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Abstract

Parman [Nature (2007) 446, 900-903] has recently suggested that a correlation exists
between peaks in the ocean island basalt (OIB) 4He/3He distribution and peaks in
crustal zircon ages. This correlation is based on matching peaks seen in smooth
kernel density estimates. Kernel density estimation is a very useful technique, but
care is required when choosing the smoothing bandwidth as spurious peaks can
be produced if the bandwidth is too small. Here I provide an introduction to a
general statistical technique for determining whether peaks in density estimates are
significant, know as SiZer, focusing on its application to the 4He/3He data. SiZer
identifies only two statistically significant peaks in the OIB 4He/3He distribution,
compared with the eight peaks identified by Parman. The helium-continental crust
correlation does not seem to be supported by the current data.
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1 Introduction

Parman (2007) has recently shown a correlation between peaks in ocean is-
land basalt (OIB) 4He/3He distributions and peaks in the age distributions
of crustal zircons (Condie, 1998; Kemp et al., 2006). Such a correlation has
intriguing geochemical consequences (Porcelli, 2007) - in particular, it links
a record of mantle depletion (4He/3He) with a record of crustal production
(zircons), and thus provides a key constraint on the chemical evolution of the
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Earth. It suggests that the continents have grown through distinct episodes of
mantle melting over the Earth’s history.

Parman’s correlation raises some important statistical questions: How do we
identify peaks in distributions? How do we know if a peak we observe in a
histogram or a density estimate is really there? Can we distinguish between
real peaks and the spurious peaks that can arise as artifacts of the sampling
process? In fact, statistical methods for answering these questions have been
developed, and the aim of this paper is to provide an accessible introduction
to some of them. In particular, I review kernel density estimation (Silverman,
1986), a recently developed method for identifying significant peaks known
as SiZer (Chaudhuri and Marron, 1999), and Gaussian mixture modelling
(McLachlan and Peel, 2000). I also examine the problems and pitfalls of at-
taching significance to spurious peaks. While the techniques described apply
generally to any data that can plotted in a histogram, I focus here on the
helium isotopic data. For a more rigorous and detailed exposition of these
ideas, the reader is referred to the statistics literature. Formal mathematical
definitions of the techniques can be found in the appendices.

2 Kernel density estimation

The main focus of Parman’s analysis are the probability density functions
(PDFs) of 4He/3He for different groups of basalts, shown in Figures 1 and 2 of
Parman (2007). These PDFs were generated by a statistical technique known
as kernel density estimation (Silverman, 1986), which can be thought of as
refinement over histograms. Kernel density estimates have two main advan-
tages over histograms: they are smooth, and they do not require the choice of
end points of bins. However, there is still one key parameter in kernel density
estimation that must be chosen by the user, known as the bandwidth, which
is analogous to the choice of bin size in a histogram. One must also choose
the shape of the kernel function (typically a Gaussian, as assumed here), but
this choice is generally less important than the bandwidth. To form the kernel
density estimate, each data point in the sample is represented by a Gaussian
centred on the data point, with standard deviation given by the bandwidth.
The smooth density estimate curve is simply the sum of these individual Gaus-
sians. Different curves result from different choices of bandwidth.

Figure 1 illustrates the problem of bandwidth selection. 1340 random samples
(the same number of samples as Parman’s OIB data set) were drawn from
a specified bimodal distribution with PDF shown by the dashed curves. The
goal is to estimate this true underlying PDF from the random samples. If the
chosen bandwidth is too large, only a single peak is found, and the estimate is
said to be oversmoothed: we have missed important features of the underlying
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distribution by this choice. On the other hand, if the chosen bandwidth is
too small, we undersmooth: the density estimate has far too many peaks,
and the many peaks that are observed do not reflect any feature of the true
underlying distribution, but are instead a spurious artifact of the sampling.
The same effect can be seen in histograms by varying the bin size.

