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S U M M A R Y
Melt generation and segregation in Earth’s mantle is typically modelled using the mixture
theory of two phase flows, which combine a set of conservation laws for mass, momentum and
energy with phenomenological laws for fluxes of mass and heat. Most current two phase flow
models assume local thermodynamic equilibrium between melt and matrix, but geochemical
observations suggest disequilibrium transport may play an important role. Here we generalise
the existing two phase flow theories to encompass multiple thermodynamic components and
disequilibrium. Our main focus is on the phenomenological laws describing phase change and
we present general disequilibrium melting laws, which reduce to the familiar fractional and
equilibrium melting laws in appropriate limits. To demonstrate the behaviour of our melting
laws, we address two simple model problems for a binary system: melting at constant pressure
and melting in a 1-D upwelling column at steady state. The framework presented here will
prove useful in future for modelling reaction infiltration instabilities in a thermodynamically
consistent manner. This framework will be useful not only for magma dynamics but for a wide
range of reactive two phase flow problems.

Key words: Mid-ocean ridge processes; Mechanics, theory, and modelling; Magma genesis
and partial melting; Magma migration and fragmentation.

1 I N T RO D U C T I O N

Beneath the Earth’s mid-ocean ridges the mantle melts and that melt
rises to the surface to form new crust. Why the mantle melts is well
understood: it is a natural consequence of the thermodynamics of
decompression melting (e.g. Stolper & Asimow 2007). But how
the melt rises is still poorly understood, despite many decades of
work on the problem. Part of the reason for this poor understanding
is the complex coupling that exists between melt segregation and
melt generation. To have a full description of the system we must
consider not only the fluid dynamics of melt segregation but also
the thermodynamics and perhaps even kinetics, of melt generation.

The main geodynamical modelling approach for this magma dy-
namics problem has been to use the mixture theory of two phase
flows (Drew 1983). A particularly useful and highly simplified two
phase flow theory appropriate to magma dynamics was written down
by McKenzie (1984) and others (Scott & Stevenson 1984; Fowler
1985) and has since been applied to a wide variety of problems.
In these models, melt percolates through the matrix according to
Darcy’s law and the matrix resists compaction through an effective
bulk viscosity. More recently, these two phase flow theories have
been generalised to account for additional phenomena such as sur-
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face tension and damage (Bercovici et al. 2001; Ricard et al. 2001;
Bercovici & Ricard 2003) and have been made more rigorous by
the formal homogenisation of microscale models (Simpson et al.
2010a,b).

The present work seeks to extend the current two phase flow
models of magma dynamics in two ways: (1) to allow chemical dis-
equilibrium between the two phases and (2) to encompass multiple
thermodynamic components. In most two phase flow models, local
thermodynamic equilibrium is assumed to hold everywhere. This
is a very useful assumption, as it means that the thermodynamic
variables are constrained to lie on phase diagrams, which has been
much exploited in recent geodynamic models (Katz 2008; Tirone
et al. 2009). However, there is compelling geochemical evidence
which suggests that melts are not always in chemical equilibrium
with the matrix through which they pass (Kelemen et al. 1997) and
indeed mantle melting is thought to be closer to a fractional process
than an equilibrium process. Chemical disequilibrium has been in-
voked in models of the reaction infiltration instability (Aharonov
et al. 1995; Spiegelman et al. 2001), a mechanism that may explain
the focusing of melt into channels, promoting rapid transport of the
melt.

Recent models of reactive transport have used somewhat ad hoc
linear kinetic laws to describe mass transfer between phases, but the
aim here is to provide a more rigorous treatment. For single com-
ponent melting, two phase flow equations encompassing chemical
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disequilibrium were derived by Sramek et al. (2007) (although no
disequilibrium calculations were performed). Sramek et al. (2007)
invoked the theory of non-equilibrium thermodynamics (e.g. de
Groot & Mazur 1984) to provide linear phenomenological laws for
disequilibrium melting and we follow their approach in our gener-
alisation to multiple components.

The manuscript is organised as follows: First, we write down the
equations governing conservation of mass, momentum and energy.
The set of governing equations are completed by equations of state
and phenomenological laws for transfer of heat and mass between
and within the phases. The main focus here is on the phenomeno-
logical laws governing transfer of mass between the phases (i.e.
melting, crystallisation, or dissolution). Non-equilibrium thermo-
dynamics provides a theoretical basis for linear phenomenological
laws, but it seems that non-linear laws are required if fractional
melting is to be described accurately. Finally, the theory is applied
to two well-studied model problems for a binary system: melting
due to increasing temperature at constant pressure and melting by
decompression in a upwelling 1-D column.

2 M A S S

In what follows, subscripts refer to the individual phases (either the
fluid melt f or solid matrix s) and superscripts to the components
(1, 2, . . . , n).

2.1 Phases

Conservation of mass for the two phases is

∂
(
φρ f

)
∂t

+ ∇ · (
φρ f v f

) = �, (1)

∂ ((1 − φ)ρs)

∂t
+ ∇ · ((1 − φ)ρsvs) = −�, (2)

where φ is the porosity (the volume fraction of melt), ρ f and ρs

are densities and vf and vs are velocities of the fluid and solid
respectively. � represents the total rate of mass exchange from solid
phase to fluid phase (the melting rate). It follows that given any
scalar quantities af and as per unit mass we have

∂
(
φρ f a f

)
∂t

+ ∇ · (
φρ f a f v f

) = φρ f
D f a f

Dt
+ �a f , (3)

∂ ((1 − φ)ρsas)

∂t
+ ∇ · ((1 − φ)ρsasvs) = (1 − φ) ρs

Dsas

Dt
− �as,

(4)

where Df /Dt and Ds/Dt are Lagrangian derivatives following the
fluid and solid, respectively. It follows that

∂

∂t

(
φρ f a f + (1 − φ)ρsas

) + ∇ · (
φρ f a f v f + (1 − φ)ρsasvs

)
= φρ f

D f a f

Dt
+ (1 − φ) ρs

Dsas

Dt
− ��a, (5)

where �a = as − a f . These expressions are useful in writing the
conservation equations to come in a more compact form, as through-
out expressions will be cast in terms of Lagrangian derivatives.

The mass conservation eqs (1) and (2) can be rewritten in La-
grangian form as

∇ · v f = − 1

φ

Df φ

Dt
+ ρ f

Df (1/ρ f )

Dt
+ �

φρ f
, (6)

∇ · vs = 1

1 − φ

Dsφ

Dt
+ ρs

Ds(1/ρs)

Dt
− �

(1 − φ)ρs
. (7)

Similarly, the mean velocity v ≡ φv f + (1−φ)vs = φ(v f −vs)+vs

satisfies

∇ · v = φρ f
D f (1/ρ f )

Dt
+ (1 − φ)ρs

Ds(1/ρs)

Dt
− ��(1/ρ), (8)

where �(1/ρ) = 1/ρs − 1/ρ f . It is often more convenient to work
with mass conservation in the form of (7) and (8) rather than (1)
and (2).

2.2 Components

The two phases are made up of n thermodynamic components
e.g. if the phases were pure olivine, component 1 could be Mg2SiO4

(forsterite) and component 2 could be Fe2SiO4 (fayalite). Conser-
vation of components is

φρ f

D f c j
f

Dt
+ �c j

f = −∇ · J j
f + � j , (9)

(1 − φ) ρs
Dsc j

s

Dt
− �c j

s = −∇ · J j
s − � j , (10)

where the left hand sides of the above equations have been written
in Lagrangian form using (3) and (4). cj

f and cj
s are the concen-

trations by mass of component j in the two phases. � j represents
the rate of mass exchange of component j from solid to fluid (in-
terphase exchange), whereas Jj

f and Jj
s represent the diffusive mass

fluxes of component j within the fluid and solid phases respectively
(intraphase fluxes). For consistency with the conservation of mass
eqs (1) and (2), the following constraints hold∑

j

c j
f =

∑
j

c j
s = 1, (11)

∑
j

J j
f =

∑
j

J j
s = 0, (12)

� =
∑

j

� j . (13)

The first of these constraints simply states that cj
f and cj

s represent
the compositions of the two phases and thus must sum to 1. Eq. (12)
states that the diffusive intraphase fluxes must sum to zero and (13)
states that the total rate of interphase mass transfer from solid to
liquid is given by the sum of the mass exchanges from solid to liquid
of the individual components.

3 M O M E N T U M

Derivations of the equations governing conservation of momen-
tum are much more involved than those governing conservation
of mass and have been discussed in detail by many other authors
(McKenzie 1984; Scott & Stevenson 1984; Fowler 1985; Schmel-
ing 2000; Bercovici et al. 2001; Ricard et al. 2001; Bercovici &
Ricard 2003; Simpson et al. 2010a,b). Only a brief outline of their
derivation is given here.

Conservation of momentum for the slow creeping flow of the two
phases is

∇ · (
φσ f

) + φρ f g = F, (14)
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∇ · ((1 − φ) σ s) + (1 − φ) ρsg = −F, (15)

where F is the interphase force per unit volume, representing the
force one phase exerts on the other and g is the acceleration due
to gravity. σ f and σs are the stress tensors for the two phases. It
is assumed that locally components within the same phase feel the
same stress, but that different phases feel different stresses. Hence
only two momentum equations are needed (one for each phase),
rather than the 2n equations that are needed to describe conservation
of mass (one for each phase and 2(n−1) for the components).

Eqs (14) and (15) can be summed to give the total conservation
of momentum equation

∇ · σ + ρg = 0, (16)

where the average stress tensor and density are defined by

σ = φσ f + (1 − φ) σ s, (17)

ρ = φρ f + (1 − φ) ρs . (18)

Mechanical pressures for the two phases are defined in the standard
way by

p f = −1

3
tr σ f , (19)

ps = −1

3
tr σ s, (20)

with a mean mechanical pressure given by

p = −1

3
tr σ = φp f + (1 − φ)ps . (21)

The stress tensors can be split into isotropic and deviatoric (trace-
free) parts as

σ f = −pf I + τ f , (22)

σ s = −psI + τ s, (23)

where τ f and τ s are the deviatoric stress tensors and I is the identity
tensor.

A simple phenomenological law for the interphase force F is
given by (Drew 1983)

F = d
(
v f − vs

) − P∇φ, (24)

where d is a drag coefficient associated with resistance of motion
of the two phases past each other and P is the interface pressure,
which produces a net force if porosity spatially varies. Throughout
this work we will neglect surface tension, but a generalisation of
the above law to encompass surface tension effects can be found in
Bercovici et al. (2001).

To complete the set of equations, phenomenological laws are
needed to determine the pressure differences P− pf and P− ps

and the deviatoric stress tensors τ f and τ s . To be consistent with
the simplified two phase flow theory of McKenzie (1984), the phe-
nomenological laws must take the form

P − p f = 0, (25)

P − ps = ζφ

1 − φ
∇ · vs, (26)

τ f = 0, (27)

τ s = ηφ

1 − φ

(
∇vs + ∇vT

s − 2

3
(∇ · vs) I

)
. (28)

These laws appear somewhat asymmetric due to an assumption that
the matrix is much more viscous that the melt. (14), (24), (25) and
(27) then lead to the usual Darcy’s law for the melt,

φ
(
vf − vs

) = − kφ

μ

(∇ P − ρf g
)
, (29)

where the permeability kφ (a function of porosity) is related to the
drag coefficient by d = μφ2/kφ . (16) and (25)–(28) lead to a total
conservation of momentum equation

∇ P = ∇ · (
ηφ

(∇vs + ∇vT
s

)) + ∇
((

ζφ − 2

3
ηφ

)
∇ · vs

)
+ ρg,

(30)

which resembles the equation governing compressible Stokes flow,
where ηφ and ζφ can be interpreted as effective shear and bulk vis-
cosities for the two phase mixture (which are also porosity depen-
dent). More general phenomenological laws than those in (25)–(28)
were developed by Bercovici & Ricard (2003) to preserve material
invariance and these laws are outlined briefly in Appendix A (also
see discussion in Simpson et al. 2010a).

