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SUMMARY

Deformation experiments on partially molten rocks in simple shear form melt bands at 20◦ to

the shear plane instead of at the expected 45◦ principal compressive stress direction. These melt

bands may play an important role in melt focusing in mid-ocean ridges. Such shallow bands

are known to form for two-phase media under shear if strongly non-Newtonian power-law

creep is employed for the solid phase, or anisotropy imposed. However laboratory experiments

show that shallow bands occur regardless of creep mechanism, even in diffusion creep, which

is nominally Newtonian. Here we propose that a couple of forms of two-phase damage allow

for shallow melt bands even in diffusion creep.
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1 INTRODUCTION1

The rheology of partially molten rock is poorly understood, but forms a crucial component of any2

dynamical model of melt transport in Earth’s mantle. The main approach to obtaining a better3

understanding has been to perform deformation experiments on partially molten rocks in the labo-4
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ratory (Daines & Kohlstedt 1997; Holtzman et al. 2003; King et al. 2010; Qi et al. 2013). Through5

a comparison of the results of these laboratory experiments with theory, better models of rheology6

can be developed. One of the most striking observations of the experiments is that, when a par-7

tially molten rock is sheared, localised bands of concentrated melt form at shallow angles (∼ 20◦)8

to the shear plane. The development of such melt bands is of great interest in magma dynamics, as9

they offer a potential mechanism for rapid transport of melt through Earth’s mantle (Kohlstedt &10

Holtzman 2009).11

The development of melt bands was first predicted from two-phase theory by Stevenson (1989),12

who demonstrated that a two-phase medium that is porosity-weakening is unstable to perturbations13

in porosity, and naturally forms melt-enriched and melt-depleted regions as it deforms. However,14

it was also predicted that the melt bands should form aligned with the principal compressive stress15

direction, which for simple shear is at an angle of 45◦ (not 20◦) to the shear plane (Spiegelman16

2003). The early models were all based on a Newtonian rheology for the two phases (melt and17

solid), and Katz et al. (2006) provided a possible explanation for the shallower angle of the bands18

by invoking a non-Newtonian strain-rate-weakening rheology for the solid phase. This explanation19

is at first sight appealing, since mantle minerals are known to deform by power-law creep at high20

temperatures and moderate stresses by the process of dislocation climb. However, there are two21

important problems with invoking a power-law rheology for the solid phase: First, the power-law22

exponents required to explain the observed melt band angles are somewhat high (n ∼ 4 to 6),23

higher than is typical for dislocation creep of olivine (n ∼ 3). Second, and perhaps more impor-24

tantly, a number of the laboratory experiments have been carried out under grain-size, stress, and25

temperature conditions for which diffusion creep is dominant, and yet shallow melt bands are still26

observed.27

More recently, another possible explanation has been put forth for the shallow angle of the28

bands, based on the notion of anisotropy in the effective viscosity tensor, which arises as a result29

of changes in the distribution of contact area between solid grains (Takei & Holtzman 2009; Butler30

2012; Takei & Katz 2013; Katz & Takei 2013). In such models, the resulting melt band angle31
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depends strongly on the assumed initial anisotropy, which is not well constrained. Here we provide32

an alternative model, based on isotropic two-phase damage theory (Bercovici et al. 2001; Bercovici33

& Ricard 2003, 2005, 2012), which can equally well explain the shallow angle bands, even while34

the solid grains remain in diffusion creep. The next section presents the underlying theory, and is35

followed by a discussion of an important limiting case in which the two-phase medium acts as a36

power-law fluid. A linear stability analysis follows, which determines the growth rate and angle37

of the melt bands. Numerical results are then given for a few demonstrative cases, to illustrate the38

spectrum of behaviour that is possible.39

2 THEORY40

We consider a general theory to describe two potential forms of damage. In both cases damage is41

done to the interface between phases in that deformational work goes toward making more interface42

and its attendant surface energy by stretching, stirring or rending. In principle damage can either43

make new interface by opening up new voids, or make more fine-scale or less rough interface by44

breaking down or distorting existing pores. The void-generating damage, however, simply causes45

weakened resistance to compaction (i.e., a dynamically reduced effective bulk viscosity) and thus46

lacks the requisite nonlinear or non-Newtonian effects in the effective shear viscosity to generate47

shallow melt bands. Thus here we will pursue only the damage that reduces interface roughness.48

Interface damage can lead to a few possible rheological effects. The simplest effect is that more49

interface simply creates more effective slip surfaces between the matrix and very weak melt, and50

this directly weakens the matrix. A more complicated effect is that more interface creates more51

blocking surfaces that pin grain growth in the matrix; as the interface roughness is reduced the52

pinning surfaces are sharpened, which then pin grains to smaller sizes, thereby weakening the53

matrix as it flows in diffusion creep (Bercovici & Ricard 2012). The theory developed herein will54

attempt to capture both effects.55
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2.1 Mass conservation56

Conservation of mass in two-phase continuum mechanics dictates a relation for the volume fraction

