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, 900–903] has recently suggested that a correlation exists between peaks in the
ocean island basalt (OIB) 4He/3He distribution and peaks in crustal zircon ages. This correlation is based on
matching peaks seen in smooth kernel density estimates. Kernel density estimation is a very useful
technique, but care is required when choosing the smoothing bandwidth as spurious peaks can be produced
if the bandwidth is too small. Here I provide an introduction to a general statistical technique for determining
whether peaks in density estimates are significant, know as SiZer, focusing on its application to the 4He/3He
data. SiZer identifies only two statistically significant peaks in the OIB 4He/3He distribution, compared with
the eight peaks identified by Parman. The helium-continental crust correlation does not seem to be
supported by the current data.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Parman (2007) has recently shown a correlation between peaks in
ocean island basalt (OIB) 4He/3He distributions and peaks in the age
distributions of crustal zircons (Condie, 1998; Kemp et al., 2006). Such a
correlation has intriguing geochemical consequences (Porcelli, 2007)— in
particular, it links a record of mantle depletion (4He/3He) with a record of
crustal production (zircons), and thus provides a key constraint on the
chemical evolutionof theEarth. It suggests that the continentshavegrown
through distinct episodes of mantle melting over the Earth's history.

Parman's correlation raises some important statistical questions: How
do we identify peaks in distributions? How do we know if a peak we
observe in a histogram or a density estimate is really there? Can we
distinguish between real peaks and the spurious peaks that can arise as
artifactsof the samplingprocess? In fact, statisticalmethods foranswering
these questions have been developed, and the aim of this paper is to
provide an accessible introduction to some of them. In particular, I review
kernel densityestimation (Silverman,1986), a recently developedmethod
for identifying significant peaks known as SiZer (Chaudhuri and Marron,
1999), andGaussianmixturemodelling (McLachlan andPeel, 2000). I also
examine the problems and pitfalls of attaching significance to spurious
peaks.While the techniquesdescribedapplygenerally to anydata that can
plotted in a histogram, I focus here on the helium isotopic data. For amore
esc.cam.ac.uk.
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rigorous and detailed exposition of these ideas, the reader is referred to
the statistics literature. Formalmathematical definitions of the techniques
can be found in the appendices.

2. Kernel density estimation

The main focus of Parman's analysis are the probability density
functions (PDFs) of 4He/3He for different groups of basalts, shown in
figs. 1 and 2 of Parman (2007). These PDFs were generated by a
statistical technique known as kernel density estimation (Silverman,
1986), which can be thought of as refinement over histograms. Kernel
density estimates have two main advantages over histograms: they
are smooth, and they do not require the choice of end points of bins.
However, there is still one key parameter in kernel density estimation
that must be chosen by the user, known as the bandwidth, which is
analogous to the choice of bin size in a histogram. One must also
choose the shape of the kernel function (typically a Gaussian, as
assumed here), but this choice is generally less important than the
bandwidth. To form the kernel density estimate, each data point in the
sample is represented by a Gaussian centred on the data point, with
standard deviation given by the bandwidth. The smooth density
estimate curve is simply the sum of these individual Gaussians.
Different curves result from different choices of bandwidth.

Fig. 1 illustrates the problem of bandwidth selection. 1340 random
samples (the same number of samples as Parman's OIB data set) were
drawn from a specified bimodal distribution with PDF shown by the
dashed curves. The goal is to estimate this true underlying PDF from the
randomsamples. If the chosenbandwidth is too large, onlya singlepeak is
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Fig. 1. Kernel density estimates (solid lines) of 1340 random samples drawn from a
distribution with true density shown by the dashed line. Five different choices of
bandwidth are shown. a) is certainly over smoothed, as the estimate has only a single
peak. c) shows a bandwidth choice that is considered optimal by the method of
Sheather and Jones (1991). e) is certainly under smoothed, as the estimate shows
numerous spurious peaks that are not features of the true distribution.