4 E N E RG Y

When considering the thermodynamics of two phase flow, as we
must when considering conservation of energy, a key difficulty is the
notion of pressure and in particular the difference between ‘thermo-
dynamic’ and ‘mechanical’ definitions of pressure. The thermody-
namic pressure appears in definitions of thermodynamic potentials
for example, in the relationship between enthalpy and internal en-
ergy, H= U+ pV . The mechanical pressures are defined by minus
one third the trace of the stress tensor, as in (19), (20) and (21). Even
for a compressible single phase viscous fluid there is difference be-
tween these two definitions of pressure. This difference depends on
the bulk viscosity and the divergence of the velocity field and disap-
pears in equilibrium. For a two phase system, the situation is much
less clear as there are multiple mechanical pressures and potentially
multiple thermodynamic pressures.

In what follows all thermodynamic potentials for both phases are
defined with P, the interface pressure, as the appropriate thermo-
dynamic pressure. There is some justification for this in the work
of Sramek et al. (2007) where it was shown that this leads to a
particularly natural characterisation of phase change. For the phe-
nomenological laws considered, the difference between mechanical
and thermodynamic pressures only depends on the divergences of
the velocity fields, in a way analogous to the compressible single
phase case. Using P for the thermodynamic pressure is also iden-
tical to the assumption made by McKenzie (1984) where the fluid
pressure (identical to the interface pressure, 25) was chosen as the
common thermodynamic pressure for the two phases. Nevertheless,
thermodynamic pressure remains a thorny aspect of two phase flow
theories and deserves further careful study.

Conservation of total internal energy is (McKenzie 1984; de
Groot & Mazur 1984)

φρ f
D f u f

Dt
+ (1 − φ) ρs

Dsus

Dt
− ��u

= Q − ∇ · q + ∇ · (
φσ f · v f + (1 − φ) σ s · vs

) + φρ f v f · g

+ (1 − φ) ρsvs · g, (31)

where uf and us are the internal energies per unit mass of the
two phases, Q is the rate of internal heat production (e.g. from
radioactivity), q is the diffusive heat flux and the remaining terms
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on the right hand side are sources of energy due to work. Using
the momentum eqs ((14), (15) and (24), the energy equation can be
simplified to

φρ f
Df u f

Dt
+ (1 − φ) ρs

Dsus

Dt
− ��u = Q − ∇ · q − P∇ · v + 	,

(32)

where 	 is the viscous dissipation,

	 = d
(
vf − vs

)2 + φ
(
P − p f

) ∇ · v f + (1 − φ) (P − ps) ∇ · vs

+ φτ f : ∇vf + (1 − φ)τ s : ∇vs . (33)

With the simplified phenomenological laws (25)–(28), the viscous
dissipation can be written as

	 = μφ2

kφ

(
vf − vs

)2 + ζφ (∇ · vs)2

+ηφ

2

(
∇vs + ∇vT

s − 2

3
I (∇ · vs)

)2

. (34)

Here squares represent a dot product for vectors a2 = a · a and a
double dot product for second rank tensors A2 = A : A. A more
general expression for the viscous dissipation can be found in Sec-
tion A using the phenomenological laws of Bercovici & Ricard
(2003).

Conservation of energy (32) can be rewritten using conservation
of mass (8) as

φρ f
Df u f

Dt
+ (1 − φ) ρs

Dsus

Dt
− ��u

= Q − ∇ · q − P

(
φρ f

D f (1/ρ f )

Dt
+ (1 − φ) ρs

Ds(1/ρs)

Dt

−��(1/ρ)

)
+ 	. (35)

In applications it is useful to rewrite the energy equation in terms of
different thermodynamic potentials. For example, specific enthalpy
satisfies

hi = ui + P

ρi
,

Di hi

Dt
= Di ui

Dt
+ 1

ρi

Di P

Dt
+ P

Di (1/ρi )

Dt
, (36)

where the subscript i refers to the phase, i= s, f . As discussed
above, the definition of specific enthalpy used here is in terms of the
interface pressure P. Using (36), conservation of energy (31) can
be written as an enthalpy equation

φρ f
D f h f

Dt
+ (1 − φ) ρs

Dshs

Dt
− ��h

= φ
D f P

Dt
+ (1 − φ)

Ds P

Dt
+ Q − ∇ · q + 	, (37)

which is the form of the energy equation used in the enthalpy method
(Katz 2008). We will return to this enthalpy equation in Section 6
to write a temperature equation.

4.1 Entropy

Perhaps the most important rewriting of the energy equation is as
an equation for entropy. Since

hi = T si +
∑

j

μ
j
i c j

i ,
Di hi

Dt
= T

Di si

Dt
+ 1

ρi

Di P

Dt
+

∑
j

μ
j
i

Di c
j
i

Dt
,

(38)

the enthalpy equation (37) can be written as an entropy equation,

T φρ f
D f s f

Dt
+ T (1 − φ) ρs

Dsss

Dt
− �T �s

= Q − ∇ · q + 	 +
∑

j

(
μ

j
f ∇ · J j

f + μ j
s ∇ · J j

s + � j�μ j
)

,

(39)

where we have used conservation of components (9), (10). The
above expression can be written as an entropy balance,

φρ f
D f s f

Dt
+ (1 − φ) ρs

Dsss

Dt
− ��s = −∇ · j + σ, (40)

where j is the entropy flux and σ is the entropy production. Compar-
ing (39) and (40), we see that the entropy flux j is related to fluxes
of heat and components by

j = q

T
−

∑
j

J j
f μ

j
f + J j

s μ
j
s

T
(41)

and the entropy production σ is given by

σ = 1

T

(
Q + 	 − j · ∇T +

∑
j

� j�μ j − J j
f · ∇μ

j
f − J j

s · ∇μ j
s

)
.

(42)

The second law of thermodynamics requires that σ ≥ 0 (also known
as the Clausius–Duhem inequality).

5 E Q UAT I O N S O F S TAT E

Equations of state need to be prescribed for the two phases. In
theory, this could be done using the internal energy, by specifying
functions ui (si , ρi , c j

i ) for the two phases. The temperature, pressure
and chemical potentials could then be derived from these functions
using the Gibbs relation dui = T dsi − Pd(1/ρi ) + ∑

j μ
j
i dc j

i or

T = ∂ui

∂si
, P = − ∂ui

∂(1/ρi )
, μ

j
i = ∂ui

∂c j
i

. (43)

However, thermodynamic data is not usually given in (si , ρi , c j
i )

co-ordinates, but rather in (P , T , cj
i) co-ordinates and it is helpful to

re-express the equations of state. Such co-ordinates are also useful
since we are assuming a common temperature T and interface pres-
sure P for both phases. The co-ordinate change uses the following
standard partial derivatives in (P , T , cj

i) co-ordinates,

αi = ρi
∂(1/ρi )

∂T
, βi = −ρi

∂(1/ρi )

∂ P
, (44)

Ci = T
∂si

∂T
= ∂hi

∂T
, (45)

αi is the thermal expansion coefficient, βi is the isothermal com-
pressibility and Ci is the specific heat capacity at constant pressure.
The dependence on composition is captured by introducing partial
specific quantities as

hi =
∑

j

c j
i h j

i ,
1

ρi
=

∑
j

c j
i

ρ
j

i

, (46)

where 1/ρ
j

i is the partial specific volume of component j in
phase i and hj

i is the corresponding partial specific enthalpy. Us-
ing (44)–(46), we may then write equations of state in terms of
Lagrangian derivatives

ρi
Di (1/ρi )

Dt
= αi

Di T

Dt
− βi

Di P

Dt
+

∑
j

ρi

ρ
j

i

Di c
j
i

Dt
, (47)
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Di hi

Dt
= Ci

Di T

Dt
+ 1 − αi T

ρi

Di P

Dt
+

∑
j

h j
i

Di c
j
i

Dt
. (48)

Of course, the quantities αi , βi , etc. may be functions of P, T and
cj

i but are often assumed constant for simplicity. Equations of state
are also needed to describe the chemical potentials μ

j
i and these are

discussed later in Section 7.

6 T E M P E R AT U R E E Q UAT I O N S

Using (47) we may rewrite the mass conservation eqs (6) and (7) as

∇ · v f = − 1

φ

D f φ

Dt
+ α f

D f T

Dt
− β f

D f P

Dt
+

∑
j

� j − ∇ · J j
f

φρ
j
f

,

(49)

∇ · vs = 1

1 − φ

Dsφ

Dt
+ αs

Ds T

Dt
− βs

Ds P

Dt
−

∑
j

� j + ∇ · J j
s

(1 − φ)ρ j
s

,

(50)

where the derivatives of composition have been removed using con-
servation of components (9), (10). The corresponding equation for
the mean velocity (8) becomes

∇ · v = φα f
D f T

Dt
+ (1 − φ)αs

Ds T

Dt
− φβ f

D f P

Dt
− (1 − φ)βs

Ds P

Dt

−
∑

j

(
� j�(1/ρ j ) + ∇ · J j

f

ρ
j
f

+ ∇ · J j
s

ρ
j

s

)
.

Using (48), the conservation of energy eq. (37) can be rewritten
as

φρ f C f
D f T

Dt
+ (1 − φ) ρsCs

Ds T

Dt
− φα f T

D f P

Dt

− (1 − φ) αs T
Ds P

Dt

= Q + 	 − ∇ · q′ +
∑

j

(
� j�h j − J j

f · ∇h j
f − J j

s · ∇h j
s

)
,

(51)

where again the derivatives of composition have been removed using
conservation of components (9), (10). q′ is an alternative definition
of heat flux, related to the original fluxes by

q′ = q −
∑

j

J j
f h j

f + J j
s h j

s . (52)

The temperature eq. (51) can also be written in terms of averaged
quantities,

ρC
∂T

∂t
+ ρCv · ∇T − T α

∂ P

∂t
− T αv · ∇ P

= Q + 	 − ∇ · q′ −
∑

j

(
� j L j + J j

f · ∇h j
f + J j

s · ∇h j
s

)
, (53)

where L j = −�h j = h j
f −h j

s is the latent heat (enthalpy of fusion)
for melting of component j and the overbars represent averages as

ρC = φρ f C f + (1 − φ)ρsCs, (54)

ρCv = φρ f C f v f + (1 − φ)ρsCsvs, (55)

α = φα f + (1 − φ)αs, (56)

αv = φα f v f + (1 − φ)αsvs . (57)

The temperature eq. (53) closely resembles the standard tempera-
ture equation for single phase flow. The two phase nature of the
flow appears in the averaging of specific heat capacities, thermal
expansivities and velocities and through the latent heat term. The
multicomponent nature of the flow appears in the terms involving
diffusive fluxes of components, the different latent heats for the
different components and the potential for composition dependent
properties.

