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ABSTRACT

Solid polycrystalline materials undergoing diffusion creep are usually described
by Cauchy continuum models with a Newtonian viscous rheology dependent on
the grain size. Such a continuum lacks the rotational degrees of freedom needed
to describe grain rotation. Here we provide a more general continuum description
of diffusion creep that includes grain rotation, and identifies the deformation of the
material with that of a micropolar (Cosserat) fluid. We derive expressions for the mi-
cropolar constitutive tensors by a homogenisation of the physics describing a discrete
collection of rigid grains, demanding an equivalent dissipation between the discrete
and continuum descriptions. General constitutive laws are derived for both Coble
(grain-boundary diffusion) and Nabarro-Herring (volume diffusion) creep. Detailed
calculations are performed for a two-dimensional tiling of irregular hexagonal grains,
which illustrates a potential coupling between the rotational and translational de-
grees of freedom. If only the plating out or removal of material at grain boundaries is
considered, the constitutive laws are degenerate: modes of deformation that involve
pure tangential motion at the grain boundaries are not resisted. This degeneracy can
be removed by including the resistance to grain-boundary sliding, or by imposing
additional constraints on the deformation.
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1. Introduction

At high temperatures, solid polycrystalline materials can deform by diffusion creep,
where defects within the crystalline lattice move by diffusion. At scales much larger
than the grain scale the material behaves as if it were a Newtonian viscous fluid, with
an effective shear viscosity which depends on the grain size [1–4]. At the microscale
individual grains can be considered as rigid bodies, which interact by the plating out
or removal of material at grain boundaries, leading to a macroscale strain. Rigid bodies
have both translational (velocity) and rotational (angular velocity) degrees of freedom
to describe their motion. However, when a material is treated as a Newtonian viscous
fluid at the macroscale, the microscale rotational degrees of freedom are lost, as the
classical Cauchy continuum is based on point particles with only translational degrees
of freedom.
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The aim of this paper is to present a model of diffusion creep that goes beyond the
classical Cauchy continuum model, and instead identifies an appropriate micropolar
(Cosserat) continuum. A micropolar continuum contains both translational and ro-
tational degrees of freedom, and allows one to better describe phenomena associated
with grain rotations and anisotropic microstructure. Micropolar models are used in
a diverse range of disciplines e.g. to describe masonry [5, 6], granular media [7], the
motion of fault-bounded blocks [8, 9], rotational seismology [10, 11], disclinations [12],
but as yet do not appear to have been used to describe diffusion creep.

The present work is a natural generalisation of the work of Wheeler [13], who studied
the two-dimensional anisotropic Cauchy continuum arising from a periodic array of
irregular hexagonal grains undergoing Coble (grain-boundary diffusion) creep. As will
be discussed in detail later, the Cauchy continuum of Wheeler [13] can be seen as a
reduced version of the more general micropolar continuum considered here.

The manuscript is organized as follows. Section 2 gives a brief overview of the
governing equations of a micropolar continuum. Section 3 describes the microscale
kinematics of a collection of rigid grains. Section 4 describes the microscale physics
of diffusion. Section 5 determines the dissipation associated with diffusion creep, and
uses this as a basis for identifying the constitutive tensors for the equivalent microp-
olar continuum. Section 6 rescales the equations for the constitutive tensors into a
dimensionless form. Simplified equations for Coble (grain-boundary diffusion) creep
are given in section 7, followed by specific calculations for hexagonal grains in section
8. An important degeneracy in the constitutive laws in discussed in section 9, and
final conclusions are in section 10. Three appendices give additional mathematical de-
tails on the resistance to grain-boundary sliding, and simplifications of the micropolar
continuum under additional assumptions.

2. Micropolar continuum

In this section we briefly review the governing equations for a micropolar continuum,
and a more detailed description can be found in e.g. [7, 14–17]. A micropolar (Cosserat)
continuum represents a continuous collection of particles which have both translational
(velocity field v) and rotational (microrotation-rate field ω) degrees of freedom. At
each point in the continuum we define both a force-stress tensor σ and a couple-stress
tensor χ. In the absence of body-forces and body-couples, and with negligible inertia,

the governing equations of a micropolar continuum are

σij,j = 0, (1)

χij,j − εijkσjk = 0, (2)

where (·),j ≡ ∂(·)/∂xj and εijk is the Levi-Civita symbol. Equation (1) is the balance
of linear momentum, and is identical to that of the classical Cauchy continuum. For
a micropolar continuum the force-stress tensor σ need not be symmetric, and one
must be careful in how one assigns the indices. Here we adopt the convention that the
traction vector ti on an infinitesimal patch with surface area dS and normal nj is given
by ti = σijnj . Similarly the moment vector mi is given by mi = χijnj . Equation (2)
is the balance of angular momentum: in the absence of couple-stresses this reduces to
usual statement for the Cauchy continuum that the force-stress tensor is symmetric.
But here we will not assume vanishing couple-stresses.
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The balance of linear and angular momentum can equivalently be written as integral
statements. The linear momentum statement is the force-balance∫

σijnj dS = 0, (3)

and the angular momentum statement is the torque-balance∫
χijnj + εijkxjσklnl dS = 0, (4)

where the integrals are over the bounding surface S of any arbitrary volume V of the
continuum, and x represents the position vector. By dotting equation (1) with v and
(2) with ω and integrating over a volume V , the following equation of mechanical
energy balance can be obtained∫

viσijnj + ωiχijnj dS =

∫
Γijσij +Kijχij dV. (5)

The left-hand side in (5) represents the rate of working by tractions and moments at the
boundary of the given volume, and the right-hand side represents the internal power.
The tensors Γ and K are the natural measures of deformation rate in a micropolar
continuum, and are defined by

Γij = vi,j + εkijωk, (6)

Kij = ωi,j . (7)

These tensors can be shown to be objective measures of deformation rate. Note that
unlike the traditional strain-rate tensor, the Cosserat tensor Γ is not symmetric in
general. However, it can be decomposed into symmetric and antisymmetric parts as

Γij = Γ(ij) + Γ[ij], (8)

Γ(ij) =
1

2
(vi,j + vj,i) , (9)

Γ[ij] = εijk
(
ωk − 1

2Ωk

)
, (10)

where Ω represent the classical vorticity

Ωk = (∇× v)k = εklmvm,l. (11)

Round brackets (ij) are used to represent the symmetric part of a tensor, and square
brackets [ij] are used to represent the antisymmetric part. The additional measures of
deformation-rate a micropolar continuum has over a classical Cauchy continuum are
the relative microrotation-rate measure in (10) and the gradient in microrotation-rate
in (7).