The important question is then, how to choose the bandwidth? In fact, there
are a number of techniques that automatically choose a good bandwidth (Jones
et al., 1996), and all software packages that implement kernel density estima-
tion come with a default method. These automatic choices of bandwidth typ-
ically try to minimise the mean integrated squared error between the density
estimate and the unknown true density, based on various assumptions and
approximations. For example, the estimate shown in Figure 1c is close to the
bandwidth that is automatically selected by the method of Sheather and Jones
(1991) (BW=0.31), which matches the true density rather well. Silverman’s
rule of thumb (Silverman, 1986) for a good bandwidth gives a similar estimate
(BW=0.38). Silverman’s rule of thumb only works well for near-Gaussian den-
sities, whereas the Sheather and Jones method is more flexible and gives good
results for a wider range of densities (see appendix A and Jones et al. (1996)).
While there is still some debate over the best way to automatically choose
a good bandwidth, an automatic choice is generally preferable to a manual
choice.

Kernel density estimates for Parman’s OIB dataset are shown in Figure 2.
In Parman’s plots the bandwidth was manually chosen to be around 1500
(compare Figure 2d of this paper to Figures 1 and 2 of Parman (2007)). A
bandwidth chosen by the method of Sheather and Jones (1991) is around 3000
(Figure 2c), and by Silverman’s rule of thumb around 5000, which suggests
Parman’s density estimates may be undersmoothed and suffer from spurious
peaks. There can be good reasons for manually choosing a smaller bandwidth:
for example, if one is interested in small scale features of the density function,
or if the density is thought to have well separated peaks. However, there is
always the danger that many of the peaks found with a small bandwidth are
artifacts of the sampling and do not reflect the true distribution. Even with an
automatic choice of bandwidth, a few peaks may be seen that do not reflect
the true distribution.

3 Feature significance

Since Parman’s analysis is based on attaching physical significance to peaks in
the density estimates, it is crucial to determine which peaks are statistically
significant. Which peaks are really there? This is a question that has received
a lot of attention in recent years (Chaudhuri and Marron, 1999; Duong et al.,

3



2008; Godtliebsen et al., 2002; Hannig and Marron, 2006), and is known in
the statistics literature as the problem of feature significance.

One technique for feature significance is the SiZer (Significant Zero crossings
of the derivative) method of Chaudhuri and Marron (1999), which is straight-
forward to perform in modern software (see appendix D for a discussion of
available software). There are two main ideas to SiZer: First is the notion of
scale space - that instead of trying to find the one bandwidth that provides
the closest match to the unknown true density, we instead look at the whole
range of bandwidths, and explore the different features that occur on differ-
ent scales. Secondly, peaks and troughs are identified by finding the regions
of significant gradient (zero crossings of the derivative). The information is
presented in a simple visual way by the SiZer map.

The SiZer map shows location (what is being measured, e.g. 4He/3He) and
scale (the bandwidth). The map displays the results of multiple hypothesis
tests, which determine whether the gradient at a particular location viewed
at a particular bandwidth is significant. As with all hypothesis testing, a sig-
nificance level must be chosen for the test, and a level of 5% is used here
throughout. There are three outcomes of the test: either there is significant
positive gradient, a significant negative gradient, or there is simply not enough
evidence to say either way (the gradient could be zero, a null hypothesis). In
the SiZer map, regions of significant positive gradients are coloured blue; sig-
nificant negative gradients, red; and no significant gradient, purple. There is
also a fourth colour, grey, corresponding to those regions where there is simply
not enough data to perform the test. At a given bandwidth, a significant peak
can be identified when a region of significant positive gradient is followed by a
region of significant negative gradient (i.e. blue-red), and a significant trough
by the reverse (red-blue).

A SiZer map for the example bimodal distribution is shown in Figure 3. In this
example, the bimodal structure is clearly brought out by the SiZer map, as the
two peaks and the trough can be identified by the left to right blue-red-blue-
red pattern on the map that occurs for a range of bandwidths (0.29 to 0.74).
Note that for very large bandwidths (> 0.74) there is just one significant peak
(just blue-red), as would be expected for a large amount of smoothing (see
Figure 1a). For very small bandwidths (< 0.18) there is simply not enough in-
formation to say anything statistically significant (all purple), and this reflects
the fact that large amounts of data are required to resolve small scales.