ϕi of phase i, which, assuming both phases are incompressible and there is no mass exchange

between phases, leads to

∂ϕi
∂t

+ ∇ · (ϕivi) = 0 (1)

where vi is the velocity of phase i. Summing these equations and noting that
∑

i ϕi = 1, we arrive

at

∇ · v̄ = 0 (2)

where v̄ =
∑

i ϕivi. We define φ ≡ ϕ1 as the volume fraction of the minor phase, here the liquid

or melt phase. We also define the unsubscripted v = v2 as the velocity of the solid or matrix phase,

and ∆v = v2 − v1 as the phase separation velocity. We can hence recast (1) and (2) as

Dφ

Dt
= (1− φ)∇ · v (3)

and

∇ · (v − φ∆v) = 0 (4)

where D/Dt = ∂/∂t+ v ·∇ is the material derivative in the matrix frame of reference.57

2.2 Dynamics58

2.2.1 Momentum conservation59

The conservation of momentum in a creeping two-phase medium with the possibility of grained

phases was prescribed by Bercovici & Ricard (2012), which, ignoring gravity becomes

0 = −ϕi∇Πi + ∇ · (ϕiτ i)± c∆v + ωi
(
∆Π∇φ+ ∇(γIα)

)
(5)

where the internal pressure on phase i, Πi, includes the effect of surface tension on the grain60

boundaries (Ricard & Bercovici 2009; Bercovici & Ricard 2012), τ i is the deviatoric stress in61

phase i, c is the coefficient of drag between phases, ∆Π = Π2 − Π1, γI is the surface tension on62
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the interface between phases, α is the interface density (interface surface area per unit volume),63

and ωi is a weighting factor (such that
∑

i ωi = 1) which accounts for how much surface tension64

is embedded in one phase relative to the other. The plus sign is chosen for the ±c∆v term in (5)65

for phase 1 (the melt) and the minus sign for phase 2 (the matrix).66

2.2.2 Constitutive laws and rheology67

Since phase 1 is a melt we assume τ 1 ≈ 0 and ω1 ≈ 0. The matrix deviatoric stress is denoted as

τ ≡ τ 2 and given by

τ = 2µse (6)

where µs is the matrix viscosity and

e ≡ 1

2

(
∇v + [∇v]t

)
− 1

3
∇ · vI (7)

is the deviatoric strain-rate tensor. In keeping with prior analysis (McKenzie 1984; Katz et al.

2006; Spiegelman 2003) we note that η ≡ (1 − φ)µs is an effective shear viscosity for the two-

phase medium. We assume a functional form

η = η0e
−b(φ−φ0)(r/r0)

n(R/R0)
m = η0Λ(φ, r,R) (8)

where r is the interface roughness or characteristic radius of curvature (see §2.2.3 and Figure 1),68

and R is the mean grain-size of the solid phase, both being functions of space and time; φ0, r069

and R0 are reference values of melt volume fraction, interface roughness and grain-size, hence η070

is the effective viscosity at this reference state, and thus Λ(φ0, r0,R0) = 1. The dependence on71

R is typical for diffusion creep in which m = 2 for Nabarro-Herring (grain-volume diffusion)72

creep or m = 3 for Coble (grain-boundary diffusion) creep. The dependence on r is an assumed73

form to capture the decrease in effective viscosity as the interface roughness is reduced to create74

more slip surfaces with the melt phase. Although it is possible to construct a composite creep75

rheology allowing for dislocation and diffusion creep (depending on location in grain-size space76

on a deformation map; see Rozel et al. 2011; Bercovici & Ricard 2012, 2013) we have assumed77
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r

R

Figure 1. Sketch illustrating the difference between r, the interface roughness or characteristic radius of

curvature, and R, the mean grain-size of the solid phase. The black line indicates the boundary between

a single solid grain and the melt, the blue dashed line a circle of a radius equal to the mean radius of the

grain, and the red dashed lines are circles with a radius equal to the characteristic radius of curvature of the

boundary. Figure 2 of Bercovici & Ricard (2012) gives an example of identifying these scales on microscopy

images.

that the medium is entirely in diffusion-creep. The main justification for this assumption is that78

several of the deformation experiments are done with very small grain-sizes and thus are well in79

diffusion creep. Moreover, the non-Newtonian response of dislocation creep is already known to80

allow for shallow melt bands, and thus is not new territory. The occurrence of shallow bands in81

diffusion creep is the more enigmatic phenomenon.82

2.2.3 Interface dynamics83

The interface density α is a function of both phase volume fraction and interface roughness or

radius of curvature r,

α = λ(φ)/r (9)

where λ(φ) is a prescribed function of φ. We will assume a functional form for λ(φ) based on a

simple accumulation of spherical pores (Bercovici & Ricard 2012, 2013),

λ(φ) = 3φ(1− φ). (10)
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In the absence of void-generating damage, and assuming an inviscid melt, the pressure differ-

ence across the interface is simply given by

∆Π = −γI

r

dλ

dφ
−B(φ)

Dφ

Dt
(11)

where the second term on the right accounts for viscous resistance to matrix compaction.84

2.2.4 Final synthesized force balance equations85

Given the assumption of inviscid melt, the force balance equation (5) for the melt (phase 1) be-

comes Darcy’s law

0 = −∇P + c∆v/φ (12)

where P ≡ Π1 is the melt pressure. The interface drag coefficient c is typically written as c =

φ2µf/k where µf is the melt viscosity and k is the matrix permeability (McKenzie 1984). Equation

