the central grain is stationary (neither translating
nor rotating). Straight arrows indicate the velocities of the centres of each grain, curved arrows
indicate the sense of grain rotation. The hexagonal grains have been displaced by finite
amounts to show their motions, but the theory described in the text concerns infinitesimal
motions only. Regions of overlap and gaps between grains must be accommodated by
plating out or removal of material. Bulk deformation involves purely plating; there is no
sliding between grains. Shear deformation involves both plating and sliding. Microrotational
deformation involves pure sliding; in the example shown none of the individual grains
rotate, but the grain centres undergo a rotation. Angular deformation occurs when there is rela-
tive rotation between neighbouring grains; such deformation involves both plating and sliding.
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balance of the terms m∇2v and 4kv in Equation (97), which defines the
characteristic length scale

l = 1
2




m

k

√
. (103)

The behaviour of the micropolar medium is different depending on whether the
imposed scales of deformation L are significantly larger or smaller than the
characteristic length scale l of the medium. If L ≫ l, then the resistance to rela-
tive rotation of the grains can be neglected throughout most of the fluid, with
the exception of thin boundary layers of thickness l. Significant gradients in the
microrotation rate only occur across these boundary layers. Outside these
boundary layers, the equations describing the medium can simplified to
those of a reduced micropolar continuum (see Appendix 2 for a detailed discus-
sion of this limit). On the other hand, if L ≪ l, then angular resistance domi-
nates, and a gradient in microrotation rate can exist across the domain.

The characteristic length scale l depends on the grain size, but is potentially
much larger than the grain size. Consider the case where resistance to grain-
boundary sliding is weak, hgb ≪ kTd2/(DgbV). Substitution of (101) and
(102) into (103) then yields

l = d2

36




10

√












kT
hgbDgbV

√
(104)

which demonstrates explicitly that the characteristic length scale of the micropo-
lar medium is not simply the grain size. Another way of writing (104) is in terms
of the effective shear viscosity for pure Coble creep, hCoble = kTd3/(144dDgbV),
and for pure grain-boundary-sliding, hgbs = hgbd/(4d),

l = d

6




10

√








hCoble

hgbs

√
(105)

which demonstrates that the characteristic length scale l can be significantly
greater than the grain size if the resistance to grain boundary sliding is weak
(hgbs ≪ hCoble).

9.2. Constraints

An alternative method for removing the degeneracy without invoking resist-
ance to grain boundary sliding is by imposing additional constraints on the
allowable deformation. A simple example of a constraint is that of incompres-
sibility where one demands that ∇ · v = 0 everywhere, or equivalently that
Gkk = 0, and the bulk viscosity ζ becomes effectively infinite (see Appendix
3). A similar constraint is added in some micropolar models to demand that
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rotations are constrained as v = 1
2∇ × v everywhere, or equivalently that

G[ij] = 0, and the microrotational viscosity κ becomes effectively infinite.
In adding constraints on the deformation, one should justify them based on

the microscale physics. It is straightforward to consider microphysical assump-
tions that impose incompressibility. While here the constitutive laws were
derived under the assumption that the triple lines where grain boundary
meet act as sources and sinks of vacancies [19,21,31], one can instead consider
microphysical models where this is not the case and one has to balance fluxes of
vacancies at the triple lines and this naturally leads to a incompressible rheology
[13,19,20]. While having constrained rotations would remove the degeneracy
without invoking the resistance to grain boundary sliding, there does not
seem to be an obvious micromechanical mechanism that imposes such a
constraint.

10. Conclusions

Here we have presented a new perspective on diffusion creep by identifying an
equivalent micropolar fluid model that shares the same dissipation and kin-
ematics as the discrete collection of grains. We have shown how the effective
constitutive tensors can be obtained for both Nabarro-Herring (volume
diffusion) and Coble (grain-boundary diffusion) creep. Specific calculations
have been performed for a periodic array of hexagons undergoing Coble
creep in two dimensions.