Figure 4 shows a SiZer map for Parman’s OIB dataset. Only two peaks can
be identified: one around 83000-86000 (close to the main MORB peak) and
one less well located around 46000-56000. There is a significant trough around
71000-74000. There are additional peaks visible in the Sheather and Jones
(1991) density estimate, but these are not statistically significant peaks. Par-
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man’s analysis is based on attaching significance to more peaks than just the
two found by SiZer.

The story is similar for Parman’s other data sets: there are only one or two
statistically significant peaks in each set. Figure 5 shows the corresponding
SiZer maps for MORB, Hawaii, and Iceland, alongside kernel density esti-
mates with an automatically chosen bandwidth. The well-known sharp peak
in MORB around 88000-91000 is clearly identified as a significant peak by the
SiZer map. A second peak in MORB is seen in the Sheather and Jones density
estimate, but is not a significant SiZer peak. In fact, an additional red region
does start to appear at slightly lower significance levels (∼ 10%), so there is
possibly a second peak in MORB. In Hawaii there are two peaks: a sharp one
around 29000-31000, and a less well constrained one around 79000-86000. Ice-
land has a single statistically significant peak around 43000-53000. This is at
odds with Parman’s analysis, in which it is claimed that Hawaii and Iceland
have eight statistically significant peaks in their 4He/3He distributions rather
than the one or two peaks picked up by the SiZer analysis here.

For Hawaii and Iceland the sample sizes are both less than 500, and it is
highly unlikely that eight peaks so close together can be resolved from such a
small sample size. An example demonstrating this is shown in Figure 6, where
random samples have been taken from a chosen density that has eight peaks.
With only 500 random samples, the eight peaks cannot be resolved, and this
is clearly shown in the SiZer map and the density estimate. However, with
5000 random samples, the eight peak structure is clear in both SiZer map and
density estimate. For this example, a sample size of around 4000 or higher
seems to be required before the eight peaks can be resolved. In general, the
number of peaks that can be resolved depends not only on the sample size,
but also on the underlying distribution. While eight statistically significant
peaks cannot be identified in the helium data sets, it should be noted that the
helium - continental crust correlation is based on four main peaks.

4 Gaussian mixture modelling

Kernel density estimation and SiZer are both non-parametric methods: that is
to say, they make no assumptions about the underlying functional form of the
true density. In some circumstances the underlying functional form may be
known, or we may have good reasons for assuming a certain functional form.
In such cases, parametric methods are preferred. Mixture modelling is one
such parametric method (e.g. Fraley and Raftery, 2002; McLachlan and Peel,
2000), and typically assumes that the true density is a sum of small number of
Gaussian distributions. Given a sample from the distribution, the goal of mix-
ture modelling is to identify the number of Gaussian components, along with
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their means and standard deviations. Mixture modelling provides an alterna-
tive approach to density estimation, and is commonly used in geochronology
(Jasra et al., 2006; Sambridge and Compston, 1994). Mixture modelling was
also used to suggest a link between the zircon ages and osmium isotopic mea-
surements of mantle samples in a recent study by Pearson et al. (2007).

Figure 7 shows best fitting Gaussian mixture models for two example distri-
butions and the OIB, MORB, Hawaii and Iceland data sets. The first example
shows a mixture model calculated from the same 1340 samples of the bimodal
distribution used in Figure 1. In this case, the true underlying density is a
sum of two Gaussians with means at -1.5 and 1.5, both with unit variance,
and added together in equal proportion. Unsurprisingly, the mixture model
calculated from the random samples does a very good job at recovering the
two components.

The second example shows a mixture model calculated from 1340 samples
from a uniform distribution (used again later in Figure 9). In this case, the
true density cannot be expressed in the form of a Gaussian mixture model, and
thus applying a mixture model to the samples will lead to spurious results. In
this example, seven spurious components are identified. This example serves
as a warning - one can always calculate a Gaussian mixture model from a set
of data, but the results are only meaningful if the underlying assumption can
be justified.