(12) can be substituted into the total conservation of mass statement (4) to yield

∇ · v −∇ ·
(
φ2

c
∇P

)
= 0. (13)

The sum of the two momentum equations in (5) leads to the total conservation of momentum

statement

0 = −∇P + ∇ (ζ∇ · v) + ∇ · (2ηe) + γI∇A (14)

where we define

ζ = (1− φ)2B(φ) and A =
(1− φ)2

r

d

dφ

(
λ

1− φ

)
. (15)

In what follows we will neglect the γI∇A term in (14), which will be justified by scaling arguments86

in section 5.1. With the neglect of this term, the momentum equations in (12) and (14) are identical87

to those of McKenzie (1984), where ζ is the effective bulk viscosity of the two-phase medium.88

2.3 Interface evolution and damage89

The interface curvature or roughness r evolves both by coarsening (i.e., smoothing of the inter-

face) as well as damage by deformation, distortion and/or rending of the interface. The evolution
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equation is given by (see Bercovici & Ricard 2012, 2013, 2014)

Dr

Dt
=

λGI

qrq−1
− r2fI

λγI

Ψ (16)

where GI is the interface coarsening coefficient; the exponent q is typically 2 ≤ q ≤ 4; fI is the

partitioning fraction governing how much deformational work Ψ goes toward creating interface

surface energy, and how much (i.e., 1 − fI) goes to dissipative heating. Damage acts to reduce r,

making the interface between the two phases rougher. The deformational work itself is given by

Ψ = (1− φ)τ 2 : ∇v = 2ηe : e. (17)

In the case where weakening occurs only by creation of more slip surfaces through reducing r,90

then (16) is sufficient to describe the matrix texture, and we can assume R = R0 and/or m = 0 in91

(8).92

2.4 Grain-growth and pinning93

If weakening occurs by grain-size reduction and the dependence of viscosity on grain-size, then we94

require an evolution equation for R as well. The mean grain-size R of the solid (phase 2) evolves95

through surface-tension driven coarsening (i.e., normal grain growth). Since the medium is as-96

sumed to be in diffusion creep we preclude damage directly to grains, since such grain-reduction re-97

quires propagation of dislocations, which only occurs in dislocation creep. However, grain growth98

is also affected by blocking surfaces imposed by the interface between the two phases (e.g., the con-99

tact between olivine and basalt melt), the classic manifestation of which is Zener pinning (Smith100

1948). While grain-growth in partial melts possibly obeys Ostwald ripening, experiments in olivine101

solid with basalt melts indicate coarsening is retarded the same as in any medium with a minor pin-102

ning phase (Faul & Scott 2006). Thus it appears, even in such mantle melts, the interface can block103

grain-boundary migration, and the more curved the interface the more it causes grain-boundary104

distortion, which can impede and even reverse grain-growth (Bercovici & Ricard 2012).105

As shown by Bercovici & Ricard (2012), the evolution equation for the grain-size with pinning
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is given by

DR

Dt
=

G

pRp−1

(
1− cφ

R2

r2

)
(18)

where G is the grain-growth coefficient, and the exponent p is typically 2. The interface blocking106

of grain growth is given by the Zener pinning factor, i.e., the second factor on the right of (18),107

where c = 0.87235 for the log-normal distribution defined by Bercovici & Ricard (2012, 2013).108

The Zener pinning effect acts to slow down and even reverse growth as r becomes comparable to109

or smaller than
√
cφR.110

In the end, damage effectively distorts and sharpens the interface, thus reducing r, which then111

drives reduction of grain-size R by pinning, even while the medium is in diffusion creep. In this112

way indirect damage to grains can occur even in the diffusion creep regime, thus leading to a113

positive self-weakening or shear-localizing feedback. If we account for only this weakening effect114

and neglect the production of more slip surfaces, then we would set n = 0 in (8).115

3 THE POWER-LAW LIMIT116

Before moving on to a full linear stability analysis of the governing equations it is instructive

to consider the effective rheology of the material when the interface roughness and grain-size

adjustments are effectively instantaneous relative to the time-scale for deformation. In this limit,

we can set the time derivatives on the left hand sides of (16) and (18) to zero, obtaining expressions

for the interface curvature r and the grain-size R in terms of the deformational work Ψ as

r =

(
GIλ

2γI

qfIΨ

)1/(q+1)

, (19)

R =
r√
cφ
. (20)

Here, damage balances interface coarsening to give an equilibrium interface curvature of (19)

which instantaneously pins the grain-size to (20). Substituting the above expressions into (8) yields

an effective shear viscosity as

η(φ,Ψ) = η0e
−b(φ−φ0)

(
φ

φ0

)−m
2
(
λ(φ)

λ(φ0)

)n+m
q+1
(

Ψ

Ψ0

)−n+m
q+1

, (21)
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where for simplicity fI/λ has been assumed constant. In this limit, the material behaves as if it were

a power-law fluid, a case which has been studied in detail by Katz et al. (2006). The power-law

rheology used by Katz et al. (2006) has the form

η(φ, ε̇) = Aeα(φ−φ0)ε̇(1−n)/n (22)

where n is the power law exponent, defined so that the strain rate is related to the stress as ε̇ ∝ σn,

in which ε̇ is the second invariant of the deviatoric strain-rate tensor, defined by