Fig. 2. Kernel density estimates of 4He/3He OIB data for five different choices of
bandwidth. There are 1340 observations in the dataset. a) BW=120,000 is certainly over
smoothed. c) BW=3000 is the bandwidth that would be automatically chosen by the
method of Sheather and Jones (1991). d) BW=1500 is closest to Parman's choice of
bandwidth (see Figs. 1 and 2 of Parman, 2007). e) BW=750 is certainly under smoothed.
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found, and the estimate is said to be oversmoothed: we have missed
important features of the underlying distribution by this choice. On the
other hand, if the chosen bandwidth is too small, we undersmooth: the
density estimate has far too many peaks, and the many peaks that are
observeddonot reflect any feature of the true underlyingdistribution, but
are instead a spurious artifact of the sampling. The same effect canbe seen
in histograms by varying the bin size.

The important question is then, how to choose the bandwidth? In
fact, there are a number of techniques that automatically choose a good
bandwidth (Jones et al.,1996), and all software packages that implement
kernel density estimation comewith a default method. These automatic
choices of bandwidth typically try to minimise the mean integrated
squared error between the density estimate and the unknown true
density, based on various assumptions and approximations. For
example, the estimate shown in Fig. 1c is close to the bandwidth that
is automatically selected by the method of Sheather and Jones (1991)
(BW=0.31),whichmatches the truedensity ratherwell. Silverman's rule
of thumb (Silverman, 1986) for a good bandwidth gives a similar
estimate (BW=0.38). Silverman's rule of thumb only works well for
near-Gaussian densities, whereas the Sheather and Jones method is
more flexible and gives good results for a wider range of densities (see
Appendix A and Jones et al. (1996)).While there is still somedebate over
the best way to automatically choose a good bandwidth, an automatic
choice is generally preferable to a manual choice.

Kernel density estimates for Parman's OIB dataset are shown in
Fig. 2. In Parman's plots the bandwidth was manually chosen to be
around 1500 (compare Fig. 2d of this paper to figs. 1 and 2 of Parman
(2007)). A bandwidth chosen by the method of Sheather and Jones
(1991) is around 3000 (Fig. 2c), and by Silverman's rule of thumb
around 5000, which suggests Parman's density estimates may be
undersmoothed and suffer from spurious peaks. There can be good
reasons for manually choosing a smaller bandwidth: for example, if
one is interested in small scale features of the density function, or if
the density is thought to have well separated peaks. However, there is
always the danger that many of the peaks found with a small
bandwidth are artifacts of the sampling and do not reflect the true
distribution. Evenwith an automatic choice of bandwidth, a few peaks
may be seen that do not reflect the true distribution.

3. Feature significance

Since Parman's analysis is based on attaching physical significance
to peaks in the density estimates, it is crucial to determine which
peaks are statistically significant. Which peaks are really there? This is
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a question that has received a lot of attention in recent years
(Chaudhuri andMarron,1999; Duong et al., in press; Godtliebsen et al.,
2002; Hannig and Marron, 2006), and is known in the statistics
literature as the problem of feature significance.

One technique for feature significance is the SiZer (Significant
Zero crossings of the derivative) method of Chaudhuri and Marron
(1999), which is straight-forward to perform in modern software
(see Appendix D for a discussion of available software). There are
two main ideas to SiZer: First is the notion of scale space — that
instead of trying to find the one bandwidth that provides the
closest match to the unknown true density, we instead look at the
whole range of bandwidths, and explore the different features that
occur on different scales. Secondly, peaks and troughs are identified
by finding the regions of significant gradient (zero crossings of the
derivative). The information is presented in a simple visual way by
the SiZer map.

The SiZer map shows location (what is being measured, e.g. 4He/
3He) and scale (the bandwidth). The map displays the results of
multiple hypothesis tests, which determine whether the gradient at a
particular location viewed at a particular bandwidth is significant. As
with all hypothesis testing, a significance level must be chosen for the
test, and a level of 5% is used here throughout. There are three
outcomes of the test: either there is significant positive gradient, a
significant negative gradient, or there is simply not enough evidence
to say either way (the gradient could be zero, a null hypothesis). In the
SiZer map, regions of significant positive gradients are coloured blue;
significant negative gradients, red; and no significant gradient, purple.
There is also a fourth colour, grey, corresponding to those regions
where there is simply not enough data to perform the test. At a given
bandwidth, a significant peak can be identified when a region of
significant positive gradient is followed by a region of significant
negative gradient (i.e. blue–red), and a significant trough by the
reverse (red–blue).