Finally, constitutive laws are needed to relate the force- and couple-stress tensors
to the measures of deformation rate. The most general linear constitutive laws take
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Figure 1. The geometry of a grain boundary.

the form

σij = CijklΓkl +BijklKkl, (12)

χij = BklijΓkl +DijklKkl, (13)

with fourth-rank tensors Cijkl, Bijkl and Dijkl describing the resistance of the medium
to deformation. These tensors satisfy the major symmetries Cijkl = Cklij and Dijkl =
Dklij . Bijkl is formally a pseudo-tensor, whereas Cijkl and Dijkl are proper tensors.
With the constitutive laws in (12) and (13) the viscous dissipation per unit volume in
(5) can be written as

Ψ ≡ σijΓij + χijKij

= ΓijCijklΓkl + 2ΓijBijklKkl +KijDijklKkl. (14)

The main aim of the present work is to determine expressions for the tensors Cijkl,
Bijkl and Dijkl from a homogenisation of the grain-scale physics describing diffusion
creep.

3. Kinematics of rigid grains

Our microscale model consists of a set of identical rigid grains in motion, where the
relative motion normal to grain boundaries is accommodated by the plating out or
removal of material. Each grain has a reference point xi, which we will choose to
be the centroid of the grain. The rigid body motion of the grain is described by the
velocity vi of the reference point, and the angular velocity ωi about the reference point
xi. The velocity v inside each grain is given by

v = vi + ωi × (x− xi) (15)

where x is the position vector.
Consider the grain boundary between two grains, which we label as 1 and 2 (Fig-

ure 1). The difference in velocities between the two grains can be written as

∆v = (v2 − v1)− ω1 × (x2 − x1) + (ω2 − ω1)× (x− x2) . (16)
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Let R = x2−x1 be the vector joining the two grain centres. Suppose that the difference
in velocities of the centroids and angular velocities is linearly related to R, such that

v2 − v1 = D ·R, (17)

ω2 − ω1 = K ·R, (18)

where D is a second rank tensor and K is a second rank pseudo-tensor. After ho-
mogenisation we will identify D with the velocity gradient tensor, and K with the
gradient of microrotation-rate. Equation (16) can then be written as

∆v = D ·R− ω1 ×R +
(
K ·R

)
× (x− x2) . (19)

It is helpful to rewrite (19) in terms of the natural deformation-rate measure Γ, defined
by

Γij = Dij + εijkω
1
k, (20)

in a similar manner to the definition for the micropolar continuum in (6). Equation
(19) then becomes

∆v = Γ ·R +
(
K ·R

)
× d (21)

where d = x− x2. In diffusion creep, relative motion normal to the grain boundary is
accommodated by plating. What is most of interest is then the normal component of
(21), given by

∆v · n = n · Γ ·R + (d× n) ·
(
K ·R

)
(22)

= Γ : Rn +K : R (d× n) (23)

We will use the symbol ṙ to denote the plating rate on a given grain boundary for a
given grain. If we assume that material is plated out symmetrically,

ṙ =
1

2
∆v · n =

1

2

(
Γ : Rn +K : R (d× n)

)
(24)

The above equation represents the key result of the kinematics: it gives the linear
relation between the plating rate and the deformation-rate measures Γ and K.

4. Diffusion

Plating out or removal of material at grain boundaries can only occur by the diffusion
of vacancies, either diffusion within the grains (leading to Nabarro-Herring creep),
or diffusion along the grain boundaries (leading to Coble creep). In this section we
will determine the relationships between the plating rates and the variations in va-
cancy concentration (or equivalently, chemical potential) that arise from the physics
of diffusion. The motion of each grain relative to its neighbours is assumed to be
well-described by constant values of the deformation rate measures Γ and K for each
grain. Since the vacancy concentration is linearly dependent on the plating rate, and
the plating rate depends linearly on the deformation rate measures Γ and K, the
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vacancy concentration c also depends linearly on Γ and K. This linear relationship
can be written as

c = γklΓkl + νklKkl (25)

where γkl and νkl are spatially-variable second-rank tensors that are determined by
the geometry of the grains and the equations describing the diffusion.

4.1. Nabarro-Herring creep (volume diffusion)

In Nabarro-Herring creep diffusion only takes place within the body of the grains. The
flux of vacancies jv within each grain is described by Fick’s law,

jv = −Dv∇c, (26)

where Dv is the diffusivity of vacancies, and c is the concentration of vacancies. With
a quasi-steady approximation, conservation of vacancies within the grain can be ex-
pressed as ∇ · jv = 0, from which it follows that the concentration of vacancies c sat-
isfies Laplace’s equation

∇2c = 0 in V, (27)

where V is the volume of a grain. Consideration of the boundary flux required to
produce a certain plating rate yields

ṙ = −Ωjv · n (28)

where Ω is the atomic volume, and n is the outward normal to the grain. Substitution
of (26) into (28) yields the boundary condition

∂c

∂n
=

ṙ

ΩDv
on S (29)

where S is the surface of the grain. For a given plating rate distribution ṙ, the linear
equations (27) and (29) can be solved to give the concentration of vacancies c inside
the grain. The plating rate in turn depends linearly on the deformation rate measures
Γ and K through the kinematic relationship of (24), where Γ and K are assumed to
be constant for the grain. The overall relationship between the concentration c and
the deformation rate measures can be written as a general linear relationship of the
form in (25). Combining (24), (25), (27), and (29) then yields the following problems
for the tensors γkl and νkl,

∇2γkl = 0 in V, (30)

∂γkl
∂n

=
1

2ΩDv
nkRl on S, (31)
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and

∇2νkl = 0 in V, (32)

∂νkl
∂n

=
1

2ΩDv
(d× n)k Rl on S. (33)

4.2. Coble creep (grain boundary diffusion)

Diffusion along grain boundaries can be described by Fick’s law in the form

jv = −Dgb
v ∇⊥c, (34)

where jv is the flux of vacancies, Dgb
v is the diffusivity of vacancies along the grain

boundary, and c is the concentration of vacancies. ∇⊥ represents the surface gradient
operator (the gradient operator with the component normal to the grain boundary
removed). Conservation of mass can be written as

1
2Ωδ∇⊥ · jv = ṙ on S (35)

where δ is the grain boundary thickness. The factor of 1/2 arises because each grain
boundary borders two grains. Substitution of (34) into (35) yield the governing equa-
tion

− 1
2ΩδDgb

v ∇2
⊥c = ṙ on S (36)

where ∇2
⊥ represents the surface Laplacian operator. Equation (36) has to be sup-

plemented by boundary conditions at the junctions where grain boundaries meet.
Combining (36) with (24) and (25) leads to the following problems for the tensors γkl
and νkl,

−∇2
⊥γkl =

1

ΩδDgb
v

nkRl on S, (37)

and

−∇2
⊥νkl =

1

ΩδDgb
v

(d× n)k Rl on S. (38)

5. Dissipation

The upscaling technique used in this work is based on the notion of a homogeneous
equivalent continuum [18]. The discrete collection of grains is replaced with a microp-
olar continuum that (1) shares the same kinematics as the discrete collection and (2)
shares the same dissipation of energy. The kinematic mapping is achieved by the con-
tinuum field for the velocities v and angular velocities ω matching the grain velocities
vi and ωi at the reference points xi of each grain. The energetics of diffusion can be
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described by the balance law

Ψ =
kT

c0Ω

1

V

∫
ṙc dS (39)

where Ψ is the dissipation and the right hand side represents the rate of working at the
grain boundaries. c0 is the equilibrium concentration of vacancies, k is the Boltzmann
constant, T is temperature, and V is the grain volume. The surface integral is over
the boundary of the grain. Explicit integral expressions for the dissipation Ψ due to
Nabarro-Herring creep and Coble creep are given below in (43) and (47).