ε̇ ≡
(
1
2
e : e

)1/2
. (23)

Equation (22) can be written in terms of the deformational work as

η(φ,Ψ) = A′e2nα(φ−φ0)/(1+n)Ψ−(n−1)/(n+1). (24)

Equating the powers of Ψ in (21) and (24) gives an effective power-law exponent for our rheology

as

n =
q + 1 + n+m

q + 1− n−m
, (25)

and comparison of ∂ log η/∂φ between (21) and (24) gives an effective porosity weakening expo-

nent as

α = − q + 1

q + 1 + n+m

(
b+

m

2φ0

− n+m

q + 1

a

φ0

)
, (26)

where

a

φ0

=
d log λ

dφ

∣∣∣∣
φ=φ0

. (27)

For the form for λ(φ) proposed in (10), a ≈ 1.117

All the linear stability results of Katz et al. (2006) are applicable to our model in the power-law118

limit, and (25) and (26) can be used to provide a mapping between their study and ours. In order to119

generate melt bands at angles other 45◦, Katz et al. (2006) found it necessary to invoke large power120

law exponents, finding an exponent around n = 4 to 6 to be consistent with the observations. The121

advantage of the damage theory approach we have taken here is that it provides a justification for122

large effective power-law exponents even when the grains themselves are deforming by diffusion123
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creep. Moreover, the damage theory model allows a wider range of behaviour than a simple power-124

law fluid, behaviour which will be explored later in this manuscript.125

4 LINEAR STABILITY ANALYSIS126

We now perform a linear stability analysis of the governing equations. We will seek the growth

rate of perturbations to a general linear flow

v0(x) = x ·∇v0 (28)

where x is the position vector and ∇v0 is a uniform and constant velocity gradient tensor. To

satisfy the governing equations, we must have that ∇ · v0 = 0, so there is no separation of the two

phases in the base state. We will define

e0 =
1

2

(
∇v0 + ∇vt0

)
(29)

to be the strain-rate tensor of the base state (also uniform and constant), and

ε̇0 =
(
1
2
e0 : e0

)1/2 (30)

to be the second invariant of the base state strain-rate tensor. The base state deformational work is

Ψ0 = 2η0e0 : e0 = 4η0ε̇
2
0. (31)

We consider infinitesimal perturbations to the base state, defining dependent variables as fol-

lows:

φ = φ0 + εφ1 (32a)

r = r0 + εr1 (32b)

R = R0 + εR1 (32c)

P = P0 + εP1 (32d)

v = v0(x) + ε(∇ϑ1 + ∇×ψ1) (32e)

where ε � 1, ϑ1 is a scalar potential, ψ1 is a vector potential (where it can be assumed that
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∇·ψ1 = 0 without loss of generality); all zeroth order variables are uniform and constant except for

v0 which is a function of x, and all first order variables are functions of x and time t. Substituting

(32) into the governing equations (3), (13), (14), (16), and, if necessary, (18) yields equations for

the steady state O(ε0) and for the O(ε1) perturbations. The O(ε0) steady-state requires only that

r0 =

(
GIλ

2
0γI

4qfIη0ε̇
2
0

) 1
q+1

(33)

where λ0 = λ(φ0). In the case of slip-surface weakening we need only specify that R0 is given; in

the case of grain-reduction and pinning, the steady-state solution to (18) is

R0 =
r0√
cφ0

. (34)

For the O(ε1) equations, mass conservation (3) yields

D0φ1

Dt
= (1− φ0)C1 (35)

C1 ≡∇ · v1 = ∇2ϑ1 (36)

where D0

Dt
= ∂

∂t
+ v0 ·∇. Taking ∇× the matrix momentum equation (14) to O(ε1) leads to

∇4ψ1 = 2∇× (e0 ·∇Λ1) (37)

where

Λ1 = −bφ1 + n
r1
r0

+m
R1

R0

. (38)

Taking ∇· of the matrix momentum equation (14) to O(ε1) and combining with (13) leads to

−
(
ζ0 + 4

3
η0
)
∇2C1 +

c0
φ2
0

C1 = 2η0e0 : ∇∇Λ1 (39)

where ζ0 = ζ(φ0). Note that dyadic notation is used throughout this paper (Malvern (1969)).127

The evolution equations for r1 and R1 become

D0r1
Dt

= −GIλ(φ0)

qrq−10

[
(q + 1)

r1
r0

+
Ψ1

Ψ0

− a

φ0

φ1

]
, (40)

D0R1

Dt
= − G

pRp−10

[
φ1

φ0

+ 2
R1

R0

− 2
r1
r0

]
, (41)

Ψ1 = 2η0Λ1e0 : e0 + 4η0 (e0 : ∇∇ϑ1 + e0 : ∇ (∇×ψ1)) , (42)
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where the steady-state O(ε0) solution (33) and (34) has been used to eliminate factors and for128

simplicity it has been assumed that fI/λ is constant.129

4.1 Dimensionless equations130

We non-dimensionalize time by (2ε̇0)
−1, r1 by r0, R1 by R0, and distance by the compaction length

δ =
√
φ2
0(ζ0 + 4

3
η0)/c0. (43)