A SiZer map for the example bimodal distribution is shown in
Fig. 3. In this example, the bimodal structure is clearly brought out by
the SiZer map, as the two peaks and the trough can be identified by
the left to right blue–red–blue–red pattern on the map that occurs for
a range of bandwidths (0.29 to 0.74). Note that for very large
bandwidths (N0.74) there is just one significant peak (just blue–red),
as would be expected for a large amount of smoothing (see Fig.1a). For
very small bandwidths (b0.18) there is simply not enough information
to say anything statistically significant (all purple), and this reflects the
fact that large amounts of data are required to resolve small scales.

Fig. 4 shows a SiZer map for Parman's OIB dataset. Only two peaks
can be identified: one around 83,000–86,000 (close to themainMORB
peak) and one less well located around 46,000–56,000. There is a
significant trough around 71,000–74,000. There are additional peaks
visible in the Sheather and Jones (1991) density estimate, but these are
not statistically significant peaks. Parman's analysis is based on
attaching significance to more peaks than just the two found by SiZer.

The story is similar for Parman's other data sets: there are only one
or two statistically significant peaks in each set. Fig. 5 shows the
corresponding SiZer maps for MORB, Hawaii, and Iceland, alongside
kernel density estimates with an automatically chosen bandwidth.
The well-known sharp peak in MORB around 88,000–91,000 is clearly
identified as a significant peak by the SiZer map. A second peak in
MORB is seen in the Sheather and Jones density estimate, but is not a
significant SiZer peak. In fact, an additional red region does start to
appear at slightly lower significance levels (~10%), so there is possibly
a second peak in MORB. In Hawaii there are two peaks: a sharp one
around 29,000–31,000, and a less well constrained one around
79,000–86,000. Iceland has a single statistically significant peak
around 43,000–53,000. This is at odds with Parman's analysis, in
which it is claimed that Hawaii and Iceland have eight statistically
significant peaks in their 4He/3He distributions rather than the one or
two peaks picked up by the SiZer analysis here.
For Hawaii and Iceland the sample sizes are both less than 500, and
it is highly unlikely that eight peaks so close together can be resolved
from such a small sample size. An example demonstrating this is
shown in Fig. 6, where random samples have been taken from a
chosen density that has eight peaks. With only 500 random samples,
the eight peaks cannot be resolved, and this is clearly shown in the
SiZer map and the density estimate. However, with 5000 random
samples, the eight peak structure is clear in both SiZer map and
density estimate. For this example, a sample size of around 4000 or
higher seems to be required before the eight peaks can be resolved. In
general, the number of peaks that can be resolved depends not only on
the sample size, but also on the underlying distribution. While eight
statistically significant peaks cannot be identified in the helium data
sets, it should be noted that the helium–continental crust correlation
is based on four main peaks.

4. Gaussian mixture modelling

Kernel density estimation and SiZer are both non-parametric
methods: that is to say, they make no assumptions about the
underlying functional form of the true density. In some circumstances
the underlying functional form may be known, or we may have good
reasons for assuming a certain functional form.

In such cases, parametric methods are preferred. Mixture model-
ling is one such parametric method (e.g. McLachlan and Peel, 2000;
Fraley and Raftery, 2002), and typically assumes that the true density
is a sum of small number of Gaussian distributions. Given a sample
from the distribution, the goal of mixture modelling is to identify the
number of Gaussian components, along with their means and
standard deviations. Mixture modelling provides an alternative
approach to density estimation, and is commonly used in geochronol-
ogy (Sambridge and Compston, 1994; Jasra et al., 2006). Mixture
modelling was also used to suggest a link between the zircon ages and
osmium isotopic measurements of mantle samples in a recent study
by Pearson et al. (2007).

Fig. 7 shows best fitting Gaussian mixture models for two example
distributions and the OIB, MORB, Hawaii and Iceland data sets. The
first example shows a mixture model calculated from the same 1340
samples of the bimodal distribution used in Fig. 1. In this case, the true
underlying density is a sum of two Gaussians with means at −1.5 and
1.5, both with unit variance, and added together in equal proportion.
Unsurprisingly, the mixture model calculated from the random
samples does a very good job at recovering the two components.