7 C H E M I C A L P O T E N T I A L S

To have a full description of the thermodynamics, we need to relate
chemical potentials to temperature, pressure and composition. It is
an unfortunate fact that when working with chemical potentials we
have to deal with both mass fractions (denoted by c j ) and mole
fractions (denoted by x j ). It is straightforward to convert between
the two sets of variables:

c j = M j x j

M
, x j = Mc j

M j
, (58)

where M j are the molar masses of each component (kg mol−1) and
M is the mean molar mass, given by

M =
∑

j

M j x j =
⎛
⎝∑

j

c j

M j

⎞
⎠

−1

. (59)

Another way of expressing these relationships is by

c j = {
M j x j

}
, x j = {

c j/M j
}
, (60)

where {·} refers to normalising to unit sum,
{
a j

} = a j/
∑

k ak .
The chemical potentials are related to temperature, pressure and

composition by the standard relationships (Spear 1993; Anderson
2005)

μ j
s = μ j◦

s (P, T ) + R j T log
(
γ j

s x j
s

)ν
, (61)

μ
j
f = μ

j◦
f (P, T ) + R j T log

(
γ

j
f x j

f

)ν

, (62)

where γ j are activity coefficients and x j are molar concentrations.
The activity model used here (γ j x j )ν is a non-ideal one-site sub-
stitution model suitable for minerals such as olivine: for activity
models for more complex assemblages the reader is encouraged to
consult the textbooks (e.g. Chapter 7 of Spear 1993). The activity
coefficients γ j = 1 for an ideal solution and ν is the number of
lattice sites per formula unit (e.g. ν = 2 for olivine (MgFe)2SiO4).
R j is the specific gas constant for component j, R j = R̃/M j ,
where R̃ is the universal gas constant (R̃ = 8.314472 J K−1 mol−1)
and M j is the molar mass. This is consistent with the earlier def-
inition of the chemical potential as being per unit mass (the units
of μ are J kg−1). The chemical potentials per mole are given by
μ̃ j

s = μs M j , μ̃
j
f = μ f M j (with units J mol−1).

The differences in chemical potentials, �μ j = μ j
s − μ

j
f satisfy

�μ j = −R j T log K j + R j T log Q j , (63)

where K j are the equilibrium constants, functions only of temper-
ature and pressure, defined by

−R j T log K j = μ j◦
s − μ

j◦
f (64)

and Q j are the activity ratios, defined by

Q j =
(

γ j
s x j

s

γ
j
f x j

f

)ν

. (65)
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6 J. F. Rudge, D. Bercovici and M. Spiegelman

(63) can be rewritten as

Q j

K j
= exp

(
�μ j

R j T

)
. (66)

In equilibrium �μ j = 0 and Q j = K j .
It is often more desirable to work with concentration ratios rather

than activity ratios. If we define K j
x and Qj

x by

K j
x = γ

j
f

γ
j

s

(
K j

)1/ν
, Q j

x = x j
s

x j
f

, (67)

where Qj
x is a molar concentration ratio, then Qj

x = K j
x in equilib-

rium. We can relate Qj
x and K j

x to the chemical potential differences
by

Q j
x

K j
x

=
(

Q j

K j

)1/ν

= exp

(
�μ j

νR j T

)
. (68)

7.1 Solidus and liquidus surfaces

Since Qj
x = K j

x in equilibrium, the equilibrium molar compositions
x j

s(eq) and x j
f (eq) satisfy

x j
s(eq) = K j

x x j
f (eq),

∑
x j

s(eq) = 1,
∑

x j
f (eq) = 1. (69)

The permissible values of x j
s(eq) and x j

f (eq) describe the solidus and
liquidus surfaces, respectively.

If Kx is a function only of temperature and pressure (as is the
case for an ideal solution and will be assumed from here on), the
two surfaces can be described separately as follows. The solidus is
given by those molar compositions x j

s(eq) satisfying

∑
j

x j
s(eq)

K j
x

= 1,
∑

x j
s(eq) = 1 (70)

and the liquidus is given by those molar compositions x j
f (eq) satis-

fying∑
j

K j
x x j

f (eq) = 1,
∑

x j
f (eq) = 1. (71)

Eqs (70) and (71) embody the Gibbs’ phase rule: For a two-phase
n-component system the phase rule states that there are n thermody-
namic degrees of freedom in equilibrium. The n degrees of freedom
could be T , P and n − 2 of the components of xj

s. In a binary system
n = 2 and the equilibrium compositions can be completely specified
by T and P. The solidus is given by (70),

x1
s(eq)

K 1
x (P, T )

+ x2
s(eq)

K 2
x (P, T )

= 1, x1
s(eq) + x2

s(eq) = 1 (72)

and the liquidus by (71),

K 1
x (P, T )x1

f (eq) + K 2
x (P, T )x2

f (eq) = 1, x1
f (eq) + x2

f (eq) = 1.

(73)

In each case there are two simultaneous equations for two unknowns,
which can be solved uniquely. These expressions are used to calcu-
late the solidus and liquidus surfaces for olivine in Fig. 1.

7.2 Temperature and pressure dependence
of equilibrium constants

The temperature and pressure dependence of the equilibrium con-
stants K j (P , T ) need to be prescribed. The van’t Hoff equation

describes the temperature dependence

∂ log K j

∂T
= �h j

R j T 2
, (74)

where �h j is the change in enthalpy for melting of pure component
j. The pressure dependence is

∂ log K j

∂ P
= −�(1/ρ j )

R j T
. (75)

It is helpful to look at a simplified form of these dependencies. For
example, if we assume that �h j is independent of temperature and
pressure, then a suitable approximate expression is (Bradley 1962)

log K j = −�h j

R j

(
1

T
− 1

T j
m (P)

)
. (76)

T j
m(P) is the melting temperature of the pure component as a func-

tion of pressure. Recall that �h j ≡ −L j , where L j is the latent
heat. In terms of K j

x, (76) can be rewritten as

log K j
x = log

(
γ

j
f /γ

j
s

)
− �h j

νR j

(
1

T
− 1

T j
m (P)

)
. (77)

The function T j
m(P) satisfies the Clapeyron equation,

dT j
m

dP
= T j

m�(1/ρ j )

�h j
, (78)

which could formally be integrated to determine T j
m(P). However, it

is often easier to use an approximate parameterised form for T j
m(P),

such as Simon’s equation,

T j
m (P) = T j

m0

(
1 + P

a j

)1/b j

, (79)

for some coefficients a j and b j . This is the approach taken here.

8 P H E N O M E N O L O G I C A L L AW S F O R
I N T E R P H A S E M A S S T R A N S F E R

To complete the governing equations, phenomenological laws are
required describing the fluxes of mass and heat. In this section, we
focus on the phenomenological laws for interphase mass transfer
and the corresponding discussion for intraphase vector fluxes can be
found in Section B. The simplest closure is to assume local thermo-
dynamic equilibrium (e.g. Ribe 1985a; Hewitt & Fowler 2008; Katz
2008; Tirone et al. 2009). This adds n algebraic equations to the
system, for example, of the form xj

s = Kxxj
f (see 69) and constrains

the solid and liquid to lie on the solidus and liquidus on the phase
diagram. The interphase mass transfers are then implicitly deter-
mined. However, in this work we are interested in disequilibrium
effects and thus do not assume local thermodynamic equilibrium.

According to the theory of non-equilibrium thermodynamics (de
Groot & Mazur 1984), linear phenomenological laws can be ob-
tained by examining the expression for entropy production. For
example, the part of the entropy production due to transfer of com-
ponents between phases is given in (42) as

σ =
∑

j

� j �μ j

T
. (80)

This expression defines a natural set of conjugate thermodynamic
forces (�μ j/T ) and fluxes (� j ) and suggests linear phenomeno-
logical laws of the form

� j =
∑

k

E jk �μk

T
=

∑
k

E jkνRk log

(
Qk

K k

)1/ν

, (81)
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Disequilibrium multicomponent mantle melting 7

Figure 1. Examples of isobaric disequilibrium melting of olivine. Each panel is plot of temperature T against composition c. The grey lines in the background
show the olivine binary phase loop (the equilibrium solidus and liquidus curves). c = 1 is pure forsterite, c = 0 is pure fayalite. The dotted line indicates the
bulk composition, c = 0.41. Red curves show the solid composition, blue curves show the liquid composition. Each panel is for a particular style of melting
(either type I or type II) for the range of Damköhler numbers indicated. In each case, dark shading indicates small Damköhler number, light shading indicates
large Damköhler number. (a) and (b) are examples of type I melting, (c) and (d) are examples of type II melting and (e) and (f) are the same for both type I and
type II melting (see discussion in text).

for some matrix of coefficients E jk . Onsager’s reciprocal relations
state that E jk is a symmetric matrix, E jk = Ekj and the second
law ensures that E jk is positive semi-definite. More precisely, the
theory states that any scalar flux can depend on any scalar force
in the entropy production and this could include a dependence of
� j on velocity field divergences. However, we will neglect such
a dependence here and assume the interphase mass transfers only
depend on differences in chemical potential (see Sramek et al. 2007,
for further discussion).

Far from equilibrium, linear laws may be a poor descrip-
tion of the kinetics. Indeed, this is well known in the context
of chemical reactions, where the law of mass action (based on
products of activities) is generally a more useful phenomeno-
logical law far from equilibrium than linear laws based on the
affinities (differences in chemical potential). This motivates the
exploration of laws for interphase mass transfer that are non-
linear in the chemical potential differences, but that must still
satisfy the constraints of non-equilibrium thermodynamics near
equilibrium.

Here we propose a simple non-linear law for interphase mass
transfer that can be thought of as a generalisation of fractional
melting. We introduce the law first and then explain why it may be
reasonable. The law we propose is

� j =
∑

k

E jk Zk, (82)

Zk = νRk

(
1 −

(
K k

Qk

)1/ν
)

= νRk

(
1 − K k

x xk
f

xk
s

)
, (83)

which is very similar to (81). Again E jk is a matrix of coefficients,
which we will assume is symmetric and positive semi-definite (see
Subsection 8.3 for further discussion of the second law). Zk are the
thermodynamic forces which are now given by a non-linear law in
terms of the equilibrium constants K k and activity ratios Qk . The
dependence on the ratio K k/Qk is found in many kinetic theories,
such as transition state theory (Anderson 2005; Lasaga 1998). Near
equilibrium this non-linear phenomenological law reduces to the
linear law of (81), as Zk ≈ �μk/T near equilibrium.
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8 J. F. Rudge, D. Bercovici and M. Spiegelman

To make the link with fractional melting, it is useful to express
the fluxes in a different way, separating out the mass flux associated
with phase change (�) from the fluxes of components that occur
without phase change (Baker & Cahn 1971; Caroli et al. 1986;
Hillert 2006). Key to this alternative representation is the fact that
the symmetric positive semi-definite matrix E jk can be uniquely
decomposed as

E jk = λ�c j
�ck

� + G jk, (84)

where λ� > 0, c j
� is a well-defined composition (i.e. it has unit sum

and positive entries) and G jk is a positive semi-definite matrix with
zero row and column sum. The subscripts � on λ� and c j

� are to
emphasise their association with the phase change, which is clearer
when the phenomenological laws (82) and (83) are rewritten using
(84) as

� j = �c j
� + J j , (85)

� = λ�

∑
k

ck
� Zk, (86)

J j =
∑

k

G jk Zk . (87)

Eq. (85) splits the mass flux of component j into two parts: a part
that occurs due to phase change (�c j

� , since
∑

j �c j
� = �) and a

part that occurs without phase change (J j , since
∑

j J j = 0). The
flux due to phase change is controlled by the coefficients λ� (a rate
constant for phase change) and c j

� , whereas the flux of components
that occurs without phase change is controlled by the coefficients
G jk since

∑
j

∑
k G jk Zk = 0 . This decomposition into fluxes with

and without phase change is useful because the different mass fluxes
may be controlled by quite different physical mechanisms and thus
occur at different kinetic rates.