For most practical purposes identifying a material undergoing diffusion creep
with a Newtonian viscous fluid in the classical Cauchy continuum framework is
appropriate. However, there are cases where using the more general micropolar
framework developed here may be beneficial. Most obviously, the addition of
rotational degrees of freedom to the continuum description allows one to describe
grain rotation. Including micropolar effects will be particularly important when-
ever the length scales of deformation approach those of the characteristic length
scale of the micropolar medium; this may be important in problems where local-
isation of deformation occurs (e.g. shear banding). Even in problems where defor-
mation occurs at length scales much larger than the characteristic length scale,
inclusion of rotational degree of freedoms are important for determining the
effective viscosities when the microstructure is anisotropic (Appendix 2, [6,32]).

There are several natural avenues for future research. In this work specific cal-
culations were only performed in the very simplest case of Coble creep in two-
dimensions because it is straightforward to solve the relevant equations analyti-
cally. Detailed calculations could be performed in 3D for both Coble creep and
Nabarro-Herring creep, but these involve numerical computation. We demon-
strated that consideration of plating resistance alone leads to a degenerate rheol-
ogy, and consideration of other physical processes, such as the resistance to grain
boundary sliding, are necessary to remove this degeneracy. The physics of grain
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boundaries were treated here in a very simple-minded way, offering just a New-
tonian viscous resistance to sliding. Future work should consider a better descrip-
tion of the physics of the grain boundaries, e.g. a detailed consideration of grain
boundary energies and grain boundary migration. We have also addressed here
only the instantaneous deformation of the material; there is a lot of work that still
that needs to be done to explore how the microstructure evolves during defor-
mation, and how that influences subsequent deformation. Finally, there is the
prospect that future laboratory experiments may place constraints on the appro-
priate micropolar constitutive tensors for diffusion creep.
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Appendices

Appendix 1. Resistance to grain-boundary sliding

A simple way to model grain-boundary sliding is to treat the interface between grains as if it
were a thin layer of viscous fluid that offers resistance to being sheared [e.g. 4,27,33]. The
resistance can be characterised by averaged dissipation over the grain in the form

C = hgb

2Vd

∫
|n× Dv|2 dS (A1)

where hgb is the effective shear viscosity of the grain boundary, and δ is its effective thick-
ness. Using the notion of equivalent dissipation, the effective constitutive tensors can be
obtained by matching (A1) and (21) with (14). In what follows we will use dimensionless
variables, where Cijkl is scaled on hgbd/d, Bijkl on hgbd

2/d and Dijkl on hgbd
3/d. From

(21) it follows that

n× Dv( )p= apklGkl + bpklKkl (A2)

where

apkl = e pqknqRl, (A3)

bpkl = c pkRl, (A4)

c pk = d · n( )d pk − dpnk. (A5)

It follows that

Cijkl = 1
2V

∫
dik − nink( )RjRl dS, (A6)

Bijkl = − 1
2V

∫
d× n( )inkRjRl dS, (A7)

Dijkl = 1
2V

∫
c pic pkRjRl dS. (A8)
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A.1. Irregular hexagons
For the irregular hexagons described in Section 8.2, the expressions in (A6), (A7), and (A8)
reduce to

Cijkl = 1
V

∑3
f=1

dik − N f
i N

f
k

( )
Rf
j R

f
l lf , (A9)

B3jkl = 1
2V

∑3
f=1

Rf · Bf
( )

N f
k R

f
j R

f
l , (A10)

D3j3l = 1
4V

∑3
f=1

Rf ·Nf
( )2

Rf
j R

f
l lf . (A11)

A.2. Regular hexagons
In the special case of regular hexagons, isotropy imposes that the constitutive tensors take
the form in (90), (91), and (92) in terms of the four constants ζ, η, κ, and μ. These constants
can be determined from the tensor invariants,

Ciikk = 4z = 0, (A12)

Cijij = 2z+ 4h+ 2k = 2, (A13)

Cijji = 2z+ 4h− 2k = 0, (A14)

D3j3j = 2m = 1
2
, (A15)

where the units are such that the perpendicular distance between opposite sides of the
hexagon equals 1. It follows that

z = 0, h = 1
4
, k = 1

2
, m = 1

4
, (A16)

where it should be noted that ζ, η, and κ are scaled by hgbd/d and μ by hgbd
3/d. The result

that h = 1/4 is in complete agreement with the results obtained by [13,27,33]. The new
results here are for the micropolar constants κ and μ.