The second example shows a mixture model calculated from 1340
samples from a uniform distribution (used again later in Fig. 9). In this
case, the true density cannot be expressed in the form of a Gaussian
mixture model, and thus applying amixture model to the samples will
lead to spurious results. In this example, seven spurious components
are identified. This example serves as a warning — one can always
calculate a Gaussian mixture model from a set of data, but the results
are only meaningful if the underlying assumption can be justified.

If the assumptions are true, then mixture modelling is a much
more powerful technique than the non-parametric techniques
described earlier. For example, to identify the eight peaks of the
example distribution shown in Fig. 6 typically takes at least 4000
samples with SiZer. However, if a mixture model is assumed, the eight
components can be identified with around 1500 samples or more. If it
is additionally assumed that each of the components have equal
variance, then 500 samples are enough.

Mixture modelling identifies three components in the OIB dataset,
at 36,000, 55,000, and 86,000, and these three components have
reasonable overlap and occur in roughly equal proportion (Fig. 7). The
components at 55,000 and 86,000 are close to the two SiZer peaks, but
the component at 36,000 does not correspond to a SiZer peak. For
MORB two components are identified, the dominant one at 90,000
(74% of the total) matching the SiZer peak, and a smaller component



Fig. 3. SiZer map (top) and kernel density estimate (bottom) for the 1340 random
samples used in Fig. 1. In the SiZer map, blue shows regions of significant positive
gradient; red, region of significant negative gradient; purple, regions where no
significant gradient can be identified: the slope could be zero, positive, or negative. Grey
regions have insufficient data to make inferences. The bandwidth is on a logarithmic
scale. Two peaks and a trough are clearly identified from the blue–red–blue–red
pattern, showing that we are able to resolve the bimodal structure of the true density
from the random samples. The dashed horizontal line on the SiZer map shows the
bandwidth used in the kernel density estimate below, which is as in Fig. 1c with the
Sheather and Jones (1991) choice of bandwidth. Notice that the peaks and troughs in the
density estimate lie in the purple regions between red and blue on the SiZer map. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 4. SiZer map (top) and kernel density estimate (bottom) of Parman's OIB dataset as
used in Fig. 2, plotted in the same style as Fig. 3. Kernel density estimate is as in Fig. 2c,
with the Sheather and Jones (1991) choice of bandwidth. From the SiZer map it seems
there are only two statistically significant peaks that can be resolved, despite the greater
number of peaks that are seen in the density estimate.
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around 62,000. Hawaii splits into three overlapping components with
roughly equal proportions, two of which correspond to the SiZer peaks
(29,000 and 82,000) and onewhich does not (51,000). Iceland has two
components, a dominant one at 47,000 (73% of the total) correspond-
ing to the SiZer peak, and a broader smaller second component at
82,000 which does not cause a peak in the overall density estimate.

On the whole, the density estimates produced for the helium data
by the mixture models look reasonably similar to the kernel density
estimates with the Sheather and Jones choice of bandwidth (Figs. 4
and 5). There are some small differences, e.g. Hawaii lacks the deep
trough around 74,000 that is seen in the kernel density estimate. In
each case mixture modelling has identified one more component than
significant peaks identified by SiZer, which is unsurprising since non-
parametric techniques such as SiZer will tend to be more conservative
than parametric techniques. Despite the extra components, the
number of peaks in the mixture model densities is still far fewer
than identified by Parman.

The question remains as to whether mixture models are appro-
priate for studying the helium isotope distributions: Are the
components we find spurious, as they are in uniform example of
Fig. 7? Is there a good reason for believing that the helium isotope
distributions result from a sum of a small number of individual
Gaussians? For example, a more appropriate model for the Iceland
datamight be a single skewed non-Gaussian distribution rather than a
sum of two Gaussians (Fig. 7). There are generalisations of mixture
modelling that consider sums of non-Gaussian distributions (e.g. Jasra
et al. (2006)), but for the helium isotopes it is not clear what the
appropriate parametric model should be. Without a clear reason for
believing a particular functional form for the underlying density, non-



Fig. 5. SiZer maps and kernel density estimates for Parman's MORB, Hawaii and Iceland datasets. Bandwidths for the kernel density estimates are chosen using themethod of Sheather and Jones (1991). MORB and Iceland only seem to have one
significant peak, Hawaii has two. The dashed horizontal lines on the SiZer maps show the bandwidth corresponding to the kernel density estimates. Notice that the peaks in the kernel density estimates do not match up between Hawaii and
Iceland.
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parametric methods such as kernel density estimation and SiZer are
preferred.