Whether written as (82) or (85)–(87), there remains a set of
n(n + 1)/2 coefficients to be prescribed, either in the form of the
n(n + 1)/2 independent entries of the matrix E jk or as λ� , the
n − 1 independent entries of c j

� and the n(n − 1)/2 independent
entries of G jk . Either set can be specified and the other set is then
determined. In this work, we will focus on two natural choices for
the composition c j

� and will refer to the two laws as type I and type
II melting. One of these laws generalises melting laws which leave
the solid composition unchanged (type I melting) and the other
generalises fractional melting (type II melting).

8.1 Fractional melting (Type II melting)

During fractional melting the solid remains on the solidus and each
infinitesimal increment of melt produced is in equilibrium with
the solid. Once the infinitesimal melt has formed it is chemically
isolated from the solid and no further chemical exchange occurs (al-
though heat is still exchanged as thermal equilibrium is assumed).
We will refer to this style of fractional melting as thermally equi-
librated fractional melting (which differs from the incrementally
isentropic fractional melting described by Asimow et al. (1997) and
Stolper & Asimow (2007), which does not involve thermal equili-
bration).

The laws for fractional melting can be written as (Spiegelman &
Elliott 1993; Spiegelman 1996)

∑
k

xk
s

K k
x

= 1, (88)

� j = �c j
�, x j

� = x j
s

K j
x

, (89)

where (88) constrains the solid to lie on the solidus and (89) states
that the melt produced is in equilibrium with the solid. x j

� represents
the molar concentrations of the infinitesimal melt produced and c j

�

the corresponding mass concentrations (x j
� and c j

� are related by 58).
In (89) phase change is the only form of mass transfer; comparison
with (85) shows that the J j (the fluxes of components without phase
change) are all zero.

We would like to relate the laws given by (88)–(89) to those of
(85)–(87). It is clear that to reproduce fractional melting the coeffi-
cients G jk should be zero, but is less clear how the coefficients λ�

and c j
� should be chosen. Eq. (89) motivates choosing the compo-

sition associated with phase change as

x j
� =

{
x j

s

K j
x

}
(90)

where {·} again refers to normalising to unit sum. Note that normal-
isation is required, since xj

s/K j
x is not guaranteed to be a valid com-

position (i.e. sum to 1) as the solid is not necessarily constrained
to the solidus for general disequilibrium phenomenological laws.
The phenomenological law describing phase change (86) and (83)
becomes

� = λ�

∑
k

ck
�νRk

(
1 − K k

x xk
f

xk
s

)
(91)

∝ λ�

∑
k

xk
s

K k
x

(
1 − K k

x xk
f

xk
s

)
(92)

∝ λ�

([∑
k

xk
s

K k
x

]
− 1

)
(93)

and thus the constraint that the solid lies on the solidus is recovered
as λ� → ∞. Hence fractional melting is recovered with the coeffi-
cient choice of λ� → ∞, G jk = 0 and x j

� = {
x j

s /K j
x

}
. Indeed, the

main reason for choosing the particular non-linear form in (83) is to
exactly recover the solidus constraint, which is only approximately
recovered with the linear law. We will refer to any melting law which
has x j

� = {
x j

s /K j
x

}
as type II melting. A similar generalisation can

be made for fractional crystallisation and is discussed in Section C.

8.2 Solid invariant melting (Type I melting)

Another natural choice for the composition x j
� is the solid compo-

sition itself, x j
� = x j

s , which we will refer to as type I melting. If the
coefficients G jk are zero, then this style of melting keeps the solid
composition fixed. If λ� → ∞, this style of melting constrains the
liquid to the liquidus.

The two styles of melting we consider here (type I and type II)
are not the only styles of melting one could consider: they simply
represent two natural choices for the composition associated with
melting based on the solid composition. There is plenty of scope
for further exploration of these laws.

8.3 The positivity of entropy production

The second law of thermodynamics demands that the entropy pro-
duction σ is positive. For a linear phenomenological law, such as
that given by (81), it is straightforward to derive conditions on the
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matrix of phenomenological coefficients E jk such that positive en-
tropy production is assured. Since the entropy production (80) for a
linear law is simply

σ = 1

T 2

∑
j

∑
k

E jk�μ j�μk, (94)

a positive entropy production is assured for all �μk if and only if
E jk is a positive semi-definite matrix.

With non-linear phenomenological laws the situation is not so
straightforward: even if E jk is a positive definite matrix, it is not
necessarily the case that the resulting entropy production is positive
and other constraints must be placed on the coefficients E jk . For the
melting laws given by (82) and (83), the entropy production (80)
can be written in terms of chemical potentials as

σ =
∑

j

∑
k

E jkνRk

(
1 − exp

(
− �μk

νRk T

))
�μ j

T
, (95)

or more simply as

σ =
∑

j

∑
k

E∗ jk
(

1 − e−dk
)

d j , (96)

where d j = �μ j/νR j T and E∗ jk = ν2 R j Rk E jk . If (96) could be
linearised 1 − e−dk ≈ dk , then the entropy production is assured
to be positive if E∗ jk is a positive semi-definite matrix. But for
the general non-linear law, having E∗ jk be a positive semi-definite
matrix is not enough to guarantee positive entropy production.

There are certain simple forms for E∗ jk that will guarantee a
positive entropy production for the non-linear law. For example,
if E∗ jk is diagonal, with positive entries on the diagonal, then the
entropy production is positive because the function f (x) = x(1−
e−x) is always positive. If E∗ jk = λc j ck for some composition c j

and constant λ > 0, then the entropy production will be positive
provided all the d j have the same sign, since the two quantities∑

j c j d j and
∑

k ck(1 − e−dk
) are then either both positive or both

negative. Having all the d j the same sign is a common occurrence
and is true for the example calculations throughout this work. For
a binary system the entropy production is always positive for ar-
bitrary positive semi-definite matrices E∗ jk when the d j have the
same sign, because matrices of the form in (97) also always give
a positive entropy production (recall the decomposition in 84). For
more general cases, the positivity of the entropy production with
this non-linear law can not be taken for granted. If the d j differ in
sign the entropy production may go negative with the present non-
linear law: this implies other non-linear laws are needed to describe
such circumstances and must be developed.

9 I S O B A R I C B I NA RY M E LT I N G

As a concrete example in which to explore the behaviour of these
phenomenological laws, we now consider the problem of isobaric
melting of olivine. Our model olivine is a complete solid solution of
two components, forsterite (Mg2SiO4) and fayalite (Fe2SiO4), with
a simple binary loop phase diagram. For a binary system the matrix
G jk has only one free parameter and takes the form

G jk = λJ

(
1 −1

−1 1

)
, (97)

where λJ > 0. In full, the phenomenological laws for melting are
thus

Q1
x = xs

x f
, Q2

x = 1 − xs

1 − x f
, (98)

K 1
x = exp

(
L1

νR1

(
1

T
− 1

T 1
m(P)

))
, (99)

K 2
x = exp

(
L2

νR2

(
1

T
− 1

T 2
m(P)

))
, (100)

T 1
m(P) = T 1

m0

(
1 + P

a1

)1/b1

, T 2
m(P) = T 2

m0

(
1 + P

a2

)1/b2

,

(101)

Z 1 = νR1

(
1 − K 1

x

Q1
x

)
, Z 2 = νR2

(
1 − K 2

x

Q2
x

)
, (102)

� = λ�

(
c� Z 1 + (1 − c�)Z 2

)
, (103)

J = λJ

(
Z 2 − Z 1

)
, (104)

�1 = c�� − J, (105)

�2 = (1 − c�) � + J, (106)

where the composition variable x refers to the molar concentration
of component 1 (forsterite): the molar concentration of component
2 (fayalite) is 1− x . Numerical values for model olivine parameters
can be found in Table 1. Note that the kinetic rates λ�, λJ > 0 to
satisfy the second law. λ� and λJ could depend on many variables
such as temperature or porosity, but for simplicity, here λ� and λJ

will be assumed constant.
For type I melting,

x� = xs, (107)

whereas for type II melting,

x� = xs/K 1
x

xs/K 1
x + (1 − xs)/K 2

x

. (108)

Consider heating a piece of olivine at fixed pressure such that
its temperature rises at a constant rate. Let F be the mass fraction
of melt (initially zero). The evolution of F and composition cf are
described by

dF

dt
= �

ρ0
, (109)

d(Fc f )

dt
= �1

ρ0
, (110)

where ρ0 is the initial density of the unmelted solid. In non-
dimensional form this simple system can be described in terms
of temperature as

dF

dT
= �, (111)

d(Fc f )

dT
= �1, (112)

Z 1 = 1 − K 1
x

Q1
x

, Z 2 = R2

R1

(
1 − K 2

x

Q2
x

)
, (113)

� = Da�

(
c� Z 1 + (1 − c�)Z 2

)
, (114)

J = DaJ

(
Z 2 − Z 1

)
, (115)
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10 J. F. Rudge, D. Bercovici and M. Spiegelman

Table 1. Approximate parameters for the forsterite–fayalite binary system, (MgFe)2SiO4. There are two atoms of (Mg,Fe) per formula unit and thus ν = 2.
The latent heats are chosen to match the phase diagram using the parametrisation of Bradley (1962), although here the specific heat capacities are assumed
identical for solid and liquid. The melting temperature as a function of temperature has been parametrised by Simon’s equation. Thermal expansion coefficients
are assumed identical for the two components.

j = 1: Forsterite j = 2: Fayalite Notes

Formula Mg2SiO4 Fe2SiO4

Latent heat of fusion L j 8.71 × 105 J kg−1 5.17 × 105 J kg−1 Bradley (1962)
Melting temperature T j

m0 2163 K 1478 K at 0.1 MPa, Bradley (1962)
Simon’s equation coefficient a j 10.83 GPa 15.78 GPa Bottinga (1985), Poirier (2000)
Simon’s equation coefficient b j 3.70 1.59 Bottinga (1985), Poirier (2000)

Molar mass M j 0.1406934 kg mol−1 0.2037736 kg mol−1

Specific gas constant R j 59.096 J K−1 kg−1 40.803 J K−1 kg−1

Solid density ρ
j
s 3222 kg m−3 4392 kg m−3 Deer et al. (1992)

Melt density ρ
j
f 3053 kg m−3 4026 kg m−3 Calculated from Clapeyron relation

Solid thermal expansion coefficient α
j
s 2.6 × 10−5K−1 2.6 × 10−5K−1 Fa at 298-1123 K, Ahrens (1995)

Melt thermal expansion coefficient α
j
f 4.8 × 10−5K−1 4.8 × 10−5K−1 Fa at 1573-1873 K, Agee (1992)

Specific heat capacity C j 1.3 × 103 J K−1 kg−1 1.3 × 103 J K−1 kg−1 Fo at 1500 K, Ahrens (1995)

�1 = c�� − J, (116)

where the temperature has been non-dimensionalised by a typical
temperature scale �T , taken here to be the difference between the
melting points of the two components �T = T 1

m − T 2
m . The mass

exchanges � and �1 are non-dimensionalised on �T/(ρ0dT/dt),
where d T /d t is the (assumed constant) rate of temperature increase.
The behaviour of this simple system is determined by two non-
dimensional Damköhler numbers,

Da� = λ�νR1�T

ρ0(dT/dt)
, DaJ = λJ νR1�T

ρ0(dT/dt)
, (117)

which are ratios of the kinetic rates to the rate at which the temper-
ature increases.