The dimensionless governing equations thus become

D0φ1

Dt
= (1− φ0)C1, (44a)

∇4ψ1 = 2∇× (e0 ·∇Λ1) , (44b)

−∇2C1 + C1 = 2νe0 : ∇∇Λ1, (44c)

C1 = ∇2ϑ1, (44d)

Λ1 = −bφ1 + nr1 +mR1, (44e)

D0r1
Dt

= −ΓI

[
(q + 1)r1 + Ψ1 −

a

φ0

φ1

]
, (44f)

D0R1

Dt
= −Γg

[
φ1

φ0

+ 2R1 − 2r1

]
, (44g)

Ψ1 = Λ1 + 4 (e0 : ∇∇ϑ1 + e0 : ∇ (∇×ψ1)) , (44h)

where

ν =
η0

ζ0 + 4
3
η0
, (45a)

Γg =
G

2pRp0ε̇0
, (45b)

ΓI =
GIλ0

2qrq0ε̇0
. (45c)

One of the most important features of the dimensionless governing equations in (44) is that131

the irrotational component of the flow (described by the scalar potential ϑ1) is coupled to the132

solenoidal component of the flow (described by the vector potential ψ1) through the dependence133

of the viscosity on the interface roughness and grain-size (44e), and their dependence on the vis-134
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cous dissipation (44f) (and hence both components of the flow (44h)). It is the irrotational part135

of the flow that drives the growth of the melt bands through compaction (44a): for a Newtonian136

purely-porosity-weakening rheology the irrotational flow is independent of the solenoidal flow (the137

right hand side of (44c) would depend only on porosity), and melt bands grow fastest in the prin-138

cipal compressive stress direction. The effect of anisotropy, non-Newtonian power-law rheologies,139

or the damage rheology we propose here is to couple the solenoidal component to the irrotational140

component, allowing the dominant melt band growth directions to differ from the principal com-141

pressive stress direction.142

4.2 Normal mode analysis and dispersion relation143

We will seek plane wave solutions of (44) of the form

φ1(x, t) = φ1(t)e
−ik(t)·x, (46)

r1(x, t) = r1(t)e
−ik(t)·x, (47)

R1(x, t) = R1(t)e
−ik(t)·x, (48)

where k(t) is the time-varying wave vector of the plane wave. Advection causes the wave vector

to stretch and rotate (see discussion in Spiegelman 2003), and its evolution can be described by

(Craik & Criminale 1986)

dk

dt
= −∇v0 · k (49)

where ∇v0 is the (assumed constant) velocity gradient tensor of the background flow as in (28).

The above ODE has solution in terms of a matrix exponential as

k(t) = e−t∇v0 · k(0) (50)

for a given initial wave vector k(0). From (49) it follows that for any variable χ(x, t) = χ(t)e−ik(t)·x,

D0χ

Dt
(x, t) =

dχ(t)

dt
e−ik(t)·x. (51)
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Substituting this relation into (44) yields a set of coupled first order ordinary differential equa-144

tions for the wave amplitudes145

dφ1

dt
= −ν(1− φ0)f(k)Λ1, (52a)

dr1
dt

= −ΓI

(
(q + 1)r1 + (1− 2g(k)) Λ1 −

a

φ0

φ1

)
, (52b)

dR1

dt
= −Γg

(
φ1

φ0

+ 2R1 − 2r1

)
, (52c)

Λ1 = −bφ1 + nr1 +mR1, (52d)

f(k) =
2k · e0 · k

1 + k2
, (52e)

g(k) =
4ν(k · e0 · k)2

k2(1 + k2)
+

4|k× e0 · k|2

k4
. (52f)

These can also be cast in matrix form as

dy(t)

dt
= A(k(t)) · y(t) (53)

where A(k) is a 3 by 3 matrix which depends on the wave vector k, and y(t) = (φ1(t), r1(t),R1(t))
t

146

is a vector containing the perturbation amplitudes. For any given initial perturbation the above sys-147

tem of ODEs can be integrated along with (49) to give the evolution of the perturbation with time.148

We are interested in finding the most unstable perturbations, which can be found by considering149

the eigenvectors and eigenvalues of the matrix A(k). The eigenvalues of A(k(t)) give the instan-150

taneous growth rates for a given wave vector, and in general there are three distinct growth rates151

corresponding to three distinct eigenmodes.152
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4.3 Special cases153

4.3.1 Power-law limit154

When Γg � 1 and ΓI � 1, the system of ODEs reduces to a single ODE for the porosity

φ̇1 = ν(1− φ0)f(k)
b+ m

2φ0
− n+m

q+1
a
φ0

1 + n+m
q+1

(1− 2g(k))
φ1,

= −αν(1− φ0)f(k)

1 + 1−n
n
g(k)

φ1 (54)

using the relationships (25) and (26). As discussed in section 3, in this limit the medium behaves155

as a power-law fluid with an effective power law exponent n given in (25). The expression for the156

instantaneous growth rate agrees with that of Katz et al. (2006, see supplementary information,157

S23). Provided α < 0 (effective porosity weakening), instability occurs for those wave vectors that158

have f(k) > 0.159

4.3.2 No compaction160

If ν = 0 the matrix is uncompactable (infinite effective bulk viscosity) and porosity perturbations

do not grow. The evolution equations for r and R are:

ṙ1 = −ΓI ((q + 1)r1 + (1− 2g(k)) Λ1) , (55)

Ṙ1 = −Γg (2R1 − 2r1) , (56)

Λ1 = nr1 +mR1. (57)

In this case, the trace of the matrix A

tr(A) = −ΓI (q + 1 + (1− 2g(k))n)− 2Γg, (58)

is always negative (since typically q + 1 > n), while its determinant

det(A) = 2ΓgΓI (q + 1 + (1− 2g(k)) (n+m)) (59)

can have different signs. Provided q+ 1 > n+m, the determinant is always positive and it follows161

that both eigenvalues have negative real part and there is no instability. However, if q+ 1 < n+m162
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then for some values of k the determinant is negative, and there is one positive and one negative163

eigenvalue, and thus an instability. This corresponds to the case where the effective power law164

exponent n is negative, and the medium is effectively velocity-weakening.165

4.3.3 Instantaneous pinning166

In the case of instantaneous pinning with n = 0 and Γg � 1, we use R1 = r1 − 1
2
φ1/φ0 and the

system becomes:

φ̇1 = −ν(1− φ0)f(k)Λ1, (60a)

ṙ1 = −ΓI

(
(q + 1)r1 + (1− 2g(k)) Λ1 −

a

φ0

φ1

)
, (60b)

Λ1 = −βφ1 +mr1, (60c)

where β = b+ m
2φ0

. The determinant of the matrix A is

det(A) = ν(1− φ0)f(k)ΓI

(
ma

φ0

− β(q + 1)

)
. (61)

Since f(k) can be both positive and negative, there is always a range of wave vectors for which167

the above determinant is negative. For these wave vectors, there is both a positive and a negative168

eigenvalue, and thus there is always an instability.169

4.3.4 All slip-surface weakening170

In the case with all slip-surface weakening, m = 0 and we neglect the influence of R1 and the

linear system is:

φ̇1 = −ν(1− φ0)f(k)Λ1, (62a)

ṙ1 = −ΓI

(
(q + 1)r1 + (1− 2g(k)) Λ1 −

a

φ0

φ1

)
, (62b)

Λ1 = −bφ1 + nr1. (62c)

Note that this system of equations is identical up to relabelling to that in (60), and thus also always171

yields an unstable mode.172
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4.4 Finite strain173

The solution of the system of ODEs given in (53) can be written in terms of a matrizant (or propa-

gator matrix) P(t) as

y(t) = P(t) · y(0) (63)

where the matrizant satisfies

dP(t)

dt
= A(k(t)) ·P(t) (64)

and P(0) is the identity matrix. The largest real part of the eigenvalues of the matrizant P(t) gives174

the largest possible increase in amplitude over a given time period.175

5 RESULTS176

5.1 Scales and numbers177

The dimensionless numbers for the governing equations depend on various experimental parame-

ters. In the shear-deformation experiments of Holtzman et al. (2003), the imposed strain-rate was

ε̇0 = 10−4 s−1, the base state matrix viscosity was approximately η0 = 1012 Pa s, and the mean

melt volume fraction was φ0 ≈ 0.05. We must have 0 ≤ ν ≤ 3
4
. Surface tension is typically

γI ≈ 1 Pa m and λ(φ0) ≈ 3φ0 since φ0 � 1. Interface coarsening is not constrained directly from

experiments although it can be inferred from grain-growth experiments in two-phase composites

(Bercovici & Ricard 2012). For olivine grain-growth

G = 2× 104 s−1(µm)pe−
Eg
RT (65)

where Eg = 200 kJ/mol is the grain-growth activation energy (Karato 1989; Rozel et al. 2011), T178

is temperature and R = 8.3 J/(mol K) is the gas constant. We can express interface coarsening as179

GI = ΦG (µm)q−p where we use q = 4 and Φ < 1 and possibly � 1, as inferred by Bercovici180

& Ricard (2012), since diffusion of mass between elements of the minor phase is impeded by the181

presence of the major phase. For the damage partitioning fraction we assume small values within182

the range 10−4 ≤ fI ≤ 10−2, which is comparable to that inferred by Rozel et al. (2011) and183
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Austin & Evans (2007), although these studies were more relevant for damage directly to grains184

via dynamic recrystallization. The choice of Φ can be estimated by inferring the values necessary to185

yield R0 = 2µm, which were the typical experimental grain-sizes. At the experimental temperature186

of T ≈ 1500 K and using fI = 10−4, we obtain r0 = 0.4 µm from (33) and, assuming the mixture187

is pinned by the minor phase, R0 = 2 µm from (34) provided Φ = 1
200

; in this case we would188

obtain ΓI = 0.06 and Γg = 1.3. If we choose fI = 10−2 then we would get the same values of r0189

and R0 provided Φ = 1
2
; in this case ΓI = 6 and Γg would remain unchanged.190

Alternatively if we use q = 2, then we obtain the same results as the case for fI = 10−4 and191

Eg = 200 kJ/mol, provided Φ = 1
75

(and proportionally larger for fI = 10−2). In total these inferred192

interface coarsening fractions Φ are reasonable and allow for steady values of R0 consistent with193

the initial condition of the experiments; i.e., the stability analysis of perturbations to this base state194

is relevant toward the experiments.195

During the analysis we neglected the surface tension term γI∇A in the force balance of (14).