The condition of equal dissipation between the discrete collection of grains and the
continuum is imposed by demanding that the micropolar dissipation in (14) matches
that in the balance law (39). By substituting the linear relationships (24) and (25)
into the rate of working integral in (39), one can obtain expressions for the tensors
Cijkl, Bijkl, and Dijkl as

Cijkl =
kT

2c0ΩV

∫
niRjγkl dS, (40)

Bijkl =
kT

2c0ΩV

∫
niRjνkl dS =

kT

2c0ΩV

∫
γij (d× n)k Rl dS, (41)

Dijkl =
kT

2c0ΩV

∫
(d× n)iRjνkl dS. (42)

Since the expression for the rate of working is the same for both Nabarro-Herring and
Coble creep, the above expressions for the constitutive tensors are valid for both forms
of creep. However, one can also express these tensors in alternative, equivalent forms
based on the explicit integral expressions of the dissipation for the two forms of creep.

5.1. Nabarro-Herring creep

For Nabarro-Herring creep we can write the dissipation in (39) explicitly as

Ψ ≡ kTDv

c0

1

V

∫
|∇c|2 dV, (43)

where the balance law in (39) is as a consequence of the divergence theorem and
the governing equations (27) and (29). Matching (43) with (14) gives an alternative
expression for the tensors for Nabarro-Herring creep as

Cijkl =
kTDv

c0

1

V

∫
∇γij · ∇γkl dV, (44)

Bijkl =
kTDv

c0

1

V

∫
∇γij · ∇νkl dV, (45)

Dijkl =
kTDv

c0

1

V

∫
∇νij · ∇νkl dV. (46)

In this representation the major symmetries Cijkl = Cklij and Dijkl = Dklij are clear.
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5.2. Coble creep

For Coble creep we can write the dissipation in (39) explicitly as

Ψ ≡ kTδDgb
v

c0

1

2V

∫
|∇⊥c|2 dS, (47)

where the balance law in (39) is a consequence of the divergence theorem and the
governing equation in (36). Matching (47) with (14) gives an alternative expression
for the tensors for Coble creep as

Cijkl =
kTδDgb

v

c0

1

2V

∫
∇⊥γij · ∇⊥γkl dS, (48)

Bijkl =
kTδDgb

v

c0

1

2V

∫
∇⊥γij · ∇⊥νkl dS, (49)

Dijkl =
kTδDgb

v

c0

1

2V

∫
∇⊥νij · ∇⊥νkl dS, (50)

where again the major symmetries are clear.

6. Dimensionless equations

It is helpful to make the equations dimensionless to separate out the part of the
behaviour that can be determined simply by scaling, and that which describes the
geometrical effects of the microstructure. If d is a typical measure of grain size, then
a scaling for a typical viscosity is η0 = kTd2/(ΩD) for Nabarro-Herring creep and

η0 = kTd3/(ΩδDgb) for Coble creep, where D = Ωc0Dv and Dgb = Ωc0D
gb
v are

the self-diffusion coefficients. Dimensionless versions of the fourth-rank tensors can be
obtained by scaling Cijkl by η0, Bijkl by dη0 and Dijkl by d2η0. In dimensionless form,
(40), (41), (42) become

Cijkl =
1

2V

∫
niRjγkl dS, (51)

Bijkl =
1

2V

∫
niRjνkl dS =

1

2V

∫
γij (d× n)k Rl dS, (52)

Dijkl =
1

2V

∫
(d× n)iRjνkl dS. (53)

6.1. Nabarro-Herring creep (dimensionless)

The corresponding dimensionless problem for Nabarro-Herring creep is

∇2γkl = 0 in V, (54)

∂γkl
∂n

=
1

2
nkRl on S, (55)
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and

∇2νkl = 0 in V, (56)

∂νkl
∂n

=
1

2
(d× n)k Rl on S. (57)

6.2. Coble creep (dimensionless)

The corresponding dimensionless problem for Coble creep is

−∇2
⊥γkl = nkRl on S, (58)

and

−∇2
⊥νkl = (d× n)k Rl on S. (59)

7. Simplified Coble creep calculations

Further simplifications can be made for Coble creep, where with additional assump-
tions simpler expressions for the relevant tensors can be obtained. We will assume
now that all grain boundaries are planar, and that the triple lines where different
grain boundaries meet are at a constant chemical potential (“shorted” in the lan-
guage of Rudge [19]). In the work of Rudge [19], shorted boundary conditions were
introduced to mimic the effect of a small amount of melt lying along the triple lines.
The melt acts as a fast path for diffusion, and allows for bulk deformation to occur.
With shorted boundary conditions, the diffusion problem for each grain boundary is
independent of the other boundaries. Let us label each grain boundary by an index α.
Since the normal vector n and the vector R joining centroids are constant over each
grain boundary, the Coble creep problem in (58) can be reduced to

γkl = wnkRl, (60)

−∇2
⊥w = 1 on S(α), (61)

where the shorted boundary conditions imply that w vanishes along the bounding
curve of the grain boundary. Similarly, the problem (59) can be reduced to

νkl = gkRl, (62)

−∇2
⊥gk = (d× n)k on S(α), (63)

where the vector gk vanishes on the bounding curve of each grain boundary.
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The fourth-rank tensors can then be expressed as

Cijkl =
1

2V

∑
α

n
(α)
i R

(α)
j n

(α)
k R

(α)
l W (α), (64)

Bijkl =
1

2V

∑
α

n
(α)
i R

(α)
j F

(α)
k R

(α)
l , (65)

Dijkl =
1

2V

∑
α

G
(α)
ik R

(α)
j R

(α)
l , (66)

where the sums are over each of the grain boundaries for the given grain, and

W (α) =

∫
S(α)

w dS, (67)

F
(α)
k =

∫
S(α)

w (d× n)k dS =

∫
S(α)

gk dS, (68)

G
(α)
ik =

∫
S(α)

(d× n)i gk dS, (69)

where it should be noted that the tensor G
(α)
ik is symmetric.