Fig. 1 gives examples of the different styles of disequilibrium
melting that occur as the two Damköhler numbers are varied for
the two types of melting. If both Damköhler numbers are large,
Da� → ∞ and DaJ → ∞, the kinetic rates are much faster than
the rate at which the temperature increases and thus the melting
occurs in equilibrium (batch melting). In equilibrium, the solid
composition lies on the solidus and the liquid composition lies on
the liquidus. Equilibrium melting begins when the bulk composition
intersects the solidus and completes when the bulk composition
intersects the liquidus. To avoid a singularity near the onset of
melting, the calculations of Fig. 1 assume there is initially a very
small melt fraction (F = 10−10) present before melting begins with
a composition in equilibrium with the solid.

Fig. 1(a) shows the effect of reducing Da J while keeping Da�

large for type I melting. Since Da� is large the liquid composition
remains on the liquidus (the constraint imposed by type I melting).
But the solid composition deviates the solidus: in the end-member
case of DaJ = 0 (dark shading), the solid composition is invariant
with changing temperature (since � j = �c j

s in this limit). With
small DaJ and large Da� , the lever rule (conservation of mass)
implies that there is little melting until the bulk composition comes
close to crossing the liquidus.

Fig. 1(b) shows the effect of then reducing Da� while keeping
DaJ = 0 for type I melting. With Da� large, the situation is the
same as seen in Fig. 1a with the solid invariant and the liquid on the
liquidus. The solid remains invariant as Da� is varied (since DaJ

= 0 and thus � j = �c j
s ) and for the end member case of Da� =

DaJ = 0 (dark shading) there is no mass transfer whatsoever and
both liquid and solid composition remain invariant with increasing
temperature.

Fig. 1(c) is perhaps the most important of the panels in Fig. 1
and demonstrates the transition from batch to fractional melting,
showing type II melting for large Da� and a range of Da J . The
large Da� constrains the solid to the solidus (the constraint imposed
by type II melting), but the liquid composition deviates from the
liquidus as DaJ is reduced. The end member case of DaJ = 0
(dark shading) is essentially the fractional melting path (e.g. Maaløe
1984). The corresponding melt production for this case is shown
in Fig. 2, which can be determined from Fig. 1(c) using the lever
rule.

Figure 2. (a) Mass fraction of melt F as a function of temperature T for type
II isobaric melting with Da� = 105 and varying DaJ (see Fig. 1c, and also
Fig. 5 of Asimow et al. 1997). (b) Corresponding isobaric melt productivity
dF/dT .
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Fig. 1(d) shows the effect of then reducing Da� while keeping
DaJ = 0 for type II melting. With Da� large, the situation is the
same as seen in Fig. 1(a) with the solid on the solidus and the liquid
following the fractional melting path. Similar to Fig. 1(b), for the
end member case of Da� = DaJ = 0 (dark shading) there is no
mass transfer whatsoever and both liquid and solid composition
remain invariant with increasing temperature.

Figs 1(e) and (f) demonstrate situations that are essentially inde-
pendent of the choice of c� and thus the same for both type I and
type II melting. Fig. 1e has Da J large and thus there is the approxi-
mate constraint that Z 1 = Z 2 and hence � = λ� Z 1, independent of
c� . With Da� large the situation is essentially batch melting, while
the other end member of Da� = 0 (dark shading) has no melting,
although the solid and liquid can still exchange components without
phase change. Since the initial melt fraction is exceedingly small
(F = 10−10) the solid composition is buffered and is invariant as the
temperature is increased, while the liquid composition undergoes a
notable shift.

Fig. 1(f) has Da� = 0 and thus no melting (� = 0). Hence
�1 = −�2 = λJ (Z 2 − Z 1) independent of the choice of c� . For
large Da J the situation is the same as that seen in Fig. 1(e), with an
invariant solid composition and a shifting liquid composition. For
the other end member case of Da� = DaJ = 0 (dark shading) there
is once again no mass transfer whatsoever, with both liquid and solid
composition remaining invariant with increasing temperature.

1 0 1 - D B I NA RY M E LT I N G C O LU M N

One of the simplest problems combining compaction and melting
is the 1-D steady state melting column. The problem was first ad-
dressed using the McKenzie (1984) equations by Ribe (1985a) and
has since been studied by many other authors (Asimow & Stolper
1999; Spiegelman & Elliott 1993; Sramek et al. 2007; Hewitt &
Fowler 2008; Katz 2008). Here we investigate the effects of dis-
equilibrium on this problem. Again we consider melting of pure
olivine, although it should be noted that real mantle melting in-
volves a multiphase assemblage of a number of minerals. Olivine is
the most abundant mantle mineral by mass, but it is not the mineral
that melts most during real mantle melting. Nevertheless it pro-
vides a simple binary test system for studying the behaviour of the
equations.

In 1-D, with no diffusion of heat or components, the conservation
eqs (1), (2), (9), (10), (29), (30) and (53) are

d

dz

(
φρ f v f

) = �, (118)

d

dz
((1 − φ) ρsvs) = −�, (119)

d

dz

(
φρ f v f c f

) = �1, (120)

d

dz
((1 − φ) ρsvscs) = −�1, (121)

dP

dz
= −ρg − d P̃

dz
, (122)

d P̃

dz
= μ

kφ

φ
(
v f − vs

) − (1 − φ) �ρg, (123)

dvs

dz
= −P̃

ζφ + 4
3 ηφ

, (124)

ρCv
dT

dz
= T αv

dP

dz
− �1 L1 − �2 L2, (125)

where the viscous dissipation term 	 has been neglected in the
energy eq. (125) (see Asimow 2002, for justification). The quantity
P̃ is a compaction pressure, defined by −σ zz = P + P̃ . cf and cs are
the concentrations by mass of component 1: the concentrations of
component 2 are given by c2

f = 1 − cf , c2
s = 1 − cs. Constitutive laws

for viscosities and permeabilities are assumed to take the simplified
forms

ζφ + 4

3
ηφ =

(
ζ0 + 4

3
η0

)
φ−m, (126)

kφ = k0φ
n, (127)

where the typical choices of the exponents are m = 1 (Simpson
et al. 2010a) and n = 3 (Kozeny–Carman equation). The above eqs
(118)–(127) together with the phenomenological laws for melting
(98)–(106) form a closed set of governing equations.

Most of the boundary conditions for this problem are at the onset
of melting: the incoming material there has zero porosity, density
ρ0, upwelling velocity v0 and composition c0. T and P are chosen
such that the system is initially at the onset of melting (either T or
P can be set and the other is then determined from the solidus). The
final boundary condition concerns the momentum equations and
we choose d P̃/dz = 0 on the top boundary (a free flux condition
Spiegelman (1993a); see Sramek et al. (2007) and Hewitt & Fowler
(2008) for further discussion of possible boundary conditions).

Conservation of mass places strong constraints on 1-D steady
state melting (Ribe 1985a; Spiegelman & Elliott 1993; Asimow &
Stolper 1999). On summing (118) and (119) and integrating, we
have

φρ f v f + (1 − φ)ρsvs = ρ0v0. (128)

Similarly, from (120) and (121),

φρ f c f v f + (1 − φ)ρscsvs = ρ0c0v0. (129)

The governing eqs (118)–(127) can be simplified by introducing the
degree of melting F, which can be defined as a ratio of melt flux to
incoming mass flux,

F = φρ f v f

ρ0v0
, (130)

where F = 0 at the onset of melting and F = 1 once melting is
complete. It follows from (128)–(130) that

Fc f + (1 − F)cs = c0. (131)

In the case of equilibrium melting, the conservation of energy equa-
tion implies that total entropy flux is conserved along the column
and a similar equation to (131) can be written for entropy (i.e. Fsf

+ (1− F) ss = s0, Asimow & Stolper 1999). The isentropic nature
of the equilibrium process simplifies the analysis greatly (Asimow
et al. 1997; Asimow & Stolper 1999; Stolper & Asimow 2007).
However, when there is disequilibrium between the two phases,
there is the potential for entropy production and we cannot make
this simplification here.

In terms of F, the governing eqs (118)–(127) are

dF

dz
= �

ρ0v0
, (132)
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dm

dz
= �1

ρ0v0
, (133)

dP

dz
= −ρg − d P̃

dz
, (134)

d P̃

dz
= μ

kφ

q − (1 − φ) �ρg, (135)

dvs

dz
= −P̃

ζφ + 4
3 ηφ

, (136)

(
FC f + (1 − F)Cs

) dT

dz

= T

(
F

α f

ρ f
+ (1 − F)

αs

ρs

)
dP

dz
− �1 L1

ρ0v0
− �2 L2

ρ0v0
, (137)

where m = Fcf is the mass of component 1 in the fluid phase.
The notation q = φ

(
v f − vs

)
is used to signify the Darcy flux.

Conservation of mass (128)–(131) implies

vs = ρ0v0(1 − F)

ρs(1 − φ)
, q = F

ρ0v0

ρ f
+ (1 − F)

ρ0v0

ρs
− vs, (138)

c f = m

F
, cs = c0 − m

1 − F
. (139)

Formally the densities ρs and ρ f could vary as a function of tem-
perature, pressure and composition. In practice, these variations are
slight (i.e. much less than the difference in density between the two
phases) and can be neglected with the exception of the adiabatic
term in the energy equation. Thus we approximate ρs and ρ f as
constants in the equations to follow. Since we assume initial zero
porosity, ρ0 = ρs . We will assume that the specific heat capacities
of solid and fluid are constant and equal and thus on the left hand
side of (137), FCf + (1− F) Cs = C .

10.1 Non-dimensionalisation

For numerical solution and further analysis it is helpful to non-
dimensionalise the equations. If �z is a typical length scale (e.g. the
height of the melting column) and �T is a typical temperature
scale (e.g. the difference in melting temperatures (�T = T 1

m − T 2
m),

then we can non-dimensionalise as z = z′�z, T = T ′�T, P =
P ′ρs g�z, P̃ = P̃ ′(ζ0 + 4

3 η0)v0/�z, � = �′ρsv0/�z, V =
V ′v0, q = q ′v0, etc. The following non-dimensional parameters
control the behaviour of the system:

A = αs g�z

C
, B = k0�ρg

μv0
, C = k0

(
ζ0 + 4

3 η0

)
μ(�z)2

, (140)

rα = α f

αs
, rρ = ρ f

ρs
, (141)

R1 = νR1

C
, R2 = νR2

C
, (142)

St1 = L1

C�T
, St2 = L2

C�T
, (143)

Da� = λ�νR1�z

ρsv0
, DaJ = λJ νR1�z

ρsv0
. (144)

Table 2. Non-dimensional parameters used in the 1-D melting column
calculations of Fig. 4 (defined in 140–144).

