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1 Introduction

Friction Stir Welding is an innovative technique for joining two pieces of metal. A rapidly
rotating tool is pushed between two sheets of metal causing friction heating which in turn
softens the material. This softening causes a flow around the tool, which leads to greater
friction heating. It is the coupling of these two problems, heat and plastic flow, that we
would like to understand.

There are several observables that a good model of friction stir welding should be able
to predict - the power, the force, the temperature of the tool, and the thickness of the
softened region. We are interested in looking at the parameters in the problem which
control these observables.

2 Approach

To tackle this problem we have taken a highly idealised approach. Firstly the geometry
of the problem is heavily simplified - we consider the tool as a 2D rotating cylinder. To
simplify the heat problem we assume we have a steady state. The following laws are
assumed to govern the stress and the hardness:

σ = κ(T )

(

∂u

∂y

)α

κ(T ) = κa

(

1 −
T

Tm

)

exp

(

Ta
T

)

Here x and y are locally cartesian co-ordinates on the surface of the cylinder as shown
in figure 1. u is the flow velocity (in the x-direction), σ is the stress, κ is the hardness,
κa is a hardness constant, T is the temperature, Tm is the melting temperature, and Ta
is the activation temperature. The tool has radius a and rotates with constant angular
velocity Ω.

These are simplified laws governing the stress and the hardness, based on the Norton-
Hoff power law formula with a linear dependence on temperature of the shear modulus.
More sophisticated formulae are available, such as the Sellars-Tegart Law[1, 3] which
involves an additional sinh dependence. Another refinement would be to choose a power
law dependence of the shear modulus.

To begin with we just attempt the rotational problem, and later add a slow translation
of the tool.
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Figure 1: Diagram showing tool with locally cartesian co-ordinates

3 Key ideas

We are most interested in the region in which the metal is significantly softened, where κ
is less than twice its minimum value. κ is a sensitive function of T , and so it is possible
that there is just a small region δ over which it is significantly soft, where there is only a
small change in temperature ∆T from its maximum value Tmax. So ∆T satisfies:

κ(Tmax − ∆T ) = 2κ(Tmax)

Another key idea is one of conservation of heat. The heat generated must be the same
as the heat lost.

heat generated = thickness × stress × shear rate

= δ × σ ×
Ωa

δ
= κ(Tmax)δ

(

Ωa

δ

)1+α

(1)

heat loss = thermal conductivity × temperature gradient to ‘infinity’

= k ×
Tmax − T∞
a logR/a

1 (2)

Note we have another expression for the heat loss given by:

heat loss = heat conducted out of thin softened region

=
k∆T

δ
(3)

It is not possible to achieve this balance at moderate temperatures. For example,
suppose we have a thick layer so that a = δ. Consider the case of aluminium, for which
example data is given in appendix A. Then at a moderate temperature of T = 400K,
6.69 × 107J of heat is produced, but only 1.57 × 106J lost to the surroundings. Thus
the temperature around the tool rises causing further softening. This has the effect of
reducing the heat generated while increasing the heat lost. Hence there is a possibility of
finding a balance between the two factors at higher temperatures.

To simplify looking at the effect of hardness we break down the hardness law into two
regimes - the exponential and the linear. For hard metals such as titanium the linear
factor is dominant in governing the behavior of κ(T ) whereas for softer metals such as
aluminium the exponential factor is more relevant.

1The reason for the log factor is described in section 6.
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4 Achieving balance in the exponential regime

Suppose we are in the situation where the exponential factor of hardness is dominant so
that:

κ(T ) = κa exp

(

Ta
T

)

So

κ(Tmax − ∆T ) ≈ κa exp

(

Ta
Tmax

)

exp

(

Ta∆T

Tmax
2

)

For this to approximately double we need:

Ta∆T

Tmax
2 = 1 (4)

Assuming Tmax � T∞ equations 1, 2, 3, and 4 imply:

e(
Ta

Tmax
)
(

Ta
Tmax

)1+α

=
kTa

κa(Ωa)
1+α(a logR/a)1−α

This can be solved numerically to give Tmax. Then δ is given by:

δ = a logR/a
Tmax
Ta

For aluminium the above give Tmax = 697K, δ = 0.932a = 0.00466m,∆T = 217K.
Note that this is quite a thick boundary layer.