8. Coble creep of hexagons

To give a concrete example, we now consider the specific case of Coble creep of a tiling
of hexagonal grains. We restrict the motion to two-dimensions, so that v = (v1, v2, 0)
and ω = (0, 0, ω3). In two-dimensions Γ3j = Γi3 = 0, and the only non-zero components
of Kij are K31 and K32. Thus only Cijkl, Bij3l, and D3j3l are non-zero for i, j, k, l = 1, 2.
With two-dimensional grains, the Coble creep diffusion problems are one-dimensional
and are simple to solve analytically.

8.1. Regular hexagons

The simplest hexagonal tiling is that of regular hexagons, with the wallpaper group
p6m. With this hexagonal symmetry, Neumann’s principle implies that the tensors
Cijkl and D3j3l are isotropic, and the pseudo-tensor Bij3l vanishes. Moreover, for the
regular hexagons, the vector R between centroids is in the same direction as the
normal vector n. It follows from (64) that there are the further minor symmetries
Cijkl = Cjikl = Cijlk, along with the Cauchy relation symmetry Cijkl = Cikjl. As a
consequence of these symmetries, the constitutive tensors reduce to

Cijkl = η (δijδkl + δikδjl + δilδjk) , (70)

Bij3l = 0, (71)

D3j3l = µδjl, (72)

in terms of two constants η and µ, where δij represents the two-dimensional Kronecker
delta. η represents the effective shear viscosity. The effective bulk viscosity ζ = 2η, a
consequence of the Cauchy relation symmetry [19]. Solution of the diffusion problem
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Figure 2. Periodic tiling of irregular hexagonal grains as considered by Wheeler [13]. Note that the centroid

of each grain, and the midpoint of each grain boundary is a rotation centre of order two (the tiling is invariant
under a rotation by 180◦ about these points). The symmetry of the tiling is the wallpaper group p2. All triple

junctions in the tiling are indistinguishable owing to this symmetry.

leads to η = 1/144 if lengths are made dimensionless on the perpendicular distance
between opposite sides of the hexagon. This value is exact agreement with previous
calculations (e.g. [19–21]). The new behaviour is captured by the constant µ, which
describes the resistance to relative rotation of the grains. As will be seen in the next
section, µ = η/45 in the dimensionless variables.

8.2. Irregular hexagons

Wheeler [13] presented a thorough discussion of Coble creep for a periodic tiling of
irregular hexagonal grains and determined the constitutive laws for an equivalent
Cauchy continuum. In this section, we determine the corresponding micropolar consti-
tutive tensors for these irregular hexagons. The grain shape is a hexagon with parallel
sides, where the sides are given by the three vectors B1, B2, and B3 (Figure 2). The
vectors joining grain centroids are given by

R1 = B2 −B3, (73)

R2 = B3 −B1, (74)

R3 = B1 −B2. (75)

The area of the hexagon is

V =
1

2

3∑
i=1

|Ri ×Bi|, (76)
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and unit normal vectors to the grain boundaries are given by

Nf = ẑ× B̂f (77)

for f = 1, 2, 3, where B̂f = Bf/|B̂f | is a unit vector.

8.2.1. Diffusion problems

Suppose the centroid of the grain is the origin of the coordinate system. The position
vector along the edge with normal N1 in Figure 2 is

x =
1

2
R1 − sB̂1, − l1

2
≤ s ≤ l1

2
, (78)

where l1 = |B1|. Now d1 = x−R1, from which it follows that

d1 × n =
(
d1 · B̂1

)
ẑ = −

(
R1 · B̂1

2
+ s

)
ẑ. (79)

The diffusion problem in (61) becomes

− d2w

ds2
= 1, w = 0 at s = ± l1

2
(80)

with solution

w =
1

8

(
l21 − 4s2

)
. (81)

The diffusion problem in (63) becomes

− d2g3

ds2
= −

(
R1 · B̂1

2
+ s

)
, g3 = 0 at s = ± l1

2
(82)

with solution

g3 = − 1

48

(
3R1 · B̂1 + 2s

) (
l21 − 4s2

)
. (83)

From (81) and (83) it follows that the relevant moments in equations (67), (68), and
(69) are

W =

∫ l1/2

−l1/2
w ds =

l31
12
, (84)

F3 =

∫ l1/2

−l1/2
w (d1 × n)3 ds =

∫ l1/2

−l1/2
g3 ds = −(R1 ·B1) l21

24
, (85)

G33 =

∫ l1/2

−l1/2
g3 (d1 × n)3 ds =

1

720

(
15 (R1 ·B1)2 l1 + l51

)
. (86)
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Thus from (64), (65), and (66) the constitutive tensors are

Cijkl =
1

12V

3∑
f=1

Nf
i R

f
jN

f
kR

f
l l

3
f , (87)

Bij3l = − 1

24V

3∑
f=1

Nf
i R

f
jR

f
l (Rf ·Bf ) l2f , (88)

D3j3l =
1

720V

3∑
f=1

RfjR
f
l

(
15 (Rf ·Bf )2 lf + l5f

)
, (89)

where Nf
i denotes the ith component of the vector Nf , and Rfj denotes the jth com-

ponent of the vector Rf .
For the case of regular hexagons, the expressions in (87), (88), and (89) simplify

to those in (70), (71), and (72). For regular hexagons Rf · Bf = 0. In dimensionless

units where the perpendicular distance between sides is 1, Rf = Nf , V =
√

3/2 and

lf = 1/
√

3. One can calculate η in (70) from the invariant Ciikk = 1/18 = 8η, to yield
η = 1/144. µ in (72) can be calculated from the invariant D3j3j = 1/3240 = 2µ and
hence µ = 1/6480 = η/45.

The constitutive tensors in (87), (88), and (89) can be seen as a generalisation of
the constitutive tensors derived by Wheeler [13]. Appendix B describes how the con-
stitutive tensors here reduce to those of Wheeler [13] with the additional assumptions
that are made in that work.

9. Degeneracy

In this section we will show that the constitutive laws that have been derived are in
some sense unsatisfactory because they are degenerate. Ultimately this arises because
there are modes of deformation that can occur without plating, and thus without any
dissipation.