Appendix 2. Reduced micropolar continuum

A micropolar medium has an intrinsic characteristic length scale l. If variations in the flow
happen on much longer scales, say a length scale L, with L ≫ l, then the constitutive laws
can be further simplified to a reduced micropolar model outside any boundary layers
(e.g. [34,35]). If η is a typical viscosity, the constitutive tensors in (12) and (13) scale as
Cijkl 
 h, Bijkl 
 hl, and Dijkl 
 hl2. If 1̇ is a typical strain rate, then Gij 
 1̇ and
Kij 
 1̇/L. By keeping terms only at leading order in the small parameter l/L, the balance
laws (1) and (2) become

sij,j = 0, (A17)

eijks jk = 0, (A18)
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and the constitutive law simplifies to

sij = CijklGkl. (A19)

In this reduced micropolar continuum, couple stresses are negligible (xij = 0), the dissi-
pation is independent of Kij (the gradient in microrotation rate), and the force-stress
tensor sij is symmetric (Equation (A18)). It was under these assumptions that the calcu-
lations of Wheeler [13] were made, and we will show now that the more general micro-
polar continuum considered here reduces to that of Wheeler [13] with these additional
assumptions.

It is helpful to decompose both the Cosserat tensor Gij and the force-stress tensor sij into
their symmetric and antisymmetric parts, as illustrated for Gij in Equations (8), (9), and (10).
The constitutive law in (A19) can be written as

s(ij) = C(ij)(kl)G(kl) + C(ij)[kl]G[kl], (A20)

s[ij] = C[ij](kl)G(kl) + C[ij][kl]G[kl], (A21)

where round brackets (ij) represent the symmetric part, and square brackets [ij] represent
the antisymmetric part. Note that due to the major symmetry Cijkl = Cklij, we have that
C[ij](kl) = C(kl)[ij].

Antisymmetric second-rank tensors can be conveniently represented using pseudo-
vectors, which we will define for the Cosserat tensor Gij as

G×
k = 1

2
ekijGij, (A22)

G[ij] = eijkG
×
k , (A23)

using the superscript × to denote the pseudo-vector. The pseudo-vector s×
k similarly relates

to the antisymmetric part of the force-stress tensor s[ij]. Note from (10) that
G×
k = vk − 1

2Vk, and so G×
k represents the relative rate of grain rotation with respect to

the rotation of the grain centres.
The viscosity tensors in (A20) and (A21) can be simplified by introducing a symmetric

second-rank tensor Apq as

Apq = 1
4
e pijeqklCijkl, (A24)

C[ij][kl] = e pijeqklApq, (A25)

and a third-rank pseudo-tensor Epij as

Epij = 1
2
e pklC(ij)kl, (A26)

C(ij)[kl] = e pklE pij. (A27)

Note that Epij is symmetric on its last two indices, Epij = Epji. For an isotropic medium,
Apq = kd pq where κ is the microrotation viscosity, and Epij vanishes. The constitutive
laws in (A20) and (A21) can be written as

s(ij) = C(ij)(kl)G(kl) + 2EkijG
×
k , (A28)

s×
i = EiklG(kl) + 2AikG

×
k . (A29)