The importance of the surface tension term compared with the viscous terms is determined by a

capillary number,

Ca =
η0ε̇0r0
γI

. (66)

For the estimates given above, Ca = 40, which is large and justifies the neglect of the surface196

tension term.197

In summary we consider the range of dimensionless numbers given by 0 ≤ ν ≤ 3
4
, 1 ≤ Γg ≤198

100 and 0.1 ≤ ΓI ≤ 10 to be reasonable.199

5.2 Instantaneous growth rates for simple shear200

We now focus on the specific case of simple shear, which has velocity gradient tensor

∇v0 =

0 1

0 0

 (67)
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in dimensionless form. We write the wave vector as k = k(sin θ, cos θ), where θ is the angle of the

wavefront to the shear plane, and k is the magnitude of the wave vector. We take the limit of high

wavenumber k � 1, for which (52e) and (52f) become

f(k) ∼ sin 2θ, (68)

g(k) ∼ cos2 2θ + ν sin2 2θ. (69)

and the matrix A(k) is purely a function of the wave-vector angle.201

Figures 2 - 6 show plots of the eigenvalues of A(k) (the instantaneous growth rates) as a202

function of the angle of the wavefronts to the shear plane. In each figure the left hand column gives203

the real part of the eigenvalues, and the right hand column gives the imaginary part. It is only those204

eigenvalues for which the real part is positive that are unstable, and melt bands are expected to205

grow fastest at the angles for which the eigenvalues have largest real part.206

Figure 2 shows an example of grain-reduction and pinning with m = 3 (the grain-size de-207

pendence expected in Coble creep) and n = 0 (no dependence of the effective shear viscosity on208

interfacial roughness). The dimensionless rate parameters are chosen as ΓI = 10 (interface coars-209

ening) and Γg = 100 (grain growth), towards the high end of the values we think reasonable. Since210

the matrix A(k) is 3× 3 there are three eigenvalues which are shown in the top, middle, and bot-211

tom rows in red, green, and blue respectively. The two eigenvalues in the middle and bottom rows212

always have negative real part and thus do not lead to instability. The eigenvalue in the top row has213

positive real part for a range of angles, and it is this eigenvalue that gives rise to the melt-banding214

instability. There are two peaks in the growth rate at 20◦ and 70◦ to the shear plane. Although215

these two peaks have the same instantaneous growth rate, over time it is the melt bands that form216

at shallow angles to the shear plane which dominate due to rotation by the flow (which will be217

discussed later in this section). The unstable eigenvalue is well approximated by the solution in218

the asymptotic limit (Γg � 1, ΓI � 1), which is plotted as the black curve in the top panels. It is219

in this limit that the medium behaves as a power-law fluid (section 3) with an effective power law220

exponent n = 4, and for which the analysis of Katz et al. (2006) holds.221
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Figure 2. Dispersion curves for three growth rates s (real part in left column, imaginary in right column)

against angle to the shear plane θ, for the case with grain reduction and pinning; see (52) with n = 0.

Parameters are ΓI = 10, Γg = 100, ν = 0.05, m = 3, n = 0, b = 25, q = 4, and φ0 = 0.05. The effective

power law exponent n = q+1+n+m
q+1−n−m = 4. The thin black line in the top two panels shows the growth rate

expected in the asymptotic power-law limit; see (54).

Figure 3 shows a similar example to Figure 2 where the pinning is instantaneous rather than222

occurring at a finite rate (i.e. the Γg � 1 limit rather than Γg = 100, where the equations reduce223

to (60)). In this limit there are only two eigenvalues and these are shown in red and blue. The224

unstable eigenvalue (red) is little different from that in Figure 2, and the stable eigenvalue (blue) is225

also fairly similar. This is not surprising, as the behaviour for Γg = 100 would be expected to be226

very close to that of the Γg � 1 limit.227

Figure 4 shows another example in the same limit of instantaneous pinning as seen in Figure 3228

except the rate of interface coarsening has been reduced so that ΓI = 1, and the medium is more229

compactable (a reduced effective bulk viscosity) with ν = 1/3 rather than ν = 0.05 as used in230

the previous two figures. The asymptotic power-law growth rate is linear in ν (see (54)), so a231
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Figure 3. Dispersion curves for two growth rates s for the case of grain-reduction and instantaneous pinning

in which Γg � 1; see (60). Parameters are ΓI = 10, ν = 0.05, m = 3, n = 0, b = 25, q = 4, φ0 = 0.05.