It is helpful to begin by noting the difference between the isotropic constitutive
laws derived for the 2D tiling of regular hexagons in (70), (71), and (72) and that of
the most general two-dimensional linear isotropic micropolar continuum, which can be
written in terms of four material constants as

Cijkl = ζδijδkl + η (δikδjl + δilδjk − δijδkl) + κ (δikδjl − δilδjk) , (90)

Bij3l = 0, (91)

D3j3l = µδjl. (92)

By comparing the above to (70), (71), and (72), we see that the Coble creep model of
regular hexagons here is a special case of the general two-dimensional linear isotropic
micropolar continuum with ζ = 2η, and κ = 0. The degeneracy in the rheology is that
associated with κ = 0. Substitution of (90), (91), and (92) into (12) and (13) yields
the isotropic constitutive laws

σij = ζΓkkδij + 2ηΓ{(ij)} + 2κΓ[ij], (93)

χ3j = µK3j , (94)
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where Γ{(ij)} denotes the trace-free part of the symmetric tensor Γ(ij), given explicitly
in 2D by

Γ{(ij)} =
1

2
(Γij + Γji − Γkkδij) . (95)

ζ and η represent the conventional bulk and shear viscosities; κ and µ are the new
constants associated with the micropolar medium. We will refer to κ as the microro-
tational viscosity, and µ as the angular viscosity. Substitution of the constitutive laws
(93) and (94) into the conservation laws (1) and (2) leads to the 2D isotropic governing
equations

ζ∇ (∇ · v) + η∇2v + κ∇× (2ω −∇× v) = 0, (96)

µ∇2ω − 2κ (2ω −∇× v) = 0. (97)

Note that since in 2D, v = (v1, v2, 0) and ω = (0, 0, ω3), the angular momentum bal-
ance in (97) reduces to a scalar equation for ω3. When κ = 0, the governing equation
for the velocity field v in (96) is decoupled from that for the microrotation rate field
ω in (97). When κ = 0, (93) shows that the stress tensor is symmetric, and the combi-
nation of (93) and (1) gives the 2D Navier equation for the velocity field v. Equations
(94) and (2) then lead simply to a 2D Laplace’s equation for the microrotation rate
ω3.

To formulate a full problem for the flow of a micropolar fluid, the governing equa-
tions in (96) and (97) have to be supplemented with boundary conditions. For a mi-
cropolar fluid, possible choices include setting on the boundaries the velocities v and
microrotation-rate ω, or the tractions σ · n and the moments χ · n. For the 2D case,

only the ω3 component of the microrotation-rate is non-zero, and the corresponding
non-zero moment is µ∂ω3/∂n.

Even with κ = 0, (96) and (97) can be solved to give unique velocity and microrota-
tion fields if the velocities and microrotations are set along the boundary. However, if
instead the tractions and moments are specified at the boundaries, then the solutions
are non-unique. With κ = 0, the solution for v in the Navier equation in (96) is then
only unique up to a rigid body motion, and the solution to Laplace’s equation for ω3

in (97) is only unique up to an arbitrary constant, and thus the microrotations can
be arbitrarily large. This non-uniqueness under certain choices of boundary condition
has been noted in previous grain-scale models of Coble creep [e.g. 22–24].

To see why the microrotation viscosity κ vanishes for regular hexagonal grains,
consider a situation where all the grain centres are fixed, and all grains have the same
constant microrotation rate ω. At the grain boundaries the relative motion between
grains is purely tangential, and thus involves no plating, and no dissipation. There is
thus no resistance to such a motion in the model. The plating rate is independent of
the antisymmetric tensor Γ[ij].

The independence of the plating rate (and thus the constitutive laws) on the anti-
symmetric tensor Γ[ij] will be seen for a number of grain geometries, in particular those
geometries where the vectors R joining grain centres are parallel to the normals n of
the grain boundaries. Mathematically, this is straightforward to see from the plating
rate expression in (24): the second rank tensor Rinj is a symmetric tensor if R is
parallel to n, and thus will yield zero when contracted with the antisymmetric tensor
Γ[ij]. Again, with the grain centres fixed, a uniform microrotation of the grains leads
to purely tangential motion at the grain boundary.

15



In 3D there is an additional degeneracy in the rheology. When R and n are parallel,
the plating rate (24) is also independent of Kkk = ∇·ω, and thus so is the dissipation.
This arises because a relative rotation of neighbouring grains about an axis perpen-
dicular to the grain boundary involves purely tangential motion at the boundary, and
thus no plating. Such a mode of deformation does not occur in 2D. For a 2D isotropic
medium there is only a single angular viscosity coefficient that describes the resistance
to relative rotation of grains; for a 3D isotropic medium there are in general three such
viscosity coefficients, where the one associated with ∇ · ω will vanish when R and n
are parallel.

A wide range of artificial grain geometries have the property that the vectors R
joining grain centres are parallel to the normals n of the grain boundaries. For example,
an artificial grain geometry could be obtained from a Voronoi tessellation, and this
tessellation has the property that the lines joining the generator points across each
cell boundary are normal to the boundary, and thus allow pure tangential motion to
occur with a uniform microrotation of the grains [23]. Moreover, generalisations of the
Voronoi tessellation, such as Laguerre tessellations, also have this property, and thus
grain geometries produced by software such as Neper [25] would also allow uniform
microrotations of grains about their generator points to occur without plating. In 3D,
all normal tessellations with convex grains are Laguerre tessellations (see Theorem 3.2
of [26]).

However, not all artificial grain geometries have R and n parallel, and indeed the
2D irregular hexagons described by Wheeler [13] give an example where R and n are
not parallel. The tiling of irregular hexagons is not in a general a Voronoi or Laguerre
tiling, although a subset are. Even for the geometries where R and n are not parallel
there are modes of deformation that can occur without plating. However, these modes
now include both the symmetric and antisymmetric parts of the tensor Γij . It was
shown in [13] that for the irregular hexagon any constant multiple of

Γ =
(
B̂2 ·N3

)
B1 ⊗N1 +

(
B̂3 ·N1

)
B2 ⊗N2 +

(
B̂1 ·N2

)
B3 ⊗N3 (98)

can occur without plating.

9.1. Grain boundary sliding

It seems rather unsatisfactory to have a rheological model that allows some modes
of deformation to occur without any resistance. It suggests that additional physical
processes should be considered that describe resistance to such modes. An obvious
example of such an additional process is the resistance to grain boundary sliding
[4, 27]. This is often modelled as if there were a thin layer of fluid of viscosity ηgb at
the grain boundary that resists shearing motion. The effective viscosity tensors for this
process can be derived in exactly the same way as those for the plating resistance by
matching the dissipation, and the detailed calculations are given in Appendix A. In the
case of 2D regular hexagons, the relevant viscosities including both plating resistance
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and sliding resistance are given in dimensional form as

ζ =
1

72

kTd3

δDgbΩ
, (99)

η =
1

144

kTd3

δDgbΩ
+

1

4
ηgb

d

δ
, (100)

κ =
1

2
ηgb

d

δ
, (101)

µ =
1

6480

kTd5

δDgbΩ
+

1

4
ηgb

d3

δ
. (102)

Figure 3 illustrates the grain-scale deformation associated with each viscosity coef-
ficient. The expressions for the effective bulk and shear viscosity for regular hexagons
are well-established results (e.g. [20, 21, 27]); the novel results here are explicitly iden-
tifying the microrotational viscosity κ and the angular viscosity µ. Both the plating
and sliding resistance to relative rotation of grains has been described by other authors
in the context of determining the rotation rate of an individual grain when a torque is
applied [28–30]. The novelty here is to relate this resistance to relative rotation to the
angular viscosity µ of a micropolar fluid. The inclusion of resistance to grain bound-
ary sliding leads to a non-zero microrotational viscosity κ, and formally removes the
degeneracy in the rheology. However, having significant resistance to grain boundary
sliding also changes the effective shear viscosity (100), with the consequence that if
ηgb � kTd2/(DgbΩ) the effective shear viscosity depends linearly on the grain size
rather than the cubic dependence typical for Coble creep. But if the resistance to
sliding is weak, one will still then find modes of deformation which are only weakly
resisted [13].