Adiabatic parameter A 0.012
Buoyancy parameter B 49,000

Compaction parameter C 260
Expansivity ratio rα 1.8

Density ratio rρ 0.98
Specific gas constant/ specific heat capacity R1 0.091
Specific gas constant/ specific heat capacity R2 0.063

Stefan number St 1 0.98
Stefan number St 2 0.58

Damköhler number Da� 50
Damköhler number DaJ 0 or 50

Table 3. Dimensional parameters used in the 1-D melting column calcula-
tions of Fig. 4.

Acceleration due to gravity g 9.8 m s−2

Permeability coefficient k0 10−7 m2

Permeability exponent n 3
Fluid viscosity μ 1 Pa s

Bulk viscosity coefficient ζ0 + 4
3 η0 1019 Pa s

Bulk viscosity exponent m 1
Upwelling velocity v0 50 mm yr−1

Bulk composition c0 0.9

A is an adiabatic parameter, which is the product of the adiabatic
gradient and the column length scale (sometimes termed the dis-
sipation number). B is a buoyancy parameter, which is essentially
a ratio of percolation velocity to upwelling velocity, although the
φ dependence is missing. C is a compaction parameter, a ratio of
compaction length squared to column length squared. The inverse
of C is sometimes referred to as a melt retention number (Tackley
& Stevenson 1993). rα is a ratio of expansivities and rρ a ratio of
densities. R1 and R2 are ratios of specific gas constants to specific
heat capacity. St1 and St2 are Stefan numbers, which are a ratio of
latent heat to sensible heat for the two components. Finally, Da�

and DaJ are Damköhler numbers, which are a ratio of reaction rates
to upwelling rates.

Values of the non-dimensional parameters used in the calcula-
tions are given in Table 2, based on dimensional parameters in
Tables 1 and 3. The adiabatic parameter A is small, which justifies
the neglect of the adiabatic term by some authors (Sramek et al.
2007). The buoyancy parameter B is very large which indicates that
the melt velocities will be much larger than the mean upwelling ve-
locity. The density ratio rρ is close to 1, which some authors exploit
by making a Boussinesq approximation (Ribe 1985a), although we
do not do this here.

The Damköhler numbers used in the calculations are designed
to demonstrate the effects of disequilibrium rather than necessar-
ily being realistic. The Damköhler numbers depend on the melting
kinetics at small scales, which are poorly understood. A crude or-
der of magnitude estimate can be obtained by assuming that the
melting kinetics are controlled by diffusion into the solid grains.
A typical estimate of the diffusion coefficient for Fe–Mg exchange
in olivine is ∼ 10−16 m2 s−1 (Chakraborty 1997). For a typical
grain size of 1 mm, this implies a kinetic rate of ∼10−10 s−1. For
a 60 km melting column and an upwelling rate of 50 mm yr−1,
this implies a Damköhler number ∼4′000. This is large and sug-
gests that the two phases should be close to equilibrium throughout
the melting column. However, the disequilibrium calculations we
perform use somewhat smaller Damköhler numbers so that the ef-
fects of disequilibrium can be shown.
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The non-dimensional parameters A,B and C are related to the
natural length scales

δa = C

αg
= A−1�z, (145)

δc =
√

kφ(ζφ + 4
3 ηφ)

μ
= φ(n−m)/2C1/2�z, (146)

δr =
√

v0(ζφ + 4
3 ηφ)

�ρg
= φ−m/2

( C
B

)1/2

�z, (147)

where δa is the adiabatic length, δc is the compaction length
(McKenzie 1984) and δr is the reduced compaction length (Ribe
1985b).

In non-dimensional form, the governing equations are

dF

dz
= �, (148)

dm

dz
= �1, (149)

dP

dz
= −1 + (1 − rρ)φ − (1 − rρ)

C
B

d P̃

dz
, (150)

d P̃

dz
= φ−nq

C − B
C (1 − φ) , (151)

dvs

dz
= −φm P̃, (152)

dT

dz
= A

(
rα

rρ

F + 1 − F

)
T

dP

dz
− �1St1 − �2St2, (153)

with

vs = 1 − F

1 − φ
, q = F

rρ

+ 1 − F − vs, c f = m

F
, cs = c0 − m

1 − F
.

(154)

At the onset of melting (say z = 0) we have F = 0, m = 0, vs = 1
and T and P at some given values on the solidus with composition
c0. At the surface (z = 1) we have d P̃/dz = 0. This is a two point
boundary value problem. The governing equations are completed
by the non-dimensional phenomenological laws for melting from
(98)–(106),

Q1
x = xs

x f
, Q2

x = 1 − xs

1 − x f
, (155)

K 1
x = exp

(
St1

R1

(
1

T
− 1

T 1
m(P)

))
, (156)

K 2
x = exp

(
St2

R2

(
1

T
− 1

T 2
m(P)

))
, (157)

T 1
m(P) = T 1

m0

(
1 + P

a1

)1/b1

, T 2
m(P) = T 2

m0

(
1 + P

a2

)1/b2

,

(158)

Z 1 = 1 − K 1
x

Q1
x

, Z 2 = R2

R1

(
1 − K 2

x

Q2
x

)
, (159)

� = Da�

(
c� Z 1 + (1 − c�)Z 2

)
, (160)

J = DaJ

(
Z 2 − Z 1

)
, (161)

�1 = c�� − J, (162)

�2 = (1 − c�) � + J, (163)

x� = xs/K 1
x

xs/K 1
x + (1 − xs)/K 2

x

. (164)

Here T 1
m0 and T 2

m0 are the non-dimensional melting tempera-
tures and the Simon’s equation coefficients a1 and a2 are non-
dimensionalised on the appropriate pressure scale.

10.2 Zero compaction length approximation

Perhaps the most important simplification to these equations that can
be made is to assume C = 0, that is, zero compaction length (Ribe
1985a; Spiegelman 1993a,b) (termed the Darcy approximation by
Sramek et al. 2007). Formally, this is a singular perturbation of these
equations, and by setting C = 0 the compaction boundary layers
are neglected. However, the problem is then a more straightforward
initial value problem, with boundary conditions only specified at the
onset of melting. Essentially, (150), (151) and (152) are replaced by

dP

dz
= −1 + (1 − rρ)φ, (165)

0 = φ−nq − B (1 − φ) . (166)

Combining (166) with (154) leads to an algebraic equation for the
porosity φ (Ribe 1985a; Spiegelman & Elliott 1993)

Bφn (1 − φ)2 + (1 − F)φ − F

rρ

(1 − φ) = 0. (167)

The zero compaction length approximation is the leading order
outer solution for the full problem and is a good approximation for
B sufficiently small and at points far away from the boundaries. This
is essentially the approximation used in the original study of Ahern
& Turcotte (1979). With this approximation, the disequilibrium only
affects the porosity φ through changes in the degree of melting F.

The matrix is usually assumed sufficiently permeable that the
porosity φ remains small throughout the melting column (φ � 1).
With small porosities, (165) and (166) can be approximated by

dP

dz
= −1, (168)

q = Bφn, (169)

that is, the fluid pressure is approximately lithostatic and the fluid
is simply driven by its buoyancy. The 1-D melting column problem
then simply consists of solving for T , F and m as a function of
pressure P. For large values of the Damköhler number the problem
becomes stiff and a stiff ODE solver was used to calculate numerical
solutions. Examples of such solutions are shown in Fig. 3. In the
limit of infinite Damköhler number (equilibrium), the equations
become differential-algebraic in nature, but are still amenable to
solution by stiff ODE solvers.

Fig. 3 provides examples of near-equilibrium (Da� = 104, DaJ =
104) and near-fractional (Da� = 104, DaJ = 0) melting (dotted
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Figure 3. Type II decompression melting for Da� = 10, DaJ = 10 (solid blue line) and Da� = 10, DaJ = 0 (solid red line). Melting starts at 10 GPa
(higher than for real mantle melting—chosen for emphasis of the differences) with a bulk composition of 0.9. There is a notable reactive boundary layer at the
onset of melting. Dotted lines show near-equilibrium (blue, Da� = 104, DaJ = 104) and near-fractional (red, Da� = 104, DaJ = 0) paths for comparison.
(a) Temperature versus pressure. Dashed line shows the solid adiabat. (b) Degree of melting versus pressure. (c) dT /dP versus pressure. Dashed line shows
the solid adiabatic gradient. (d) Melt productivity (−dF/dP) versus pressure. Near-equilibrium melting has a slightly higher productivity than near-fractional
melting.

lines). There is very little difference between the two cases, with
near-fractional melting showing a slightly lower melt productiv-
ity (−dF/dP) and lower temperature drop (dT /dP) than near-
equilibrium melting. In both cases, melt productivity increases with
decreasing pressure, which is expected. The increase in melt pro-
ductivity with decreasing pressure has been discussed in some detail
by Asimow et al. (1997), although it should be noted that here the
latent heats are assumed constant while Asimow et al. (1997) have
latent heats increasing with T (they assumed a constant entropy
jump).

The difference between fractional and equilibrium melting is
much less pronounced here than seen in other studies, such as
those which consider incrementally isentropic fractional fusion
(Asimow et al. 1997; Stolper & Asimow 2007). The thermally
equilibrated fractional melting considered here is fundamentally
different from incrementally isentropic fractional fusion because
here the two phases are always assumed to be in thermal equilib-
rium and thus at the same temperature. In incrementally isentropic
fractional fusion each increment of melt is produced in an isen-
tropic step and then removed from the system. However, if each
increment of melt were brought to surface pressures isentropically
then each increment would be at a different temperature and thus
not in thermal equilibrium with the other increments. Thus these
two types of fractional melting will have slightly different melt
productivities.

There is a small entropy production associated with the thermally
equilibrated fractional melting considered here. Recall that the part
of the entropy production due to interphase transfer is

σ =
∑

j

� j �μ j

T
. (170)

For fractional melting,

� j = �c j
�,

∑
j

c j
�

(
1 − exp

(
− �μ j

νR j T

))
= 0 (171)

Expanding the sum for small values of �μ j/νR j T , we have

∑
j

c j
�

(
�μ j

T
− (�μ j )2

νR j T 2
+ · · ·

)
= 0 (172)

and thus

σ = �
∑

j

c j
�

�μ j

T
≈ �

∑
j

c j
� (�μ j )2

νR j T 2

≈ �
∑

j

νR j c j
�

(
Qx

Kx
− 1

)2

> 0. (173)

Since the two phases are not in chemical equilibrium for fractional
melting, there is a chemical potential difference between the two
phases and thus a positive entropy production according to the
above expression. However, in practice this entropy production is
very slight and the sum in the above is usually much less than the
latent heat.