5. From spurious peaks to spurious correlations

From the analyses above, it seems thatmany of the peaks identified
by Parman are not statistically significant. However, the question
remains as to why Parman's major peaks correlate so well with the
zircon age peaks. Shown in Fig. 8 are kernel density estimates for OIB,
along with the four major peaks (69,000, 56,000, 43,000 and 30,000)
that Parman associated with the four main zircon age peaks (1.2, 1.9,
2.7, and 3.3 Gyr). Notice that these four ages are almost evenly spaced.
As such the four ages will correlate well with any four numbers that
are reasonably evenly spaced, e.g. the correlation coefficient of 1, 2, 3,
4 with these ages is 0.9986.

By undersmoothing a density estimate, spurious peaks are
produced. Moreover these peaks tend to be reasonably evenly spaced
(although not precisely evenly spaced). The spacing of the spurious
peaks is controlled by the bandwidth rather than any inherent feature
Fig. 6. An example of increasing resolution with increasing sample size, showing SiZer maps
has eight peaks and is shown by the dashed line in the density plots. The left plots were gen
resolve the peaks. The right plots have a larger sample size (5000), and can clearly resolve
of the underlying distribution. An example is shown in Fig. 9. 1340
random samples were taken from a uniform distribution, and an
undersmoothed kernel density estimate calculated. The peaks seen in
Fig. 9 are completely spurious, as they do not reflect any feature of the
underlying distribution, and yet the first four peaks correlate with the
four main zircon ages with a correlation coefficient of 0.9992. When
undersmoothing a uniform distribution, the spacing between the
spurious peaks is on average around five times the bandwidth,
although there is a spread around this average value. Given enough
spurious peaks (enough undersmoothing), one can always find a set of
four that are very nearly evenly spaced and can bewell correlatedwith
the zircon ages. Some of Parman's peaks are likely to be similarly
spurious, and their correlation with the zircon ages may not reflect a
common underlying physical cause, but may be simply an artifact of
the statistical technique.

Another argument Parman puts forth to justify the significance of
peaks is their recurrence across different islands. However, if under-
smoothed density estimates for different populations use the same
bandwidth (as they do in Parman's fig. 1), then artificial correlations
and kernel density estimates. Both cases have the same underlying true density, which
erated from 500 random samples from the distribution, which is clearly not enough to
the eight peaks.



Fig. 7. Best fitting Gaussian mixture models using the method of Fraley and Raftery (2008) (see Appendix C for more details of the fitting procedure). Shown are the bimodal example
of Figs. 1 and 3, a uniform example (calculated from 1340 random samples from a uniform distribution on the interval 0 to 1, also used in Fig. 9), and the OIB, MORB, Hawaii and
Iceland data sets. Solid lines show the density estimate generated by the mixture model. Dotted lines show the individual Gaussian components which are summed to form the
density estimate. Dashed lines show the true densities for the two example distributions.
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can arise between the peaks of the different density estimates due to
this common choice of bandwidth. An example of this effect is shown
for random data in Fig. 10. Two sets of samples were taken from two
different uniform distributions, but the bandwidth of their density
estimates was chosen to be the same. The spurious peaks caused by
undersmoothing line up in some places, just as some of Parman's
peaks in Hawaii and Iceland line up. This matching phenemona arises
whenever one compares two random signals that have the same
average frequency content, where the signals are occasionally seen to
be going approximately in phase. Here the two kernel density
estimates have very similar average frequency, since their frequency
content is controlled by the bandwidth. The matching of Parman's
peaks between different islands is likely to be a consequence of the
common bandwidth rather than a common physical cause.

There is no recurrence between the different islands using only the
statistically significant peaks. The SiZer analysis suggests Hawaii has



Fig. 8. Kernel density estimate of OIB datawith Parman's choice of bandwidth=1500. Solid
vertical lines show the four main peaks corresponding to the four main zircon ages in
Parman's correlation (zircon ages shown at top of plot). In fact, the fourth line doesn't
intersect aOIBpeak, but instead intersects aMORBpeakwithParman's choiceof bandwidth
(see Fig. 1 of Parman (2007)). Notice that the four lines are nearly equally spaced.