If the assumptions are true, then mixture modelling is a much more powerful
technique than the non-parametric techniques described earlier. For example,
to identify the eight peaks of the example distribution shown in Figure 6
typically takes at least 4000 samples with SiZer. However, if a mixture model
is assumed, the eight components can be identified with around 1500 samples
or more. If it is additionally assumed that each of the components have equal
variance, then 500 samples are enough.

Mixture modelling identifies three components in the OIB dataset, at 36000,
55000, and 86000, and these three components have reasonable overlap and
occur in roughly equal proportion (Figure 7). The components at 55000 and
86000 are close to the two SiZer peaks, but the component at 36000 does not
correspond to a SiZer peak. For MORB two components are identified, the
dominant one at 90000 (74% of the total) matching the SiZer peak, and a
smaller component around 62000. Hawaii splits into three overlapping com-
ponents with roughly equal proportions, two of which correspond to the SiZer
peaks (29000 and 82000) and one which does not (51000). Iceland has two
components, a dominant one at 47000 (73% of the total) corresponding to the
SiZer peak, and a broader smaller second component at 82000 which does not
cause a peak in the overall density estimate.
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On the whole, the density estimates produced for the helium data by the mix-
ture models look reasonably similar to the kernel density estimates with the
Sheather and Jones choice of bandwidth (Figures 4 and 5). There are some
small differences, e.g. Hawaii lacks the deep trough around 74000 that is seen
in the kernel density estimate. In each case mixture modelling has identified
one more component than significant peaks identified by SiZer, which is un-
surprising since non-parametric techniques such as SiZer will tend to be more
conservative than parametric techniques. Despite the extra components, the
number of peaks in the mixture model densities is still far fewer than identified
by Parman.

The question remains as to whether mixture models are appropriate for study-
ing the helium isotope distributions: Are the components we find spurious, as
they are in uniform example of Figure 7? Is there a good reason for believing
that the helium isotope distributions result from a sum of a small number of
individual Gaussians? For example, a more appropriate model for the Iceland
data might be a single skewed non-Gaussian distribution rather than a sum
of two Gaussians (Figure 7). There are generalisations of mixture modelling
that consider sums of non-Gaussian distributions (e.g. Jasra et al. (2006)), but
for the helium isotopes it is not clear what the appropriate parametric model
should be. Without a clear reason for believing a particular functional form
for the underlying density, non-parametric methods such as kernel density
estimation and SiZer are preferred.

5 From spurious peaks to spurious correlations

From the analyses above, it seems that many of the peaks identified by Par-
man are not statistically significant. However, the question remains as to why
Parman’s major peaks correlate so well with the zircon age peaks. Shown in
Figure 8 are kernel density estimates for OIB, along with the four major peaks
(69000, 56000, 43000 and 30000) that Parman associated with the four main
zircon age peaks (1.2, 1.9, 2.7, and 3.3 Gyr). Notice that these four ages are
almost evenly spaced. As such the four ages will correlate well with any four
numbers that are reasonably evenly spaced, e.g. the correlation coefficient of
1, 2, 3, 4 with these ages is 0.9986.

By undersmoothing a density estimate, spurious peaks are produced. More-
over these peaks tend to be reasonably evenly spaced (although not precisely
evenly spaced). The spacing of the spurious peaks is controlled by the band-
width rather than any inherent feature of the underlying distribution. An
example is shown in Figure 9. 1340 random samples were taken from a uni-
form distribution, and an undersmoothed kernel density estimate calculated.
The peaks seen in Figure 9 are completely spurious, as they do not reflect
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any feature of the underlying distribution, and yet the first four peaks cor-
relate with the four main zircon ages with a correlation coefficient of 0.9992.
When undersmoothing a uniform distribution, the spacing between the spu-
rious peaks is on average around five times the bandwidth, although there
is a spread around this average value. Given enough spurious peaks (enough
undersmoothing), one can always find a set of four that are very nearly evenly
spaced and can be well correlated with the zircon ages. Some of Parman’s
peaks are likely to be similarly spurious, and their correlation with the zircon
ages may not reflect a common underlying physical cause, but may be simply
an artifact of the statistical technique.