Equation (A18) implies that s×
i = 0, which when combined with (A29) places a constraint

on the allowable motions. If the second-rank symmetric tensor Aik is invertible, this
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constraint can be explicitly written as giving the relative rotation rate pseudo-vector G×
k in

terms of the symmetric strain-rate tensor as

G×
k = − 1

2
A−1
kp EpijG(ij). (A30)

The result in (A30) is analogous to the expressions which determine the rotation rate of a
rigid particle embedded in a viscous fluid undergoing shear (e.g. [36,37]). In these analo-
gous problems the torque on the rigid particle can be related to the relative rotation rate of
the particle and the far-field strain rate through resistance tensors, and the particle
rotation rate can be determined by a condition of zero net torque. Equation (A30) can
be substituted into the constitutive law (A28) for the symmetric part of the stress
tensor and thus show that the medium behaves as a classical Cauchy continuum governed
by

s(ij),j = 0, (A31)

s(ij) = C̃ijklG(kl), (A32)

C̃ijkl = C(ij)(kl) − EpijA
−1
pq Eqkl, (A33)

where the degrees of freedom associated with the microrotations have been eliminated.
Note that the effective viscosity tensor C̃ijkl satisfies both the major and the minor sym-
metries (C̃ijkl = C̃ jikl), and that it differs in general from C(ij)(kl). Thus while the effective
medium behaves as a Cauchy continuum, one cannot neglect the rotational degrees of
freedom when determining the effective viscosity tensor. Only when the third-rank
pseudo-tensor Ekij vanishes will C̃ijkl = C(ij)(kl), which can occur when certain symmetries
are present. For example, in 3D, Ekij vanishes when the grain geometry is invariant under
the crystallographic point groups 432, 43m, or m3m. If only plating resistance is con-
sidered, both Ekij and Aij vanish for any grain geometry for which the vector R joining
grain centres is parallel to the grain boundary normal n, as the plating rate (and thus dis-
sipation) is then independent of G×

k . When Ekij vanishes, the translational motion is
decoupled from the rotational motion, and provided Aij is invertible, the microrotation
rate is constrained to be half the vorticity, v = 1

2 (∇ × v). If, however, both the tensor
Ekij and the tensor Aij vanish (e.g. zero microrotation viscosity κ in the isotropic case),
the microrotation rate v is unconstrained.

When the grain geometry has R parallel to n, and the resistance to grain boundary sliding
is included, but relatively weak compared with the plating resistance, then the effective vis-
cosity tensor is dominated by the plating resistance, with C̃ijkl ≈ C(ij)(kl). However, the rela-
tive rotation rate G×

k of the grains is determined purely by the resistance to grain boundary
sliding (Appendix 1), as the tensors Aij and Ekij depend only on the sliding resistance. The
third-rank pseudo-tensor A−1

kp Epij in (A30) is independent of the grain boundary sliding vis-
cosity hgb and depends only on the geometry of the grain.

Wheeler [13] performed the same eliminations leading to (A30) and (A33) for the
specific case of hexagons in 2D. In a 2D medium, there is only a single non-zero component
G×
3 representing the relative rotation rate, and only the A33 and E3ij components of the

appropriate viscosity tensors are non-zero. The 2D eliminations yield

G×
3 = − 1

2

E3ij
A33

G(ij), (A34)

C̃ijkl = C(ij)(kl) −
E3ijE3kl
A33

, (A35)
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and the dimensionless tensors describing plating resistance for hexagons are given explicitly
as

C(ij)(kl) = 1
48V

∑3
f=1

N f
i R

f
j + N f

j R
f
i

( )
N f

k R
f
l + N f

l R
f
k

( )
l3f , (A36)

E3ij = 1
24V

∑3
f=1

N f
i R

f
j + N f

j R
f
i

( )
Nf × Rf
( )

3l
3
f , (A37)

A33 = 1
48V

∑3
f=1

Nf × Rf
( )

3 Nf × Rf
( )

3l
3
f . (A38)