An important feature of a micropolar continuum that is distinct from a classical
Cauchy continuum is the existence of a characteristic length scale of the medium. One
way of defining this characteristic length scale is from the balance of the terms µ∇2ω
and 4κω in equation (97), which defines the characteristic length scale

l =
1

2

√
µ

κ
. (103)

The behaviour of the micropolar medium is different depending on whether the im-
posed scales of deformation L are significantly larger or smaller than the characteristic
length scale l of the medium. If L � l, then the resistance to relative rotation of
the grains can be neglected throughout most of the fluid, with the exception of thin
boundary layers of thickness l. Significant gradients in the microrotation rate only
occur across these boundary layers. Outside these boundary layers, the equations de-
scribing the medium can simplified to those of a reduced micropolar continuum (see
Appendix B for a detailed discussion of this limit). On the other hand, if L� l, then
angular resistance dominates, and a gradient in microrotation rate can exist across
the domain.

The characteristic length scale l depends on the grain size, but is potentially much
larger than the grain size. Consider the case where resistance to grain-boundary sliding
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Bulk Shear

Microrotational Angular

Figure 3. Examples of the different modes of deformation for a tiling of regular hexagons. In each case the

frame of reference is such that the central grain is stationary (neither translating nor rotating). Straight arrows
indicate the velocities of the centres of each grain, curved arrows indicate the sense of grain rotation. The

hexagonal grains have been displaced by finite amounts to show their motions, but the theory described in the
text concerns infinitesimal motions only. Regions of overlap and gaps between grains must be accommodated
by plating out or removal of material. Bulk deformation involves purely plating; there is no sliding between

grains. Shear deformation involves both plating and sliding. Microrotational deformation involves pure sliding;
in the example shown none of the individual grains rotate, but the grain centres undergo a rotation. Angular

deformation occurs when there is relative rotation between neighbouring grains; such deformation involves both

plating and sliding.
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is weak, ηgb � kTd2/(DgbΩ). Substitution of (101) and (102) into (103) then yields

l =
d2

36
√

10

√
kT

ηgbDgbΩ
(104)

which demonstrates explicitly that the characteristic length scale of the micropolar
medium is not simply the grain size. Another way of writing (104) is in terms of the
effective shear viscosity for pure Coble creep, ηCoble = kTd3/(144δDgbΩ), and for pure
grain-boundary-sliding, ηgbs = ηgbd/(4δ),

l =
d

6
√

10

√
ηCoble

ηgbs
(105)

which demonstrates that the characteristic length scale l can be significantly greater
than the grain size if the resistance to grain boundary sliding is weak (ηgbs � ηCoble).

9.2. Constraints

An alternative method for removing the degeneracy without invoking resistance to
grain boundary sliding is by imposing additional constraints on the allowable de-
formation. A simple example of a constraint is that of incompressibility where one
demands that ∇ · v = 0 everywhere, or equivalently that Γkk = 0, and the bulk vis-
cosity ζ becomes effectively infinite (see appendix C). A similar constraint is added
in some micropolar models to demand that rotations are constrained as ω = 1

2∇× v
everywhere, or equivalently that Γ[ij] = 0, and the microrotational viscosity κ becomes
effectively infinite.

In adding constraints on the deformation, one should justify them based on the
microscale physics. It is straightforward to consider microphysical assumptions that
impose incompressibility. While here the constitutive laws were derived under the as-
sumption that the triple lines where grain boundary meet act as sources and sinks of
vacancies [19, 21, 31], one can instead consider microphysical models where this is not
the case and one has to balance fluxes of vacancies at the triple lines and this natu-
rally leads to a incompressible rheology [13, 19, 20]. While having constrained rotations
would remove the degeneracy without invoking the resistance to grain boundary slid-
ing, there does not seem to be an obvious micromechanical mechanism that imposes
such a constraint.

10. Conclusions

Here we have presented a new perspective on diffusion creep by identifying an equiv-
alent micropolar fluid model that shares the same dissipation and kinematics as the
discrete collection of grains. We have shown how the effective constitutive tensors can
be obtained for both Nabarro-Herring (volume diffusion) and Coble (grain-boundary
diffusion) creep. Specific calculations have been performed for a periodic array of
hexagons undergoing Coble creep in two dimensions.

For most practical purposes identifying a material undergoing diffusion creep with a
Newtonian viscous fluid in the classical Cauchy continuum framework is appropriate.
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However, there are cases where using the more general micropolar framework devel-
oped here may be beneficial. Most obviously, the addition of rotational degrees of
freedom to the continuum description allows one to describe grain rotation. Including
micropolar effects will be particularly important whenever the length scales of deforma-
tion approach those of the characteristic length scale of the micropolar medium; this
may be important in problems where localisation of deformation occurs (e.g. shear
banding). Even in problems where deformation occurs at length scales much larger
than the characteristic length scale, inclusion of rotational degree of freedoms are im-
portant for determining the effective viscosities when the microstructure is anisotropic
(Appendix B, [6, 32]).

There are several natural avenues for future research. In this work specific calcula-
tions were only performed in the very simplest case of Coble creep in two-dimensions
because it is straightforward to solve the relevant equations analytically. Detailed
calculations could be performed in 3D for both Coble creep and Nabarro-Herring
creep, but these involve numerical computation. We demonstrated that consideration
of plating resistance alone leads to a degenerate rheology, and consideration of other
physical processes, such as the resistance to grain boundary sliding, are necessary to
remove this degeneracy. The physics of grain boundaries were treated here in a very
simple-minded way, offering just a Newtonian viscous resistance to sliding. Future
work should consider a better description of the physics of the grain boundaries, e.g. a
detailed consideration of grain boundary energies and grain boundary migration. We
have also addressed here only the instantaneous deformation of the material; there
is a lot of work that still that needs to be done to explore how the microstructure
evolves during deformation, and how that influences subsequent deformation. Finally,
there is the prospect that future laboratory experiments may place constraints on the
appropriate micropolar constitutive tensors for diffusion creep.
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Appendix A. Resistance to grain-boundary sliding

A simple way to model grain-boundary sliding is to treat the interface between grains
as if it were a thin layer of viscous fluid that offers resistance to being sheared [e.g.
4, 27, 33]. The resistance can be characterised by averaged dissipation over the grain
in the form