Another argument Parman puts forth to justify the significance of peaks is
their recurrence across different islands. However, if undersmoothed density
estimates for different populations use the same bandwidth (as they do in
Parman’s Figure 1), then artificial correlations can arise between the peaks of
the different density estimates due to this common choice of bandwidth. An
example of this effect is shown for random data in Figure 10. Two sets of sam-
ples were taken from two different uniform distributions, but the bandwidth of
their density estimates was chosen to be the same. The spurious peaks caused
by undersmoothing line up in some places, just as some of Parman’s peaks in
Hawaii and Iceland line up. This matching phenemona arises whenever one
compares two random signals that have the same average frequency content,
where the signals are occasionally seen to be going approximately in phase.
Here the two kernel density estimates have very similar average frequency,
since their frequency content is controlled by the bandwidth. The matching of
Parman’s peaks between different islands is likely to be a consequence of the
common bandwidth rather than a common physical cause.

There is no recurrence between the different islands using only the statistically
significant peaks. The SiZer analysis suggests Hawaii has peaks at around
29000 and 82000, and Iceland has a peak at around 47000. The only other
individual island data set that might be well characterised is Reunion (with
76 samples, see Parman (2007)) which has a peak at around 56000. All other
islands have fewer than 70 samples, and are not yet sufficiently well sampled
to start identifying clear peaks. Mixture modelling identifies only one further
peak, at around 51000 in Hawaii, and that too does not match with any other
island. MORB has peaks at around 90000 and maybe also 62000, but these
do not match any of the above peaks either.

6 Discussion

It would be extremely useful to perform a SiZer analysis on the other data
set used in Parman’s correlation, namely the crustal zircon age data (Condie,
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1998). Unfortunately, unlike the helium isotopic data (Abedini et al., 2006),
there is not a publicly available compilation of zircon ages, and so the analysis
has not been done. The zircon age histogram appears much more strongly
peaked than the 4He/3He distributions, and I suspect that a SiZer analysis
will find several statistically significant zircon age peaks. I hope that future
zircon age compilations will be more accessible (e.g. Voice et al., 2007), and
that the statistical significance of peaks will be thoroughly tested.

The techniques discussed here take no account of measurement error: it is
assumed we are sampling from the true underlying density without error.
Deconvolution kernel density estimation (Delaigle and Gijbels, 2004; Stefanski
and Carroll, 1990) is one technique that takes account of measurement error,
but it is is more involved and not yet available in standard software. Techniques
that take account of measurement error may prove very useful.

Feature significance is an area of active research (Duong et al., 2008; Hannig
and Marron, 2006), and its future development is likely to benefit geochem-
istry greatly. Feature significance extends beyond the 1D density estimation
problem described here. The multidimensional generalisations of SiZer (Duong
et al., 2008; Godtliebsen et al., 2002) could be useful in finding the interesting
peaks in multi-dimensional isotope ratio space (e.g. including 143Nd/144Nd,
207Pb/204Pb, etc.) Moreover, SiZer can also be used for examining scatterplot
smooths (Chaudhuri and Marron, 1999, 2000), which could potentially be use-
ful for identifying significant features in the spatial pattern of isotope ratios
(e.g. isotopic data sets along the ridges, Agranier et al., 2005).

As Parman (2007) has remarked, it should be emphasised that there are fur-
ther complications in attaching meaning to peaks, even if they have been
shown to be statistically significant. Perhaps the most important issue is that
in practice we are not simply drawing random samples from a population:
geochemists’ sampling is anything but random. Some areas are sampled more
frequently than others, simply because they are more accessible, and this may
well result in statistically significant peaks that have nothing to do with man-
tle evolution. Even statistically significant peaks require care before attaching
any physical meaning to them.

7 Conclusions

Kernel density estimation is a powerful technique for estimating PDFs, and
deserves to be used routinely. However, one must always be conscious of band-
width effects, and in particular it is best not to change from the default choice
without good reason. Moreover, one must be careful not to attach too much
significance to every small bump found in such density estimates. Feature sig-
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nificance techniques such as SiZer are one way of deciding which peaks are
significant, and SiZer is particularly straightforward to perform in modern
software.