Fig. 10. An example of matching of spurious peaks across different distributions. Shown
are undersmoothed kernel density estimates for two separate samples. The first (red) is
500 samples from a uniform distribution on the interval 0 to 1, the second (blue) is 500
samples from a uniform distribution on interval 0.15 to 0.85. Dashed lines show true
PDFs. Both kernel density estimates have a bandwidth of 0.02. Vertical lines illustrate
matching between some of the spurious peaks. The average spacing between spurious
peaks is around five times the chosen bandwidth (0.10).
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peaks at around 29000 and 82000, and Iceland has a peak at around
47000. The only other individual island data set that might be well
characterised is Reunion (with 76 samples, see Parman (2007)) which
has a peak at around 56000. All other islands have fewer than 70
samples, and are not yet sufficiently well sampled to start identifying
clear peaks. Mixture modelling identifies only one further peak, at
around 51000 in Hawaii, and that too does not match with any other
island. MORB has peaks at around 90000 and maybe also 62000, but
these do not match any of the above peaks either.

6. Discussion

It would be extremely useful to perform a SiZer analysis on the
other data set used in Parman's correlation, namely the crustal zircon
age data (Condie,1998). Unfortunately, unlike the helium isotopic data
(Abedini et al., 2006), there is not a publicly available compilation of
zircon ages, and so the analysis has not been done. The zircon age
histogram appears much more strongly peaked than the 4He/3He
distributions, and I suspect that a SiZer analysis will find several
statistically significant zircon age peaks. I hope that future zircon age
compilations will be more accessible (e.g. Voice et al., 2007), and that
the statistical significance of peaks will be thoroughly tested.
Fig. 9. An example of nearly evenly spaced spurious peaks. 1340 random samples have
been taken from a uniform distribution (with true density shown by the dashed line),
and a kernel density estimate calculated with a bandwidth of 0.03. Four evenly spaced
spurious peaks have been marked with vertical lines, and correlate with the four main
zircon ages (1.2, 1.9, 2.7, 3.3 Gyr) with a correlation coefficient of 0.9992.
The techniques discussed here take no account of measurement
error: it is assumed we are sampling from the true underlying density
without error. Deconvolution kernel density estimation (Stefanski and
Carroll, 1990; Delaigle and Gijbels, 2004) is one technique that takes
account of measurement error, but it is more involved and not yet
available in standard software. Techniques that take account of
measurement error may prove very useful.

Feature significance is an area of active research (Duong et al., in
press; Hannig and Marron, 2006), and its future development is likely
to benefit geochemistry greatly. Feature significance extends beyond
the 1D density estimation problem described here. The multidimen-
sional generalisations of SiZer (Duong et al., in press; Godtliebsen
et al., 2002) could be useful in finding the interesting peaks in multi-
dimensional isotope ratio space (e.g. including 143Nd/144Nd, 207Pb/
204Pb, etc.) Moreover, SiZer can also be used for examining scatterplot
smooths (Chaudhuri andMarron,1999, 2000), which could potentially
be useful for identifying significant features in the spatial pattern of
isotope ratios (e.g. isotopic data sets along the ridges, Agranier et al.,
2005).

As Parman (2007) has remarked, it should be emphasised that
there are further complications in attaching meaning to peaks, even if
they have been shown to be statistically significant. Perhaps the most
important issue is that in practice we are not simply drawing random
samples from a population: geochemists' sampling is anything but
random. Some areas are sampled more frequently than others, simply
because they are more accessible, and this may well result in
statistically significant peaks that have nothing to do with mantle
evolution. Even statistically significant peaks require care before
attaching any physical meaning to them.

7. Conclusions

Kernel density estimation is a powerful technique for estimating
PDFs, and deserves to be used routinely. However, one must always be
conscious of bandwidth effects, and in particular it is best not to
change from the default choice without good reason. Moreover, one
must be careful not to attach too much significance to every small
bump found in such density estimates. Feature significance techniques
such as SiZer are one way of deciding which peaks are significant, and
SiZer is particularly straightforward to perform in modern software.