Ψ =
ηgb

2V δ

∫
|n×∆v|2 dS (A1)

where ηgb is the effective shear viscosity of the grain boundary, and δ is its effective
thickness. Using the notion of equivalent dissipation, the effective constitutive tensors
can be obtained by matching (A1) and (21) with (14). In what follows we will use
dimensionless variables, where Cijkl is scaled on ηgbd/δ, Bijkl on ηgbd

2/δ and Dijkl on
ηgbd

3/δ. From (21) it follows that

(n×∆v)p = apklΓkl + bpklKkl (A2)

where

apkl = εpqknqRl, (A3)

bpkl = cpkRl, (A4)

cpk = (d · n) δpk − dpnk. (A5)

It follows that

Cijkl =
1

2V

∫
(δik − nink)RjRl dS, (A6)

Bijkl = − 1

2V

∫
(d× n)i nkRjRl dS, (A7)

Dijkl =
1

2V

∫
cpicpkRjRl dS. (A8)
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A.1. Irregular hexagons

For the irregular hexagons described in subsection 8.2, the expressions in (A6), (A7),
and (A8) reduce to

Cijkl =
1

V

3∑
f=1

(
δik −Nf

i N
f
k

)
RfjR

f
l lf , (A9)

B3jkl =
1

2V

3∑
f=1

(Rf ·Bf )Nf
kR

f
jR

f
l , (A10)

D3j3l =
1

4V

3∑
f=1

(Rf ·Nf )2RfjR
f
l lf . (A11)

A.2. Regular hexagons

In the special case of regular hexagons, isotropy imposes that the constitutive tensors
take the form in (90), (91), and (92) in terms of the four constants ζ, η, κ, and µ.
These constants can be determined from the tensor invariants,

Ciikk = 4ζ = 0, (A12)

Cijij = 2ζ + 4η + 2κ = 2, (A13)

Cijji = 2ζ + 4η − 2κ = 0, (A14)

D3j3j = 2µ = 1
2 , (A15)

where the units are such that the perpendicular distance between opposite sides of the
hexagon equals 1. It follows that

ζ = 0, η =
1

4
, κ =

1

2
, µ =

1

4
, (A16)

where it should be noted that ζ, η, and κ are scaled by ηgbd/δ and µ by ηgbd
3/δ. The

result that η = 1/4 is in complete agreement with the results obtained by [13, 27, 33].
The new results here are for the micropolar constants κ and µ.

Appendix B. Reduced micropolar continuum

A micropolar medium has an intrinsic characteristic length scale l. If variations in
the flow happen on much longer scales, say a length scale L, with L � l, then the
constitutive laws can be further simplified to a reduced micropolar model outside any
boundary layers (e.g. [34, 35]). If η is a typical viscosity, the constitutive tensors in
(12) and (13) scale as Cijkl ∼ η, Bijkl ∼ ηl, and Dijkl ∼ ηl2. If ε̇ is a typical strain
rate, then Γij ∼ ε̇ and Kij ∼ ε̇/L. By keeping terms only at leading order in the small
parameter l/L, the balance laws (1) and (2) become

σij,j = 0, (B1)

εijkσjk = 0, (B2)
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and the constitutive law simplifies to

σij = CijklΓkl. (B3)

In this reduced micropolar continuum, couple stresses are negligible (χij = 0), the
dissipation is independent of Kij (the gradient in microrotation rate), and the force-
stress tensor σij is symmetric (equation (B2)). It was under these assumptions that
the calculations of Wheeler [13] were made, and we will show now that the more
general micropolar continuum considered here reduces to that of Wheeler [13] with
these additional assumptions.

It is helpful to decompose both the Cosserat tensor Γij and the force-stress tensor
σij into their symmetric and antisymmetric parts, as illustrated for Γij in equations
(8), (9), and (10). The constitutive law in (B3) can be written as

σ(ij) = C(ij)(kl)Γ(kl) + C(ij)[kl]Γ[kl], (B4)

σ[ij] = C[ij](kl)Γ(kl) + C[ij][kl]Γ[kl], (B5)

where round brackets (ij) represent the symmetric part, and square brackets [ij] rep-
resent the antisymmetric part. Note that due to the major symmetry Cijkl = Cklij ,
we have that C[ij](kl) = C(kl)[ij].

Antisymmetric second-rank tensors can be conveniently represented using pseudo-
vectors, which we will define for the Cosserat tensor Γij as

Γ×k =
1

2
εkijΓij , (B6)

Γ[ij] = εijkΓ
×
k , (B7)

using the superscript × to denote the pseudo-vector. The pseudo-vector σ×k similarly
relates to the antisymmetric part of the force-stress tensor σ[ij]. Note from (10) that

Γ×k = ωk − 1
2Ωk, and so Γ×k represents the relative rate of grain rotation with respect

to the rotation of the grain centres.
The viscosity tensors in (B4) and (B5) can be simplified by introducing a symmetric

second-rank tensor Apq as

Apq =
1

4
εpijεqklCijkl, (B8)

C[ij][kl] = εpijεqklApq, (B9)

and a third-rank pseudo-tensor Epij as

Epij =
1

2
εpklC(ij)kl, (B10)

C(ij)[kl] = εpklEpij . (B11)

Note that Epij is symmetric on its last two indices, Epij = Epji. For an isotropic
medium, Apq = κδpq where κ is the microrotation viscosity, and Epij vanishes. The
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constitutive laws in (B4) and (B5) can be written as

σ(ij) = C(ij)(kl)Γ(kl) + 2EkijΓ
×
k , (B12)

σ×i = EiklΓ(kl) + 2AikΓ
×
k . (B13)

Equation (B2) implies that σ×i = 0, which when combined with (B13) places a con-
straint on the allowable motions. If the second-rank symmetric tensor Aik is invertible,
this constraint can be explicitly written as giving the relative rotation rate pseudo-
vector Γ×k in terms of the symmetric strain-rate tensor as

Γ×k = −1

2
A−1
kp EpijΓ(ij). (B14)

The result in (B14) is analogous to the expressions which determine the rotation rate
of a rigid particle embedded in a viscous fluid undergoing shear (e.g. [36, 37]). In these
analogous problems the torque on the rigid particle can be related to the relative
rotation rate of the particle and the far-field strain rate through resistance tensors,
and the particle rotation rate can be determined by a condition of zero net torque.
Equation (B14) can substituted into the constitutive law (B12) for the symmetric
part of the stress tensor and thus show that the medium behaves as a classical Cauchy
continuum governed by

σ(ij),j = 0, (B15)

σ(ij) = C̃ijklΓ(kl), (B16)