SiZer analysis suggests that there are only two statistically significant peaks
in the OIB 4He/3He distribution. The zircon age data has not been analysed,
but probably contains more peaks. The more measurements that are made,
the better we will be able resolve small scale features in the distributions.
Maybe we will start seeing additional peaks in the helium data that can be
related to the crustal ages, and a helium-continental crust correlation will be
established. But for now, the correlation is not supported by the data.
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Appendices

A Kernel density estimation

Given a sample of n data points X1, X2, . . . Xn independently drawn from a
distribution with probability density f(x), the kernel density estimator f̂h(x)
is defined by

f̂h(x) =
1

n

n∑
i=1

Kh (x−Xi) , (A.1)

where Kh (y) = (1/h)K(y/h) and h is the bandwidth. K(y) is the chosen
kernel function, which is assumed throughout this paper to be a Gaussian,

K(y) =
1√
2π

exp
(
−y2/2

)
. (A.2)
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The problem of bandwidth selection is to choose a value of h such that the
estimator f̂h(x) provides a good estimate of the true probability density f(x).
One measure of the quality of the estimator is the mean integrated square
error (MISE), defined by

MISE = E
∫ ∞
−∞

(
f(x)− f̂h(x)

)2
dx, (A.3)

where E denotes expectation. Ideally, we would like to minimise the MISE by
an appropriate choice of bandwidth. However, we cannot calculate the MISE
because we don’t know f(x). Indeed, if we knew f(x) there would be no point
in doing density estimation! One solution to this problem is to minimise an
approximation to the MISE rather than the MISE itself. When the number of
data points is large (n→∞) the MISE is well approximated by the asymptotic
mean integrated squared error (AMISE) given by

AMISE =
R(K)

nh
+
h4R(f ′′)S(K)2

4
, (A.4)

where

R(φ) =
∫ ∞
−∞

φ(x)2 dx, (A.5)

S(φ) =
∫ ∞
−∞

x2φ(x) dx. (A.6)

The first term on the right hand side of (A.4), R(K)/nh, is the integrated
variance of the estimator, and the second term is the integrated squared bias
of the estimator. The two terms behave in opposite ways as the bandwidth h
is varied. For large values of the bandwidth h the estimator has low variance
but high bias, whereas for small values of h it has low bias but high variance.
The AMISE is minimised when h = hAMISE where

hAMISE =

(
R(K)

nR(f ′′)S(K)2

)1/5

. (A.7)

Importantly, from this expression we see that the optimal bandwidth decreases
with increasing n, scaling as hAMISE ∼ n−1/5. This reflects the fact that given
more data we can resolve smaller scale features of the density.

For a Gaussian kernel, R(K) = 1/(2
√
π) and S(K) = 1. Unfortunately, hAMISE

still depends on the unknown true density f(x) throughR(f ′′). The final step is
to replace R(f ′′) by an approximation based on the data (known as the “plug-
in” approach), and it is in this step that the different bandwidth selection
methods used in this paper differ.
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A.1 Silverman’s rule of thumb

Silverman’s rule of thumb (Silverman, 1986) is based on estimating R(f ′′) by
assuming f is a Gaussian distribution with variance σ2, namely

R(f ′′) ≈ 3

8
√
πσ5

, (A.8)

leading to

hGaussian =

(
4σ5

3n

)1/5

= 1.06σn−1/5. (A.9)

The standard deviation σ can then be estimated using the sample standard
deviation. Silverman’s rule of thumb is actually a slight modification of the
above, where

hSilverman = 0.9σn−1/5, (A.10)

where σ is the minimum of the sample standard deviation and the interquartile
range divided by 1.34 (which makes the estimator a bit more robust against
outliers). This choice of bandwidth tends to be good if the true distribution is
near Gaussian (as would be expected, given the assumption above), but may
perform poorly on other distributions, particularly multi-modal ones.