Equation (23) in [13] is a special case of (A34), and equation (A35) can be used to repro-
duce the same constitutive laws as found by [13] for the cases where A33 = 0. As remarked
above, for plating resistance both E3ij and A33 vanish when Nf and Rf are parallel, which
can be seen in the expressions in (A37) and (A38) in the dependence on the cross product
Nf × Rf . In such cases, one cannot make the elimination leading to (A35), and instead we
simply have that the effective viscosity tensor is C̃ijkl = C(ij)(kl). Wheeler [13] states that ‘no
unique value of viscosity exists for the rheology of an array of regular hexagons’ when only
plating resistance is considered. He arrives at this conclusion based on taking different
limits of an elimination similar to that in (A35); however such an elimination is not poss-
ible when A33 vanishes. By Neumann’s principle the effective viscosity tensor of an array of
regular hexagonal grains is always isotropic. The shear viscosity is well defined and strictly
positive; the degeneracy is simply that the microrotational viscosity vanishes when the
only resistance to motion is plating.

Appendix 3. Constraints

A.3. Incompressibility
Material models can be supplemented by constraints which forbid certain modes of defor-
mation. An important example of this is an incompressibility constraint, which forbids bulk
deformation (∇ · v = Gkk = 0). The viscosity tensors here are derived assuming bulk defor-
mation is possible, with potential sources and sinks of vacancies where grain boundaries
meet [19,21,31]. The bulk deformation can be separated from the rest of the deformation
by splitting the Cosserat tensor Gij into an isotropic part and a trace-free part as

Gij = 1
N
Gkkdij + G{ij} (A39)

G{ij} = Gij − 1
N
Gkkdij, (A40)

where N is the dimension of the space. Here curly brackets indicate a tensor that yields zero
when contracted over the indices within the curly brackets.

For an incompressible medium, the dissipation depends only on the trace-free tensor
G{ij}. The constitutive laws in (12) and (13) are replaced by

sij = −Pdij + s{ij}, (A41)

s{ij} = C{ij}{kl}G{kl} + B{ij}klKkl, (A42)

xij = B{kl}ijG{kl} + DijklKkl, (A43)
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where P is the pressure, a Lagrange multiplier enforcing the incompressibility constraint
[15]. The viscosity tensors derived here can be reduced to those for an incompressible
medium as

C{ij}{kl} = Cijkl − 1
N
Cppkldij − 1

N
Cijqqdkl + 1

N2
Cppqqdijdkl, (A44)

B{ij}kl = Bijkl − 1
N
Bppkldij. (A45)

For the 2D isotropic medium considered in (96) and (97), the effect of adding an incompres-
sibility constraint is to replace the z∇(∇ · v) term in (96) by a −∇P term.

A.4. Constrained rotations
Another constraint that can be considered is that of constrained rotations, where we
demand that v = 1

2∇ × v everywhere, or equivalently that G[ij] = 0. It follows that
Kkk = ∇ ·v = 0. A pseudo-vector Lagrange multiplier Qk is introduced to enforce the
pseudo-vector constraint that G×

k = 0 [15]. The constitutive laws in (12) and (13) are
replaced by

sij = Qkekij + s(ij), (A46)

s(ij) = C(ij)(kl)G(kl) + B(ij)klKkl, (A47)

xij = B(kl)ijG(kl) + DijklKkl, (A48)

where the Lagrange multiplier represents the antisymmetric part of the stress tensor since
Qk = s×

k . For micropolar media with constrained rotations, the microrotation velocity v

can be eliminated from the governing equations as follows. The antisymmetric part of the
force-stress tensor can be eliminated from the conservation laws (1) and (2) to yield

s(ij),j + 1
2
eijkxkl,lj = 0. (A49)

The above equation, combined with the constitutive laws (A47) and (A48) describes the
micropolar medium with constrained rotations. In the case of the 2D isotropic medium con-
sidered in (96) and (97) the above can be simplified to

z∇ ∇ · v( ) + h∇2v − m

4
∇4v = 0. (A50)

This differs from the usual 2D Navier equation by the fourth-order term, representing the
resistance to relative rotations of the grains.
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