SiZer analysis suggests that there are only two statistically
significant peaks in the OIB 4He/3He distribution. The zircon age
data has not been analysed, but probably contains more peaks. The
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more measurements that are made, the better we will be able resolve
small scale features in the distributions. Maybe we will start seeing
additional peaks in the helium data that can be related to the crustal
ages, and a helium–continental crust correlation will be established.
But for now, the correlation is not supported by the data.
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Appendix A. Kernel density estimation

Given a sample of n data points X1, X2,…, Xn independently drawn
from a distribution with probability density f(x), the kernel density
estimator f̂ h(x) is defined by

f̂ h xð Þ ¼ 1
n
∑
n

i¼1
Kh x−Xið Þ; ðA:1Þ

where Kh (y)=(1/h)K(y/h) and h is the bandwidth. K(y) is the chosen
kernel function,which is assumed throughout this paper tobe aGaussian,

K yð Þ ¼ 1ffiffiffiffiffiffi
2π

p exp −y2=2
� �

: ðA:2Þ

The problem of bandwidth selection is to choose a value of h such
that the estimator f̂ h(x) provides a good estimate of the true
probability density f(x). One measure of the quality of the estimator
is the mean integrated square error (MISE), defined by

MISE ¼ E∫∞−∞ f xð Þ− f̂ h xð Þ
� �2

dx; ðA:3Þ

where E denotes expectation. Ideally, we would like to minimise the
MISE by an appropriate choice of bandwidth. However, we cannot
calculate the MISE because we don't know f(x). Indeed, if we knew f(x)
there would be no point in doing density estimation! One solution to
this problem is to minimise an approximation to the MISE rather than
the MISE itself. When the number of data points is large (n→∞) the
MISE is well approximated by the asymptotic mean integrated
squared error (AMISE) given by

AMISE ¼ R Kð Þ
nh

þ h4R f Wð ÞS Kð Þ2
4

; ðA:4Þ

where

R �ð Þ ¼ ∫∞−∞� xð Þ2dx; ðA:5Þ

S �ð Þ ¼ ∫∞−∞x2� xð Þdx: ðA:6Þ

The first term on the right hand side of Eq. (A.4), R(K)/nh, is the
integrated variance of the estimator, and the second term is the
integrated squared bias of the estimator. The two terms behave in
opposite ways as the bandwidth h is varied. For large values of the
bandwidth h the estimator has low variance but high bias, whereas for
small values of h it has low bias but high variance. The AMISE is
minimised when h=hAMISE where

hAMISE ¼ R Kð Þ
nR f Wð ÞS Kð Þ2
 !1=5

: ðA:7Þ

Importantly, from this expression we see that the optimal
bandwidth decreases with increasing n, scaling as hAMISE~n−1/5. This
reflects the fact that given more data we can resolve smaller scale
features of the density.

For a Gaussian kernel, R Kð Þ ¼ 1= 2
ffiffiffiffiffi
πÞp�

and S(K)=1. Unfortunately,
hAMISE still depends on the unknown true density f(x) through R(f ″).
The final step is to replace R(f″) by an approximation based on the
data (known as the “plug-in” approach), and it is in this step that the
different bandwidth selection methods used in this paper differ.

A.1 Silverman's rule of thumb

Silverman's rule of thumb (Silverman, 1986) is based on estimating
R(f″) by assuming f is a Gaussian distributionwith variance σ2, namely

R f Wð Þ≈ 3

8
ffiffiffiffiffiffiffiffiffi
πσ5

p
;

ðA:8Þ

leading to

hGaussian ¼ 4σ5

3n

� �1=5

¼ 1:06σn−1=5: ðA:9Þ

The standard deviation σ can then be estimated using the sample
standard deviation. Silverman's rule of thumb is actually a slight
modification of the above, where

hSilverman ¼ 0:9σn−1=5; ðA:10Þ

where σ is the minimum of the sample standard deviation and the
interquartile range divided by 1.34 (which makes the estimator a bit
more robust against outliers). This choice of bandwidth tends to be
good if the true distribution is near Gaussian (as would be expected,
given the assumption above), but may perform poorly on other
distributions, particularly multi-modal ones.