A.2 Sheather and Jones

The method of Sheather and Jones (1991) uses a more sophisticated technique
to estimate R(f ′′), and is based on solving the fixed point equation

h =

 R(K)

nR(f̂ ′′g(h))S(K)2

1/5

. (A.11)

where a kernel density estimator has been used in place of f ′′. The bandwidth
g(h) for the estimator of R(f ′′) differs from h because bandwidths that are
good for curve estimation differ from those appropriate for estimating R(f ′′).
How this better bandwidth g(h) is chosen is an important part of the method,
and the interested reader is referred to Sheather and Jones (1991) for the
technical details. The Sheather and Jones method provides a much better ap-
proximation to hAMISE than Silverman’s rule of thumb but is computationally
more expensive.
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B Feature Significance

The basis of the SiZer method is the notion of scale space. Instead of trying to
find a single bandwidth h which produces an estimator f̂h(x) that best matches
the true underlying curve f(x), the whole range of bandwidths is considered
important to constrain features on different scales. Moreover, instead of basing
the statistical inference on a comparison between f̂h and f , the comparison
is made between f̂h and fh where fh = f ∗ Kh is a convolution of the true
density with the kernel (i.e. we are comparing a kernel density estimate with
an appropriately blurred version of the true density).

In constructing the SiZer map, at each point (x, h) a confidence interval is
constructed for the derivative of the kernel density estimate. The confidence
interval takes the form

f̂ ′h(x)± q · ŜD
(
f̂ ′h(x)

)
, (B.1)

where ŜD denotes the estimate of standard deviation and q is an appropriate
quantile. If 0 lies outside this interval the gradient is said to be significant, and
it appears as red (negative) or blue (positive) on the SiZer map. If 0 is within
the interval, the gradient is not significant, and it appears as purple on the
SiZer map. q depends on the chosen significance level α, and its calculation
is rather subtle due to the simultaneous nature of the hypothesis test (see
Chaudhuri and Marron (1999) and Duong et al. (2008) for further details).

C Gaussian mixture modelling

In an m-component Gaussian mixture model it is assumed that the true prob-
ability density takes the form

f(x) =
m∑

i=1

wip(x;µi, σi), (C.1)

where

p(x;µi, σi) =
1√

2πσi

exp

(
−
(
x− µi

σi

)2
)
, (C.2)

and
m∑

i=1

wi = 1, wi > 0. (C.3)

The {µi} and {σi} are the means and standard deviations of the m individual
Gaussian components, and {wi} are the weights, which specify the proportion
each component contributes to the overall population.
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Given a sample of n data points X1, X2, . . . Xn from the distribution with
density f(x), the goal in mixture modelling is to estimate the parameters, m,
{µi}, {σi}, and {wi} from the data. Some parameters may be fixed in advance
and not determined from the data: for example, a certain number of com-
ponents might be assumed, or it might be assumed that all the components
have the same variance. However, for the best fitting mixture models shown
in Figure 7, no parameters were fixed in advance. The best fit means, vari-
ances, and proportions were estimated from the data by a maximum likelihood
approach, using the Expectation-Maximization (EM) algorithm. The best-fit
number of components was determined by the Baysian Information Criterion
(BIC), which penalises models that are overly complex (have too many free
parameters, see Fraley and Raftery (2008) for further details).