5 Achieving balance in the linear regime

Now suppose that the linear factor is dominant so:

κ(T ) = κm

(

1 −
T

Tm

)

Where κm is given by:

κm = κae
Ta
Tm

Now:

κ(Tmax − ∆T ) ≈ κm

(

1 −
T

Tm

)(

1 +
∆T

Tm − Tmax

)

Hence for this to approximately double we need:

∆T = Tm − Tmax

Using equations 2 and 3, and again assuming Tmax � T∞ we get:

δ =
Tm − Tmax
Tmax

a logR/a ≈
Tm − Tmax

Tm
a logR/a
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Now using equation 1 we see that:

δ =

(

kTm

κm(Ωa)1+α

)
1

1−α

= a

(

kTm

κm(Ω)1+αa2

)
1

1−α

For titanium the above give Tmax = 1906K, δ = 0.0412a = 2.06 × 10−4m,∆T = 27K.

6 Boundary layer theory in the exponential case

We assume we have a thin layer, and as such we assume u and T are functions of y only.
The governing equations are:

∂σ

∂y
= 0 (momentum)

k
∂2T

∂y2
+ σ

∂u

∂y
= 0 (heat)

In the heat equation we assume the thermal conductivity of the metal k remains
constant.

Let η = y
δ
, u = Ωaf(η), T = Tmax − ∆Tg. Then these equations non-dimensionalise

to become:

egf ′α = S (5)

g′′ − egf ′1+α = 0 (6)

Outside the boundary layer we assume we just have diffusion of heat, given by ∇2T =
0. In cylindrical co-ordinates the solution of this equation consists of a logarithm. To fix
the problems associated with this we impose that at some fixed distance R that T = T∞.
Choice of R is discussed in section 13. On the tool we assume that T = Tmax. Hence
outside the boundary layer the solution of the heat equation is:

T (r) = T∞ + (Tmax − T∞)
logR/r

logR/a

Hence the temperature gradient is:

∂T

∂r
= −

Tmax − T∞
r logR/a

Evaluating this on r = a accounts for the log factor found earlier in the energy balance.
On the tool we must have u = −Ωa, and at large distances we must have u = 0. Hence
the boundary conditions for f are f(0) = −1, f(∞) = 0. We assume no heat flow through
the tool, and so g′(0) = 0. To match the temperature gradient calculated above, we must
have g′(∞) = 1.

Using 5, 6 simplifies to:
g′′ − Sf ′ = 0

Integrating this we see from the boundary conditions that S = 1.
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Figure 2: f profile for the exponential boundary layer

So the equations become:
f ′ = e−

g

α

g′′ = f ′

These equations have a first integral:

g′
2

= 2α
(

e−g(0)/α − e−g/α
)

Examining the boundary conditions we see this implies g(0) = α log 2α.
In the case of α = 0.25, g(0) = −0.17329, and hence for aluminium Ttool = 735K
The profiles from numerically solving these equations can be seen in figures 2 and 3.
The constant stress is given from the expression:

σ = κae
Ta

Tmax

(

Ωa

δ

)α

In the case of aluminium this is 4.10 × 107Pa Hence the couple on the tool G =
2πa × σ × a = 6450Pam2. Thus the rate of working is ΩG = 1.9 × 105Wm−1. So for a
tool of length l = 0.02m the power output is 3.8kW.

7 Boundary layer theory in the linear case

In the case of the linear law we let η = y
δ
, u = Ωaf(η), T = Tm − ∆Tg. Then these

equations non-dimensionalise to become:

gf ′α = S (7)
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Figure 3: g profile for the exponential boundary layer

g′′ − gf ′1+α = 0 (8)

Again the boundary conditions are f(0) = −1, f(∞) = 0, g ′(0) = 0, g′(∞) = 1.
Using 7, 8 simplifies to:

g′′ − Sf ′ = 0

Integrating this we again see from the boundary conditions that S = 1.
So the equations become:

f ′ = g−1/α

g′′ = f ′

These equations have a first integral:

g′
2

=
2α

1 − α

(

g(0)1−1/α
− g1−1/α

)

Examining the boundary conditions we see this implies g(0) =
(

2α
1−α

)
α

1−α .
In the case of α = 0.25, g(0) = 0.87358, and hence for titanium Ttool = 1909K.
The profiles from numerically solving these equations can be seen in figures 4 and 5.
The constant stress is given from the expression:

σ = κm
∆T

Tm

(

Ωa

δ

)α

In the case of titanium this is 1.89 × 107Pa. Hence the couple on the tool G =
2πa × σ × a = 3000Pam2. Thus the rate of working is ΩG = 89000Wm−1. So for a
tool of length l = 0.02m the power output is 1.8kW. The reason that the power output
is less for titanium can be seen when considering an alternate expression for the power
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Figure 4: f profile for the linear boundary layer

generated given simply by looking at the heat loss in equation 2. Although Tmax is higher
for titanium, the thermal conductivity k is much lower and thus the power output is less.