C̃ijkl = C(ij)(kl) − EpijA−1
pq Eqkl, (B17)

where the degrees of freedom associated with the microrotations have been eliminated.
Note that the effective viscosity tensor C̃ijkl satisfies both the major and the minor

symmetries (C̃ijkl = C̃jikl), and that it differs in general from C(ij)(kl). Thus while the
effective medium behaves as a Cauchy continuum, one cannot neglect the rotational
degrees of freedom when determining the effective viscosity tensor. Only when the
third-rank pseudo-tensor Ekij vanishes will C̃ijkl = C(ij)(kl), which can occur when
certain symmetries are present. For example, in 3D, Ekij vanishes when the grain
geometry is invariant under the crystallographic point groups 432, 43m, or m3m. If only
plating resistance is considered, both Ekij and Aij vanish for any grain geometry for
which the vector R joining grain centres is parallel to the grain boundary normal n, as
the plating rate (and thus dissipation) is then independent of Γ×k . When Ekij vanishes,
the translational motion is decoupled from the rotational motion, and provided Aij is
invertible, the microrotation rate is constrained to be half the vorticity, ω = 1

2 (∇× v).
If, however, both the tensor Ekij and the tensor Aij vanish (e.g. zero microrotation
viscosity κ in the isotropic case), the microrotation rate ω is unconstrained.

When the grain geometry has R parallel to n, and the resistance to grain boundary
sliding is included, but relatively weak compared with the plating resistance, then
the effective viscosity tensor is dominated by the plating resistance, with C̃ijkl ≈
C(ij)(kl). However, the relative rotation rate Γ×k of the grains is determined purely by
the resistance to grain boundary sliding (Appendix A), as the tensors Aij and Ekij
depend only on the sliding resistance. The third-rank pseudo-tensor A−1

kp Epij in (B14)
is independent of the grain boundary sliding viscosity ηgb and depends only on the
geometry of the grain.
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Wheeler [13] performed the same eliminations leading to (B14) and (B17) for the
specific case of hexagons in 2D. In a 2D medium, there is only a single non-zero
component Γ×3 representing the relative rotation rate, and only the A33 and E3ij

components of the appropriate viscosity tensors are non-zero. The 2D eliminations
yield

Γ×3 = −1

2

E3ij

A33
Γ(ij), (B18)

C̃ijkl = C(ij)(kl) −
E3ijE3kl

A33
, (B19)

and the dimensionless tensors describing plating resistance for hexagons are given
explicitly as

C(ij)(kl) =
1

48V

3∑
f=1

(
Nf
i R

f
j +Nf

j R
f
i

)(
Nf
kR

f
l +Nf

l R
f
k

)
l3f , (B20)

E3ij =
1

24V

3∑
f=1

(
Nf
i R

f
j +Nf

j R
f
i

)
(Nf ×Rf )3 l

3
f , (B21)

A33 =
1

48V

3∑
f=1

(Nf ×Rf )3 (Nf ×Rf )3 l
3
f . (B22)

Equation (23) in [13] is a special case of (B18), and equation (B19) can be used to
reproduce the same constitutive laws as found by [13] for the cases where A33 6= 0. As
remarked above, for plating resistance both E3ij and A33 vanish when Nf and Rf are
parallel, which can be seen in the expressions in (B21) and (B22) in the dependence on
the cross product Nf ×Rf . In such cases, one cannot make the elimination leading to

(B19), and instead we simply have that the effective viscosity tensor is C̃ijkl = C(ij)(kl).
Wheeler [13] states that “no unique value of viscosity exists for the rheology of an
array of regular hexagons” when only plating resistance is considered. He arrives at
this conclusion based on taking different limits of an elimination similar to that in
(B19); however such an elimination is not possible when A33 vanishes. By Neumann’s
principle the effective viscosity tensor of an array of regular hexagonal grains is always
isotropic. The shear viscosity is well defined and strictly positive; the degeneracy is
simply that the microrotational viscosity vanishes when the only resistance to motion
is plating.

Appendix C. Constraints

C.1. Incompressibility

Material models can be supplemented by constraints which forbid certain modes of
deformation. An important example of this is an incompressibility constraint, which
forbids bulk deformation (∇ · v = Γkk = 0). The viscosity tensors here are derived
assuming bulk deformation is possible, with potential sources and sinks of vacancies
where grain boundaries meet [19, 21, 31]. The bulk deformation can be separated from
the rest of the deformation by splitting the Cosserat tensor Γij into an isotropic part
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and a trace-free part as

Γij =
1

N
Γkkδij + Γ{ij} (C1)

Γ{ij} = Γij −
1

N
Γkkδij , (C2)

where N is the dimension of the space. Here curly brackets indicate a tensor that
yields zero when contracted over the indices within the curly brackets.

For an incompressible medium, the dissipation depends only on the trace-free tensor
Γ{ij}. The constitutive laws in (12) and (13) are replaced by

σij = −Pδij + σ{ij}, (C3)

σ{ij} = C{ij}{kl}Γ{kl} +B{ij}klKkl, (C4)

χij = B{kl}ijΓ{kl} +DijklKkl, (C5)

where P is the pressure, a Lagrange multiplier enforcing the incompressibility con-
straint [15]. The viscosity tensors derived here can be reduced to those for an incom-
pressible medium as

C{ij}{kl} = Cijkl −
1

N
Cppklδij −

1

N
Cijqqδkl +

1

N2
Cppqqδijδkl, (C6)

B{ij}kl = Bijkl −
1

N
Bppklδij . (C7)

For the 2D isotropic medium considered in (96) and (97), the effect of adding an
incompressibility constraint is to replace the ζ∇ (∇ · v) term in (96) by a −∇P term.

C.2. Constrained rotations

Another constraint that can be considered is that of constrained rotations, where we
demand that ω = 1

2∇ × v everywhere, or equivalently that Γ[ij] = 0. It follows that
Kkk = ∇·ω = 0. A pseudo-vector Lagrange multiplier Qk is introduced to enforce the
pseudo-vector constraint that Γ×k = 0 [15]. The constitutive laws in (12) and (13) are
replaced by

σij = Qkεkij + σ(ij), (C8)

σ(ij) = C(ij)(kl)Γ(kl) +B(ij)klKkl, (C9)

χij = B(kl)ijΓ(kl) +DijklKkl, (C10)

where the Lagrange multiplier represents the antisymmetric part of the stress tensor
since Qk = σ×k . For micropolar media with constrained rotations, the microrotation
velocity ω can be eliminated from the governing equations as follows. The antisym-
metric part of the force-stress tensor can be eliminated from the conservation laws (1)
and (2) to yield

σ(ij),j +
1

2
εijkχkl,lj = 0. (C11)
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The above equation, combined with the constitutive laws (C9) and (C10) describes
the micropolar medium with constrained rotations. In the case of the 2D isotropic
medium considered in (96) and (97) the above can be simplified to

ζ∇ (∇ · v) + η∇2v − µ

4
∇4v = 0. (C12)

This differs from the usual 2D Navier equation by the fourth order term, representing
the resistance to relative rotations of the grains.
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