A.2 Sheather and Jones

The method of Sheather and Jones (1991) uses a more sophisti-
cated technique to estimate R(f″), and is based on solving the fixed
point equation

h ¼ R Kð Þ
nR f̂ Wg hð Þ
� �

S Kð Þ2

0
B@

1
CA

1=5

: ðA:11Þ

where a kernel density estimator has been used in place of f″. The
bandwidth g(h) for the estimator of R(f″) differs from h because
bandwidths that are good for curve estimation differ from those
appropriate for estimating R(f ″). How this better bandwidth g(h) is
chosen is an important part of themethod, and the interested reader is
referred to Sheather and Jones (1991) for the technical details. The
Sheather and Jones method provides a much better approximation to
hAMISE than Silverman's rule of thumb but is computationally more
expensive.
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Appendix B. Feature significance

The basis of the SiZermethod is the notion of scale space. Instead of
trying to find a single bandwidth hwhich produces an estimator f̂ h(x)
that best matches the true underlying curve f(x), the whole range of
bandwidths is considered important to constrain features on different
scales. Moreover, instead of basing the statistical inference on a
comparison between f̂ h and f, the comparison is made between f̂ h
and fh where fh= f ⁎ Kh is a convolution of the true density with the
kernel (i.e. we are comparing a kernel density estimate with an
appropriately blurred version of the true density).

In constructing the SiZer map, at each point (x,h) a confidence
interval is constructed for the derivative of the kernel density
estimate. The confidence interval takes the form

f̂ Vh xð ÞFq �ŜDð̂f Vh xð ÞÞ; ðB:1Þ

where ŜD denotes the estimate of standard deviation and q is an
appropriate quantile. If 0 lies outside this interval the gradient is said
to be significant, and it appears as red (negative) or blue (positive) on
the SiZer map. If 0 is within the interval, the gradient is not significant,
and it appears as purple on the SiZer map. q depends on the chosen
significance level α, and its calculation is rather subtle due to the
simultaneous nature of the hypothesis test (see Chaudhuri and
Marron (1999) and Duong et al. (in press) for further details).

Appendix C. Gaussian mixture modelling

In anm-component Gaussian mixture model it is assumed that the
true probability density takes the form

f xð Þ ¼ ∑
m

i¼1
wip x; μ i;σ ið Þ; ðC:1Þ

where

p x; μ i;σ ið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πσ i

p exp −
x−μ i

σ i

� �2
 !

; ðC:2Þ

and

∑
m

i¼1
wi ¼ 1; wiN0: ðC:3Þ

The {µi} and {σi} are the means and standard deviations of the m
individual Gaussian components, and {wi} are theweights,which specify
the proportion each component contributes to the overall population.

Given a sample of n data points X1,X2,...Xn from the distributionwith
density f(x), the goal inmixturemodelling is to estimate the parameters,
m, {µi}, {σi}, and {wi} from the data. Some parameters may be fixed in
advance and not determined from the data: for example, a certain
number of components might be assumed, or it might be assumed that
all the components have the same variance. However, for the bestfitting
mixture models shown in Fig. 7, no parameters were fixed in advance.
The best fit means, variances, and proportions were estimated from the
data by a maximum likelihood approach, using the Expectation–
Maximization (EM) algorithm. The best-fit number of components
was determined by the Bayesian Information Criterion (BIC), which
penalizes models that are overly complex (have too many free
parameters, see Fraley and Raftery (2008) for further details).
Appendix D. Software availability

All data analysis was performed in the freely available “R”
statistical software (R Development Core Team, 2008), version 2.6.2
(http://www.r-project. org). Kernel density estimationwas performed
with the built-in function “density”, SiZer maps were calculated using
the “feature” package, version 1.1–12 (Duong et al., in press), and
Gaussian mixture models were calculated using the “mclust” package,
version 3.1–3 (Fraley and Raftery, 2008). In MATLAB, kernel density
estimation can be performed with “ksdensity” in the Statistics
toolbox, and routines for performing SiZer analysis are available at
http://www.stat.unc.edu/faculty/marron/marron_software.html.
There are also online web-based applets available for these techni-
ques: kernel density estimation at http://www.wessa.net, and SiZer at
http://www.wagner.com.
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