8 The full tensorial equations

We now drop the assumption of a thin layer. Consider the general problem where in
cylindrical polar co-ordinates we wish to find ur(r, θ), uθ(r, θ), T (r, θ). The mechanical
problem is given by:

σij = 2κ(T )γα−1eij where γ2 = 2eijeij

∇.σ = ∇p

∇.u = 0

where σij, eij are the stress2 and strain tensors respectively.
The full heat equation is:

ρcpu.∇T = k∇2T + σijeij

We neglect the ρcpu.∇T term (discussed in section 13).

2Note that here we are using the deviatoric stress tensor for convenience of notation.
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Figure 5: g profile for the linear boundary layer

9 Non-boundary layer rotational problem

For the rotational problem the full tensorial equations can be simplified. Here we only
have uθ(r), T (r). Only the tangential components of stress and strain, σrθ, erθ are non-
zero. The stress relationship becomes:

σrθ = κ(T )(2erθ)
α

∇.σ = 0

and thus the heat equation becomes:

k∇2T + κ(T )(2erθ)
1+α = 0

To non-dimensionalise these equations scale r with a, T with Tm, κ with κa, uθ with
Ωa, erθ with Ω. Write 2erθ = h, uθ = u. Introduce the non-dimensional groups:

K =
κaΩ

1+αa2

kTm

A =
Ta
Tm

In non-dimensional form the equations become:

h = r
∂

∂r

(u

r

)

κ = (1 − T )eA/T

The momentum equation implies that:
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Figure 6: u profiles comparing aluminium and titanium

r2κhα = S

The heat equation becomes:

1

r

∂

∂r
(rT ′) +Kκh1+α = 0

Then these equations simplify to:

T ′′ = −
T ′

r
−K

S

r2

(

S

r2κ

)1/α

u′ =
u

r
+

(

S

r2κ

)1/α

The boundary conditions are given by f(1) = −1, f(∞) = 0, T ′(1) = 0, T (R) =
T∞/Tm.

Profiles from solving these equations numerically are given in figures 6, 7 and 8.
Using non-boundary layer theory we find Ttool = 672K for aluminium, and Ttool =

1916K for titanium. The corresponding boundary layer thicknesses are 0.0049m and
2.19 × 10−4m. These results are close to the boundary layer results.

In dimensional terms the stress on the tool is given by:

σ = κaΩ
αS

For aluminium this is 4.03× 107Pa. Following the calculations done earlier, this again
leads to a power output of 3.8kW. For titanium the stress is 1.59 × 107Pa. The leads to
a power output of 1.5kW, a slightly smaller result than the boundary layer analysis.
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Figure 9: Diagram showing translating tool with cylindrical polar co-ordinates

10 The translational problem

We now let the tool move at a small constant velocity V such that V
Ωa

= ε � 1. Take
cylindrical polar co-ordinates as drawn in figure 9. For the numerical examples this gives
ε = 0.0067. We treat the translational problem as a small perturbation to the rotational
problem. We must now use the full tensorial form of the equations. Proceed with the
same non-dimensionalisation as before. Let:

ur = −ε cos θ
ψ1(r)

r

uθ = u (r) + ε sin θψ1
′ (r)

By writing the velocity in this form we automatically ensure ∇.u = 0. The components
of the strain tensor eij are then given by:

err = −ε cos θ
∂

∂r

(

ψ1

r

)

erθ =
1

2

(

r
∂

∂r

(u

r

)

+ ε sin θ

(

r
∂

∂r

(

ψ1
′

r

)

+
ψ1

r2

))

eθθ = ε cos θ
∂

∂r

(

ψ1

r

)

= −err

To first order in ε we have that:

γ = r
∂

∂r

(u

r

)

+ ε sin θ

(

r
∂

∂r

(

ψ1
′

r

)

+
ψ1

r2

)