D Software availability

All data analysis was performed in the freely available “R” statistical software
(R Development Core Team, 2008), version 2.6.2 (http://www.r-project.
org). Kernel density estimation was performed with the built-in function “den-
sity”, SiZer maps were calculated using the “feature” package, version 1.1-12
(Duong et al., 2008), and Gaussian mixture models were calculated using the
“mclust” package, version 3.1-3 (Fraley and Raftery, 2008). In MATLAB, ker-
nel density estimation can be performed with “ksdensity” in the Statistics tool-
box, and routines for performing SiZer analysis are available at http://www.
stat.unc.edu/faculty/marron/marron_software.html. There are also on-
line web-based applets available for these techniques: kernel density estimation
at http://www.wessa.net, and SiZer at http://www.wagner.com.
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Fig. 1. Kernel density estimates (solid lines) of 1340 random samples drawn from
a distribution with true density shown by the dashed line. Five different choices
of bandwidth are shown. a) is certainly over smoothed, as the estimate has only a
single peak. c) shows a bandwidth choice that is considered optimal by the method
of Sheather and Jones (1991). e) is certainly under smoothed, as the estimate shows
numerous spurious peaks that are not features of the true distribution.
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Fig. 2. Kernel density estimates of 4He/3He OIB data for five different choices of
bandwidth. There are 1340 observations in the dataset. a) BW=120000 is certainly
over smoothed. c) BW=3000 is the bandwidth that would be automatically chosen
by the method of Sheather and Jones (1991). d) BW=1500 is closest to Parman’s
choice of bandwidth (see Figures 1 and 2 of Parman (2007)). e) BW=750 is certainly
under smoothed.
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Fig. 3. SiZer map (top) and kernel density estimate (bottom) for the 1340 random
samples used in Figure 1. In the SiZer map, blue shows regions of significant positive
gradient; red, region of significant negative gradient; purple, regions where no signif-
icant gradient can be identified: the slope could be zero, positive, or negative. Grey
regions have insufficient data to make inferences. The bandwidth is on a logarith-
mic scale. Two peaks and a trough are clearly identified from the blue-red-blue-red
pattern, showing that we are able to resolve the bimodal structure of the true den-
sity from the random samples. The dashed horizontal line on the SiZer map shows
the bandwidth used in the kernel density estimate below, which is as in Figure 1c
with the Sheather and Jones (1991) choice of bandwidth. Notice that the peaks and
troughs in the density estimate lie in the purple regions between red and blue on
the SiZer map.
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Fig. 4. SiZer map (top) and kernel density estimate (bottom) of Parman’s OIB
dataset as used in Figure 2, plotted in the same style as Figure 3. Kernel density
estimate is as in Figure 2c, with the Sheather and Jones (1991) choice of bandwidth.
From the SiZer map it seems there are only two statistically significant peaks that
can be resolved, despite the greater number of peaks that are seen in the density
estimate.
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Fig. 6. An example of increasing resolution with increasing sample size, showing
SiZer maps and kernel density estimates. Both cases have the same underlying true
density, which has eight peaks and is shown by the dashed line in the density plots.
The left plots were generated from 500 random samples from the distribution, which
is clearly not enough to resolve the peaks. The right plots have a larger sample size
(5000), and can clearly resolve the eight peaks.
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Fig. 7. Best fitting Gaussian mixture models using the method of Fraley and Raftery
(2008) (see appendix C for more details of the fitting procedure). Shown are the
bimodal example of Figures 1 and 3, a uniform example (calculated from 1340
random samples from a uniform distribution on the interval 0 to 1, also used in
Figure 9), and the OIB, MORB, Hawaii and Iceland data sets. Solid lines show the
density estimate generated by the mixture model. Dotted lines show the individual
Gaussian components which are summed to form the density estimate. Dashed lines
show the true densities for the two example distributions.
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Fig. 8. Kernel density estimate of OIB data with Parman’s choice of band-
width=1500. Solid vertical lines show the four main peaks corresponding to the
four main zircon ages in Parman’s correlation (zircon ages shown at top of plot). In
fact, the fourth line doesn’t intersect a OIB peak, but instead intersects a MORB
peak with Parman’s choice of bandwidth (see Figure 1 of Parman (2007)). Notice
that the four lines are nearly equally spaced.
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Fig. 9. An example of nearly evenly spaced spurious peaks. 1340 random samples
have been taken from a uniform distribution (with true density shown by the dashed
line), and a kernel density estimate calculated with a bandwidth of 0.03. Four evenly
spaced spurious peaks have been marked with vertical lines, and correlate with the
four main zircon ages (1.2, 1.9, 2.7, 3.3 Gyr) with a correlation coefficient of 0.9992.

25



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

P
ro

ba
bi

lit
y 

de
ns

ity

Fig. 10. An example of matching of spurious peaks across different distributions.
Shown are undersmoothed kernel density estimates for two separate samples. The
first (red) is 500 samples from a uniform distribution on the interval 0 to 1, the
second (blue) is 500 samples from a uniform distribution on interval 0.15 to 0.85.
Dashed lines show true PDFs. Both kernel density estimates have a bandwidth of
0.02. Vertical lines illustrate matching between some of the spurious peaks. The
average spacing between spurious peaks is around five times the chosen bandwidth
(0.10).
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