It should also be noted that in the case of a single component,
incrementally isentropic fractional fusion differs from equilibrium
melting, but thermally equilibrated fractional melting is identical
to equilibrium melting. For a single component, if the two phases
have the same thermodynamic pressure and the same temperature
then they must be in thermodynamic equilibrium with one another.
For two or more components the two phases can differ in chemical
composition whilst having the same temperature and pressure and
thus are not necessarily in equilibrium.
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As the Damköhler numbers are reduced, the kinetics of melting
becomes slower and the reactive boundary layers, which occur on
the onset of melting, grow. An example of these boundary layers
can be seen in Fig. 3 (solid lines). The structure of these boundary
layers is fairly intuitive: The temperature gradient initially follows
the solid adiabatic gradient and there is initially no melting. As
the degree of disequilibrium grows and the kinetics get faster the
temperature gradient transitions to that of equilibrium melting and
the productivity transitions to the equilibrium melt productivity.

For the single component case, the reactive boundary layers can
be treated analytically and this is done in Section D. The boundary
layer thickness for a single component is given by

l� = ρsv0Cs T 2
0

λ� L2
= νRCs T 2

0 �z

L2Da�

, (174)

where T 0 is the temperature at the onset of melting. The non-
dimensional quantity νRCs T 2

0 /L2 is similar for both pure forsterite
(0.95) and pure fayalite (0.87) (Table 1) and is close to 1. Thus
for the binary case, an approximate boundary layer thickness of
l� ≈ �z/Da� is expected and indeed this is what is seen in Fig. 3
where Da� = 10: The pressure drop across the boundary layer is
on the order of 1 GPa, which is a tenth of the total pressure drop
over the column. It should be noted that the value of Da� = 10 in
Fig. 3 is chosen simply to demonstrate the boundary layer structure;
realistic Damköhler numbers are likely to be much larger.

10.3 Full numerical solution

Fig. 4 shows a full numerical solution of a 1-D column without the
approximations of the previous section. To avoid the singularities at

the onset of melting associated with zero porosities, initial condi-
tions are chosen with a small initial degree of melting F0 = 5×10−5

with initial porosity φ0 and initial upwelling rate v0 such that there
is initially no separation of melt from residue that is, zero initial
Darcy flux q0 = 0. This is somewhat unphysical (Sramek et al.
2007), but is a simple way to remove the initial singularity. The zero
compaction length solution is also shown on the figure (dotted line)
and was used as an initial guess for the full numerical solver, which
is a standard two point boundary value problem solver.

Similar to Fig. 3, Fig. 4 shows near-equilibrium (Da� =
50, DaJ = 50) and near-fractional (Da� = 50, DaJ = 0) scenarios.
As in the earlier calculations, the differences between the two cases
is slight. The most notable difference is in the fluid composition cf ,
as would be expected. Also as expected, the zero compaction length
approximation is a good approximation for most of the melting col-
umn, with the exception of the bottom boundary. At the top of the
melting column, the zero compaction length solution is exact, as a
result of the free flux boundary condition applied there.

There is a reactive boundary layer at the onset of melting and
this is visible in Fig. 4 in the build up of compaction pressure at
the base of the column. From the Damköhler number, the expected
reactive boundary layer thickness is around 1.2 km. The structure of
the boundary layer can be seen more clearly in Fig. 5 which shows a
zoomed in view of the first 5 km of the column. The zero compaction
length approximation provides a reasonable estimate of the structure
of the reactive boundary layer, but there are differences. The most
notable difference is in the first 0.5 km, where there is a further
inner boundary layer. The structure of this inner boundary layer is a
result of the finite porosity, zero Darcy flux initial conditions used
to avoid the initial singularity and is unphysical. Further asymptotic

Figure 4. 1-D binary melting column calculations. Blue line is near-equilibrium (Da� = 50, DaJ = 50) and red line is near-fractional (Da� = 50, DaJ = 0).
Dotted line shows the zero compaction length approximation for the near equilibrium case. From left to right: temperature T , fluid pressure P, degree of melting
F, solid composition cs, fluid composition cf , porosity φ, solid velocity V , fluid velocity v, compaction pressure P̃ . The difference between near-equilibrium
and near-fractional is most notable in the fluid composition cf , whereas in the other variables there is little difference.
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Figure 5. A zoomed-in view of the reactive boundary layer of Fig. 4. The boundary layer structure is clearest in the derivatives: dT /dz, dP/dz, dF/dz and
dφ/dz are shown here, along with the compaction pressure P̃ .

analysis is needed to explore the singularity at the onset of melting
for finite kinetic rate, as was done for infinite kinetic rate by Sramek
et al. (2007) and Hewitt & Fowler (2008), but we do not attempt
this here.

The boundary layer structure for dT /dz and dF/dz is largely
similar to that of dT /dP and dF/dP in Fig. 3: the temperature gra-
dient transitions from the solid adiabat value to equilibrium melting
value and the melting rate starts off at zero and increases to the
equilibrium melt productivity. The porosity gradient dφ/dz initially
increases in a similar manner to dF/dz, but then decreases: Ini-
tially, there is no separation of melt from matrix, but as the porosity
increases, permeability increases. Melt then separates from the ma-
trix and porosity increases at a lower rate. A similar effect occurs
in the compaction pressure profile: P̃ changes sign as we go from a
situation where melt is initially locked to the matrix (so the matrix
must dilate as a result of melting, P̃ < 0) to one where melt can
flow freely and the matrix can compact (P̃ > 0). The compaction
pressure is directly related to the rate of melting and the build up in
compaction pressure reflects the increase in the rate of melting.

It should be reiterated that the Damköhler numbers used in the
above calculations are demonstrative rather than necessarily real-
istic. The reactive length scale for mantle melting is around 10 m
(Aharonov et al. 1995) and so in practice the reactive boundary
layers at the onset of melting are negligible in extent. Nevertheless,
reactive boundary layers are an important feature of the disequilib-
rium equations.

1 1 C O N C LU S I O N S

The main outcome of this work is a framework for studying disequi-
librium two phase multicomponent flow that generalises the familiar
batch and fractional models of melting. Two simple melting prob-
lems have been addressed which give a flavour of the behaviour
of the equations, but the more interesting problems that need to be
tackled next are time-dependent, two or three dimensional, with two
or more components and require a more detailed numerical study.
Existing geodynamic codes already model equilibrium two phase
multicomponent flow (e.g. Katz 2008) and hopefully only small
modifications of these codes will be needed to address disequilib-
rium.

Perhaps the most important problem to revisit is the reaction in-
filtration instability (Aharonov et al. 1995; Spiegelman et al. 2001).

This channelling instability relies on having at least two compo-
nents and two dimensions. Current models of the instability have
used somewhat ad hoc laws for interphase mass transfer: With
the framework presented here connections could be made to real
phase diagrams, and melting can occur in a self-consistent energy
conserving manner rather than as an ad hoc imposed function of
depth. Some further analytical work on reaction infiltration may be
possible, such as a linear stability analysis of the two component
equations, but most future work will need detailed numerics.
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A P P E N D I X A : T H E R E L AT I O N S H I P S
B E T W E E N P R E S S U R E S

A detailed description of the relationships between interface pres-
sure, fluid pressure and solid pressure was given by Bercovici &
Ricard (2003) and Ricard (2007), and is reiterated in outline below.
Bercovici & Ricard (2003) assumed the interface pressure to be a
linear combination of the fluid and solid pressures,

P = (1 − ω)p f + ωps, (A1)

where ω quantifies the partitioning of surface energy. ω = 0 cor-
responds to the case described by McKenzie (1984). In terms of
pressure differences, (A1) can be written as

P − p f = ω�p, (A2)

P − ps = −(1 − ω)�p, (A3)

where �p ≡ ps − p f is the mechanical pressure difference between
solid and fluid. The viscous dissipation (33) then becomes

	 = d
(
vf − vs

)2 + �p
(
φω∇ · v f − (1 − φ)(1 − ω)∇ · vs

)
+φτ f : ∇vf + (1 − φ)τ s : ∇vs .

(A4)

The above form of the viscous dissipation suggests a linear phe-
nomenological law of the form

�p = B
(
φω∇ · vf − (1 − φ)(1 − ω)∇ · vs

)
, (A5)

provided there is no coupling with the other scalar thermodynamic
fluxes (Sramek et al. 2007). The form of the phenomenological
coefficient B is unknown and will depend on parameters such as
porosity. If we write the coefficient B = ζφ/(1 − ω − φ)2 such that
the phenomenological law is written as

�p = ζφ

(
φω∇ · vf − (1 − φ)(1 − ω)∇ · vs

)
(1 − ω − φ)2

, (A6)

then ζφ can be identified with the effective bulk viscosity used by
McKenzie (1984). When ω = 0, eqs (A2) and (A3) with (A6) are
identical to (25) and (26). The advantage of (A2), (A3) and (A6) is
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that they are clearly symmetric: they are invariant under the change
φ ↔ 1−φ, ω ↔ 1−ω, p f ↔ ps, v f ↔ vs (assuming the effective
bulk viscosity ζφ obeys this same symmetry).

In Bercovici et al. (2001) the symmetric form

B = K0

(
μf + μs

)
φ(1 − φ)

(A7)

is suggested for the phenomenological coefficient B, where K 0 is a
constant, and μf and μs are the true (rather than effective) viscosities
of fluid and solid. The corresponding deviatoric stress tensors are
given by

τ f = μ f

(
∇v f + ∇vT

f − 2

3

(∇ · v f

)
I

)
, (A8)

τ s = μs

(
∇vs + ∇vT

s − 2

3
(∇ · vs) I

)
. (A9)

When the fluid is much less viscous than the solid, μ f � μs , these
reduce to (27) and (28), provided ηφ → μs(1 − φ) in this limit.

Another way of writing the phenomenological laws is in terms
of an effective pressure pe, which can be defined as the difference
between mean mechanical pressure p and interface pressure P (cf.
Connolly & Podladchikov 1998). The effective pressure pe is lin-
early related to the pressure difference �p by

pe ≡ p − P = (1 − ω − φ)�p. (A10)

Thus a phenomenological law for effective pressure is

pe = ζφ

(
φω∇ · v f − (1 − φ)(1 − ω)∇ · vs

)
(1 − ω − φ)

. (A11)

When ω = 0, pe = −ζφ∇ · vs and when ω = 1, pe = −ζφ∇ · v f .
Further discussion of the pressure relationships can be found in
Simpson et al. (2010a).

A P P E N D I X B : V E C T O R
P H E N O M E N O L O G I C A L L AW S

The derivation of intraphase phenomenological laws for fluxes of
heat and mass follows directly from the derivation for single phase
fluids which is described in detail by de Groot & Mazur (1984) and
a brief summary is given here. It is useful to use the alternative
definition of heat flux given in (52). The entropy flux (41) can then
be written as

j = q′

T
+

∑
j

J j
f s j

f + J j
s s j

s , (B1)

where sj
f and ß j are the specific entropies per components. The

corresponding entropy production (42) can be written as

T σ = Q + 	 − q′

T
· ∇T +

∑
j

� j�μ j − J j
f · ∇T μ

j
f − J j

s · ∇T μ j
s

(B2)
since

T ∇
(

μ
j
f

T

)
= ∇T μ

j
f − h j

f

T
∇T = ∇μ

j
f − μ

j
f

T
∇T (B3)

and μ
j
f = h j

f − T s j
f . ∇T refers to gradients at fixed temperature.