= 2erθ

Define h, frθ so that erθ = h
2

+ ε sin θfrθ. Similarly define err = ε cos θfrr. So:

h = r
∂

∂r

(u

r

)

as before and:

frθ =
1

2

(

r
∂

∂r

(

ψ1
′

r

)

+
ψ1

r2

)

frr = −
∂

∂r

(

ψ1

r

)
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Let T (r, θ) = T (r) + T1(r)ε sin θ and κ(T (r, θ)) = κ(r) + κ1(r)ε sin θ.
Then:

κ = (1 − T )eA/T

as before and:

κ1 = −T1e
A/T

(

1 +
A(1 − T )

T 2

)

To first order in ε we can write the components of the stress tensor as:

σrr = κhα−1 (2frr) ε cos θ

σrθ = κhα + ε sin θ
(

κ1h
α + ακhα−1 (2frθ)

)

σθθ = −κhα−1 (2frr) ε cos θ = −σrr

In cylindrical polar co-ordinates the momentum equation ∇.σ = ∇p is:

1

r

∂

∂r
(rσrr) +

1

r

∂

∂θ
(σθr) −

σθθ
r

=
∂p

∂r

1

r2

∂

∂r

(

r2σrθ
)

+
1

r

∂

∂θ
(σθθ) =

1

r

∂p

∂θ

Define p(r, θ) = εp(r) cos θ. Then equating terms of order ε0 gives the same governing
equations as in the previous section. Let srθ and srr be the order ε components of σ.
Then the momentum equation becomes:

1

r2

∂

∂r

(

r2srr
)

+
sθr
r

= p′

1

r2

∂

∂r

(

r2srθ
)

+
srr
r

= −
p

r

The heat equation for the order ε term is:

1

r

∂

∂r
(rT1

′) −
T1

r2
+K

(

κ1h
1+α + (1 + α)κhα (2frθ)

)

= 0

To solve these equations we work in terms of the variables ψ1, ψ
′

1, srθ, (srr − p), T1,
T ′

1. Then we calculate:

µ = κhα−1

frr =
ψ1

r2
−
ψ1

′

r

frθ =
srθ − κ1h

α

2µα

srr = 2µfrr

p = srr − (srr − p)
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Then the governing differential equations can be expressed in the form:

∂

∂r
(ψ1) = ψ′

1

∂

∂r
(ψ′

1) = 2frθ − frr

∂

∂r
(srθ) = −

2srθ + srr + p

r

∂

∂r
(srr − p) = −

2srr + srθ
r

∂

∂r
(T1) = T ′

1

∂

∂r
(T ′

1) = −
T ′

1

r
+
T1

r2
−K

(

κ1h
1+α + (1 + α)κhα (2frθ)

)

On the tool we have ψ1(1) = 0, ψ′

1(1) = 0 since the tool rotates at constant velocity. At
infinity we just have a uniform flow. Thus we demand that ψ1(r) = r at large distances.
Hence we demand rψ′

1−ψ1 → 0 and ψ′

1 → 1 as r → ∞. [A more sophisticated examination
of the boundary condition at infinity has been looked at. The terms in solving for ψ1 at
large distances are thought to go like r to the powers of

(

3, 1, 3α−2
α
, α−2

α

)

, neglecting log
factors. Thus the condition at infinity can be chosen to be such that the coefficient of the
r3 term is zero, and the r term 1. However, we have found the simplified conditions to be
suitable for our purposes.]

As before we want no heat flow out of the tool, so set T ′

1(1) = 0. At large distances
we have pure conduction of heat so we have:

∇
2 (T1(r) cos θ) = 0

This has solutions of the form T1(r) = r, 1
r
. Hence our boundary condition at infinity

should ensure the 1
r

behavior is taken, and so impose the condition T1

r
+T ′

1 → 0 as r → ∞.
We are most interested in the force on the tool. In dimensional terms this is given by:

F =

∫

tool

(−pn + σ.n) dS = −επκaΩ
αal (srθ − (srr − p)) i

Where i is the unit vector in the direction of motion i.e. the force is in the opposite
direction to the motion of the tool. Here srθ, srr, and p refer to the values on the tool.
The results from numerically solving these equations give a force of 2.0kN for aluminium,
and 25kN for titanium. This leads to a translational power output of only 2W and 25W
respectively for the translational motion. Only a very small change in the heat field
is observed - on the tool this is 0.9K for aluminium and 1.0K for titanium. For these
examples it is certainly the case that the rotational motion is the dominant cause of the
heating. Note there is quite a difference between the perturbed temperature profiles of
aluminium and titanium (figures 12 and 13) although the effects of both are very small.
As far as the coupling of the problems is concerned the dominant effect seems to be one
way - the increasing shear rates cause heating, but the effect of this heating on softening
the material and causing greater shear rates is small.
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11 Boundary layer analysis of the linear translational

problem

Since in the case of a linear law we have a thin boundary layer (δ = 0.04a) it seems
reasonable to expect a boundary layer analysis of the translation problem to produce the
same results more easily. We begin as before letting η = y

δ
. Now let

ε =
V

Ωa

a

δ

u = Ωa (f(η) + εf1(η) sin θ)

p = κm
∆T

Tm

a

δ

(

Ωa

δ

)α

εp1 cos θ

T = Tm − ∆T (g(η) + εg1(η) sin θ)

Note that ε is defined differently to before, and now includes a geometry ratio. For
the example data we have ε = 0.007 for aluminium and ε = 0.16 for titanium. Here we
assume p1 to be constant. In the boundary layer the momentum equation takes the form:

−
∂p

∂x
+
∂σxy
∂y

= 0

which equating order ε terms implies:

p1 +
(

g1f
′α + αgf ′α−1

f ′

1

)

′

= 0

This can be integrated to give

p1η + S1 + g1f
′α + αgf ′α−1

f ′

1 = 0

The heat equation implies:

g′′1 −
(

g1f
′α+1

+ (α + 1)gf ′αf ′

1

)

= 0

Using gf ′α = 1 these can be rewritten as

f ′

1 = −
f ′

α

(

p1η + S1 +
g1

g

)

g′′1 =
g1

g
f ′ + (α+ 1)f ′

1

The boundary conditions on g1 are chosen to be g′1(0) = 0, g′1(∞) = 0, i.e. no heat
flow through the tool, no heat loss to infinity. For f1 we impose that f1(0) = 0, f1(∞) = 0
and additionally:

∫

∞

0

f1(η)dη = 1

To see where this comes from consider the conservation of flux of material around the
tool. For a uniform flow we must have that:
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flux q = q0 + εV a sin θ =

∫

∞

0

udy

Equating the order ε terms gives the above condition.
Solving these equations numerically gives values of p1 = 0.431, S1 = −0.214 and

g1(0) = −0.161. Again we are most interested in the magnitude of force on the tool. This
is given by:

F = επalκm
∆T

Tm

a

δ

(

Ωa

δ

)α

(p1 − S1)

For our results this gives 15kN, which is just over half the value given by the non-
boundary layer theory. Given the small thickness of the boundary layer (0.04a) it is
striking that there is such a discrepancy when comparing with the non-boundary layer
theory. This can be explained by considering the shear rates involved. For the boundary
layer we have:

γ = f ′ =

(

1

κ

)
1

α

whereas for the non-boundary layer theory we have:

γ = h =

(

S

r2κ

)
1

α

The only essential difference between these two expressions is the presence of an r(2/α)

factor. However since α is small, in this case α = 0.25, this is a high power of r, here
r8. Looking at the flow profiles we see that most of the flow is confined within a region
of thickness 0.1a. Now (1.1)8 ≈ 2.1, and so due the large powers involved this difference
is a significant one. Although numerically the boundary theory may give quite different
answers, it exhibits a general similarity in structure to the non-boundary layer theory, as
can be seen when examining the graphs in figures 14 and 15.

12 Boundary layer analysis of the exponential trans-

lational problem

The boundary layer thickness in the exponential case is very thick (0.93a) which suggests
a boundary layer analysis will be even worse in this case. However it is worthwhile to
examine it. Proceed as before with η = y

δ
. Now let

ε =
V

Ωa

a

δ

u = Ωa (f(η) + εf1(η) sin θ)

p = κae
Ta

Tmax

(

Ωa

δ

)α

εp1 cos θ

T = Tmax − ∆T (g(η) + εg1(η) sin θ)
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Figure 14: f1 profile for the linear boundary layer
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Again assume p1 to be constant. The hardness is given to first order in ε by:

κ(T ) = κae
Tmax

Ta eg (1 + εg1 sin θ) = κae
Tmax

Ta (κ+ εκ1 sin θ)

The momentum equation implies:

p1 +
(

κ1f
′α + ακf ′α−1

f ′

1

)