The entropy production due to vector fluxes is given from (B2)
as

σ = − q′

T 2
· ∇T −

∑
j

J j
f · ∇T μ

j
f

T
−

∑
j

J j
s · ∇T μ j

s

T
. (B4)

This suggests linear phenomenological laws of the form

q′ = −A
∇T

T 2
−

∑
k

Bk
f ∇T μk

f

T
−

∑
k

Bk
s ∇T μk

s

T
, (B5)

J j
f = −C j

f

∇T

T 2
−

∑
k

L jk
f f ∇T μk

f

T
−

∑
k

L jk
f s∇T μk

s

T
, (B6)

J j
s = −C j

s

∇T

T 2
−

∑
k

L jk
s f ∇T μk

f

T
−

∑
k

L jk
ss ∇T μk

s

T
. (B7)

However, the forces and fluxes here are not independent, as there
are linear relations between them. The diffusive mass fluxes of
components are constrained by conservation of mass through (12)∑

j

J j
f =

∑
j

J j
s = 0, (B8)

and the forces are constrained by Gibbs–Duhem equations for the
two phases,∑

j

c j
f ∇μ

j
f = −s f ∇T + 1

ρ f
∇ P, (B9)

∑
j

c j
s ∇μ j

s = −ss∇T + 1

ρs
∇ P, (B10)

which can be rewritten using (B3) as∑
j

ρ f c j
f ∇T μ

j
f = ∇ P, (B11)

∑
j

ρsc j
s ∇T μ j

s = ∇ P. (B12)

The right hand side in the above is often neglected (see de Groot &
Mazur 1984, Chapter 11), but this assumes mechanical equilibrium.

When there exist linear relationships between the forces and
fluxes there are two ways to proceed. Either one can use the linear
relationships to define a new set of independent fluxes and forces,
or one can keep the existing fluxes and forces and acknowledge
that there are constraints on the coefficients. Without independent
fluxes and forces, the phenomenological coefficients are not unique,
however they can always be chosen such that the Onsager reciprocal
relations hold (see de Groot & Mazur 1984, chapter 6). In this case,
the Onsager reciprocal relations are

B j
f = C j

f , B j
s = C j

s , (B13)

L jk
f f = Lkj

f f , L jk
f s = Lkj

s f , L jk
ss = Lkj

ss . (B14)

For the sake of simplicity, it is helpful to assume that a lot of these
cross couplings are negligible and reduce the above to simplified
phenomenological laws, for example,

q′ = −kT ∇T (B15)

J j
f = −φρ f

n−1∑
k=1

D jk
f ∇ck

f , j = 1, 2, . . . , n − 1 (B16)

J j
s = −(1 − φ)ρs

n−1∑
k=1

D jk
s ∇ck

s , j = 1, 2, . . . , n − 1 (B17)
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Jn
f = −

n−1∑
k=1

J j
f (B18)

Jn
s = −

n−1∑
k=1

J j
s , (B19)

where kT is the effective thermal conductivity of the mixture and
Djk

f and Djk
s are intra-phase effective diffusion coefficients for the

melt and the matrix. Eq. (B15) is Fourier’s law of heat flow and
(B16) and (B17) are the appropriate generalisations of Fick’s law of
diffusion. The word ‘effective’ should be emphasised here—the dif-
fusion coefficients are not necessarily the same as for a single phase
fluid and can be controlled by phenomena such Taylor dispersion.
Moreover, the diffusion might not be isotropic as is assumed in the
laws above and a more general treatment would have second rank
diffusivity tensors. It should also be noted that due to Onsager’s re-
ciprocal relations, there are only n(n−1)/2 independent coefficients
in each of Djk

f and Djk
s . In particular, note that it is not possible to

choose Djk
f and Djk

s as diagonal matrices, unless the diffusivities are
all the same. For a more detailed exposition of the constraints on
diffusion coefficients and the coupling between heat flow and mass
transport (the Soret and Dufour effects), the reader is encouraged to
consult the textbooks (see Lasaga 1998; de Groot & Mazur 1984).
Onsager’s reciprocal relationships were verified experimentally for
molten silicates by Spera & Trial (1993).

A P P E N D I X C : C RY S TA L L I S AT I O N

Although our main focus in this work is on generalisations of frac-
tional melting, it should be noted that fractional crystallisation can
be described in a similar way. The phenomenological laws (82)–(83)
have to be adjusted slightly to read

� j =
∑

k

E jk Zk, (C1)

Zk = νRk

((
Qk

K k

)1/ν

− 1

)
= νRk

(
xk

s

K k
x xk

f

− 1

)
. (C2)

Type I crystallising has x j
� = x j

f and type II crystallising has x j
� ={

K j
x x j

s

}
. It should be noted that related phenomenological laws for

interphase mass transfer were proposed by Liang (2003) based on
averaging a grain scale model. Two regimes were identified, and the
terminology used here is based on Liang (2003). Regime I of Liang
(2003) (diffusion-in-melt-limited dissolution) is essentially type I
melting and regime II (diffusion-in-solid-limited precipitation) is
essentially type II crystallising.

A P P E N D I X D : S I N G L E C O M P O N E N T
M E LT I N G

A number of simple analytical expressions exist for the single com-
ponent 1-D melting column. In this section, we will make the zero
compaction length approximation, assume pressure can be treated
as approximately lithostatic (dP/dz = −ρs g) and assume constant
densities except for the adiabatic gradient term. The phenomeno-
logical law for melting is

� = λ�νR

(
1 − exp

(
L

νR

(
1

T
− 1

Tm(P)

)))
. (D1)

For small deviations in temperature from equilibrium (i.e. rapid
kinetics), the above law can be linearised as

� = λ� L

T 2
0

(T − Tm(P)) , (D2)

where T 0 is the temperature at the onset of melting. A natural scale
for temperature differences during melting is L/C and we may write

T = T0 + L

C
�, (D3)

Tm = T0 + dTm

dP

∣∣∣∣
T0

(P − P0) = T0 − ρs g
dTm

dP

∣∣∣∣
T0

z = T0 − L

C

z

lm
,

(D4)

assuming an approximately linear Clapeyron slope. lm is a natural
length scale for temperature changes during melting, given by

lm = L

ρs gC dTm/dP|T0

. (D5)

The phenomenological law for melting can then be written as

� = λ� L2

CT 2
0

(
� + z

lm

)
= ρsv0

l�

(
� + z

lm

)
(D6)

where l� is a reactive length scale,

l� = ρsv0CT 2
0

λ� L2
. (D7)

The ratio of the two length scales lm and l� defines a Damköhler
number,

Da∗
� = lm

l�
= λ� L3

ρ2
s v0C2T 2

0 dTm/dP|T0

. (D8)

Note that this differs from the Damköhler numbers defined in the
main text which are based on scaling by the column height.

The steady state 1-D column equations can be non-
dimensionalised using z = z′lm, � = �′ρsv0/ lm . The non-
dimensional governing equations are, using (132), (137) and (D6),

dF

dz
= �, (D9)

d�

dz
= −A∗ (1 + St∗�) − �, (D10)

� = Da∗
� (� + z) , (D11)

where

A∗ = αs T0

ρsC dTm/dP|T0

, St∗ = L

CT0
. (D12)

A∗ is the adiabatic parameter and St∗ is a Stefan number. At the
onset of melting F = 0 and � = 0. The boundary layer structure
is apparent when the equations are rescaled using ε = (Da∗

�)−1 (a
small parameter for rapid kinetics) with z = εy, F = ε f, � = εθ .
To leading order in ε,

d f

dy
= �, (D13)

dθ

dy
= −A∗ − �, (D14)

� = θ + y, (D15)
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with f (0) = 0 and θ (0) = 0. These integrate to give

θ (y) = −y + (1 − A∗) (1 − e−y), (D16)

f (y) = (1 − A∗)
(
y − 1 + e−y

)
, (D17)

with derivatives

dθ

dy
= −1 − (1 − A∗) (1 − e−y), (D18)

d f

dy
= (1 − A∗)

(
1 − e−y

)
. (D19)

In dimensional form, the above can be written as

dT

dz
= −αs gT0

C
−

(
ρs g

dTm

dP

∣∣∣∣
T0

− αs gT0

C

) (
1 − e−z/ l�

)
, (D20)

dF

dz
= C

L

(
ρs g

dTm

dP

∣∣∣∣
T0

− αs gT0

C

) (
1 − e−z/ l�

)
, (D21)

eqs (D20) and (D21) are fairly intuitive: The gradient in temperature
starts off at the solid adiabatic gradient and ends up at the Clapeyron
slope and the melt productivity starts off at zero and ends up at
the same productivity as for equilibrium batch melting (Asimow
et al. 1997). The boundary layer thickness is controlled by the
reactive length l� which shrinks as the reaction rate increases or the
upwelling rate slows.

The dimensional temperature and degree of melting profiles are

T = T0 − ρs g
dTm

dP

∣∣∣∣
T0

z +
(

ρs g
dTm

dP

∣∣∣∣
T0

− αs gT0

C

)
l�

(
1 − e−z/ l�

)
,

(D22)

F = C

L

(
ρs g

dTm

dP

∣∣∣∣
T0

− αs gT0

C

) (
z − l�

(
1 − e−z/ l�

))
. (D23)

Outside the boundary layer (z � l�), these can be written as

T = Tm(z) + L

C

dFm

dz

∣∣∣∣
T0

l�, (D24)

F = Fm(z) − dFm

dz

∣∣∣∣
T0

l�, (D25)

where Fm is defined to be the degree of melting for equilibrium
melting (Da∗

� → ∞). Thus there is small degree of superheating
(T >Tm) and a slightly lower degree of melting (F< Fm) that exists
throughout the column as a result of the finite kinetics.

The boundary layer structure outlined above is very similar
to that found in the reaction infiltration instability problem de-
scribed by Aharonov et al. (1995). However, there is an impor-
tant difference between the Aharonov et al. (1995) problem and
the single component melting described above: For reaction infil-
tration, differences in concentration cause interphase mass trans-
fer, whereas here interphase mass transfer is caused by differences
in temperature. Concentration perturbations are advected with the
fluid velocity in the Aharonov et al. (1995) problem, whereas
temperature perturbations here travel more slowly, at the mean
upwelling velocity (v). As a result, the single component melt-
ing equations are stable and do not have a reaction infiltration
instability.

The stability can be demonstrated as follows. In 1-D, total con-
servation of mass is

∂ρ

∂t
+ ∂

∂z
(ρv) = 0. (D26)

Porosities are typically small (φ � 1) and thus ρ ≈ ρs and ρv ≈
ρsv0. Neglecting the adiabat, conservation of energy is then

ρsC
∂T

∂t
+ ρsv0C

∂T

∂z
= −�L , (D27)

which in non-dimensional variables is

∂�

∂t
+ ∂�

∂z
= −Da� (� + z) . (D28)

Where an appropriate time scale for non-dimensionalising is t0=
lm/v0. Solutions to this equation can be sought in terms of pertur-
bations about the steady state, � = �(z) + εeimz+σ t . Neglecting
boundary layers, a suitable steady state is

�(z) = −z + 1

Da�

, (D29)

and the growth rate of perturbations is

σ = −Da� − im. (D30)

Hence any perturbations in temperature will simply decay away.

C© 2010 The Authors, GJI

Geophysical Journal International C© 2010 RAS