′

= 0

This can be integrated to give

p1η + S1 + κ1f
′α + ακf ′α−1

f ′

1 = 0

The heat equation implies:

g′′1 −
(

κ1f
′α+1

+ (α + 1)κf ′αf ′

1

)

= 0

Using κf ′α = 1 these can be rewritten as

f ′

1 = −
f ′

α
(p1η + S1 + g1)

g′′1 = g1f
′ + (α + 1)f ′

1

We impose the same boundary conditions as before.
Solving these equations numerically gives values of p1 = 1.853, S1 = −0.642 and

g1(0) = −0.355. The force is given by:

F = επalκae
Ta

Tmax

(

Ωa

δ

)α

(p1 − S1)

For our results this gives 0.41kN, which is less than a quarter of the previous value.
As expected the boundary layer theory does not seem appropriate to use here.

13 Consequences of the full heat equation

The full heat equation is:

ρcp

(

∂T

∂t
+ (u.∇)T

)

= k∇2T + σijeij

In our models we have neglected the left hand side of this equation. We assume we
have a steady state, and so we always neglect the ∂T

∂t
term. However we can use this term

to give an estimate for the parameter R in our analysis. Just considering diffusion of heat
we have:

ρcp
∂T

∂t
= k∇2T

So in a time t an estimate for the distance R heat flows is given by:

R =

√

kt

ρcp
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Figure 16: f1 profile for the exponential boundary layer
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Figure 17: g1 profile for the exponential boundary layer
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Taking as a rough guide a time of 1 minute, this gives figures of R = 0.076m for
aluminium and R = 0.023m for titanium. For convenience R = 0.1m has been used
throughout, but note that the dependence on R is logarithmic so these differences are not
too significant.

For the rotational problem T is only a function of r, and u is only in the θ direction
and so (u.∇)T = 0. For the translational problem we do need to examine the (u.∇)T
term carefully. Its behavior is governed by a non-dimensional Péclet number:

P =
ρcpV a

k
(9)

For small values of the Péclet number the (u.∇)T term can be safely neglected. For
our data we find values of 0.05 for aluminium and 0.53 for titanium. As such we may be
justified in neglecting this term for our aluminium analysis, although for the titanium we
may not be justified, and a smaller tool size or weld velocity should be considered.

14 Conclusions

A very idealised model of friction stir welding has been demonstrated that can predict a
number of observables. It seems that boundary layer theory is inappropriate to use for
generating numerical results but still provides a good general description of the under-
lying dynamics of the problem. How close these results come to experimental results is
unknown, and better numerical data is needed before reasonable predictions can be made.

There are certainly a number of ways this model can be extended. One approach would
be to consider 3-D models, for example a simple case would be a rotating hemisphere as a
model for the tool. The big advantage in moving to 3-D would be the removal of the log
problem in the heat equation. Additionally it would be useful to examine the transient
problem to see how close we get to the steady state we have assumed. A rotating transient
model would also give a description of the initial phase of the friction stir welding process
where the tool drives between the two metals. Further refinements in 3-D would take
into account the tool geometries but hopefully this much simplified model can predict
the general trends without the need for heavy computation. Further refinements to this
model would involve putting back in the (u.∇)T term in the heat equation which may
produce a significant effect, particularly in the case of harder metals.
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A Numerical example data

All the numerical data used in this document has been based on pure metals, not the
alloys commonly used in practice. Particularly note that the κa values have been based
on a linear extrapolation of the data for the shear modulus at room temperature given
in [2] so this can only be used as a rough guide. Furthermore for convenience α for both
metals has been set at 0.25, whereas more accurate values would be in the region of 0.23
for titanium and 0.22 for aluminium. Additionally R has been set at 0.1m for both cases
for convenience.

The geometry of the weld equipment has been taken to be the same for both metals,
namely a tool of radius a = 0.005m, angular velocity Ω = 30s−1, and translational velocity
V = 0.001ms−1. The temperature at R is taken to be T∞ = 300K.

The metal data is as follows:

Aluminium Titanium
Melting Temperature, Tm (K) 933 1933

Activation Temperature, Ta (K) 2241 6769
α 0.25 0.25

Thermal Conductivity, k (kgms−3K−1) 235 22
Density, ρ (kgm−3) 2700 4507

Specific Heat Capacity, cp (m2s−2K−1) 900 521
Hardness, κa (Pasα) 1.23 × 106 8.00 × 106
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