The effective power law exponent n = 4.

change in ν from 0.05 to 1/3 leads to a roughly 7-fold increase in amplitude. However, in this232

parameter regime the approximation of the power-law limit is not appropriate, and there is a clear233

difference between the eigenvalue in red and the black curve showing the asymptotic power-law234

limit in Figure 4. In this particular regime the instability grows fastest at an angle of 45◦ to the235

shear plane and thus this parameter regime is not appropriate for explaining the low angle bands236

seen in experiments.237

Figure 5 presents an example with the same parameters as Figure 2 except that n = 2 rather238

than n = 0 – this represents a case with both slip-surface weakening and grain reduction and239

pinning. In the limit of instantaneous pinning and interface coarsening these parameters would240

give a power-law fluid with an infinite power-law exponent, the plasticity limit (black curve). In241

this limit there is an infinite growth rate at 0◦ and 90◦ to the shear plane. With finite rates of pinning242



Melt-band instabilities with two-phase damage 23

0° 30° 60° 90° 120° 150° 180°

−5

0

5

10

15

ℜ(s)

0° 30° 60° 90° 120° 150° 180°
0

0.5

1

1.5

2

ℑ(s)

0° 30° 60° 90° 120° 150° 180°
−20

−15

−10

−5

θ

0° 30° 60° 90° 120° 150° 180°

−2

−1.5

−1

−0.5

0

θ

Figure 4. Dispersion curves for two growth rates s for the case of grain-reduction and instantaneous pinning

as in Figure 3, with parameters changed so that ΓI = 1 and ν = 1/3.

and interface coarsening, the unstable mode has a finite maximum growth rate, and for the example243

shown in Figure 5 there is a peak at a very shallow angle to the shear plane, at ∼ 6◦.244

Figure 6 shows an example with the same parameters as Figure 5 except that n = 3 rather than245

n = 2. With these parameters n + m > q + 1 and this leads to a medium which is unstable even246

in the absence of compaction (section 4.3.2). The effective power law exponent becomes negative247

n = −11, and the approximation of the medium as a power-law fluid breaks down. A peak in the248

growth-rate in Figure 6 occurs almost parallel to the shear plane, at ∼ 1◦.249

5.3 Growth rate for finite strain250

The instantaneous growth rates calculated in the previous section are useful for determining at251

what angle melt bands are likely to form. However, over time the melt bands rotate in the simple252

shear flow, moving out of the orientation of maximum growth (Spiegelman 2003). It is the rotation253
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Figure 5. Dispersion curves for three growth rates s for the case with both slip-surface weakening and grain

reduction and pinning; see (52). Parameters are ΓI = 10, Γg = 100, ν = 0.05, m = 3, n = 2, b = 25,

q = 4, and φ0 = 0.05. With these parameters, this case represents the plasticity limit in which the effective

rheological power-law exponent n =∞.

by the flow that means that bands at shallow angles are dominant over those at steeper angles, even254

though both have the same instantaneous growth rate.255

As discussed in section 4.4, the growth of perturbations over finite time can be calculated from256

the eigenvalues of the matrizant P(t). An example of this is shown in Figure 7, where the blue curve257

shows the relative amplitude of the largest growing perturbation after a finite strain of γ = 1.0 for258

the parameters in Figure 3 (grain-reduction and pinning). This blue curve was calculated from a259

joint integration of (64) and (49) for a range of initial wave vector angles. Due to the rotation260

by the flow the wave vector angle changes over time, and the x-axis of Figure 7 gives the angle261

of the wave-front after straining, corresponding to k(1.0). The y-axis give the relative amplitude262

of the largest growing perturbation, which corresponds to the eigenvalue of the matrizant P(1.0)263
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Figure 6. Dispersion curves for three growth rates s with the same parameters as in Figure 5 except for

n = 3. This case represents the velocity weakening limit in which the effective rheological power-law

exponent n = −11 < 0.

with largest real part. Also shown in the black curve in Figure 7 is the expected amplitude in the264

power-law limit, which as expected provides a good match. The asymmetry that develops between265

the shallow and steep bands is clear, with the maximum amplitude occurring for the shallow band266

at an angle of around ∼ 22◦ to the shear plane after straining.267

Another example finite strain calculation is shown in Figure 8 for the parameters in Figure 5268

(with both slip-surface weakening and grain-reduction and pinning). There is a strong peak in269

the perturbation amplitude at a shallow angle of ∼ 6◦, rather shallower than the bands seen in270

experiments.271
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Figure 7. A finite strain calculation for the parameters in Figure 3. Shown is the largest relative amplitude

of a perturbation after a total strain γ = 1.0. Amplitudes greater than 1 represent growth of the perturbation

during the straining, amplitudes less than 1 represent decay. The x-axis gives the angle θ of the wave front

to the shear plane after straining (at dimensionless time t = 1). The thin black line shows the corresponding

integration of the asymptotic power-law growth rate given by (54).
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Figure 8. A finite strain calculation as in Figure 7 for the parameters given in Figure 5 to a total strain

γ = 1.0.
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6 CONCLUSIONS272

We have demonstrated that, in certain reasonable parameter regimes, our model of two-phase dam-273

age can produce melt bands that are at a shallow angle to the shear plane, consistent with the274

experimental observations. These melt bands form in a two-phase medium whose solid grains de-275

form by Newtonian diffusion creep, where the effective non-Newtonian behaviour of the two-phase276

medium arises from the grain-size (and perhaps also the interface roughness) dependence of the277

effective shear viscosity. Deformational work acts to increase the interfacial area between the two278

phases, which retards grain growth by a pinning effect, ultimately leading to a weakening of the279

two-phase medium. When damage balances healing, and pinning is instantaneous, the two-phase280

medium behaves as a power-law fluid, and our two-phase damage theory provides some justifica-281

tion for earlier studies of melt band instabilities that have invoked power-law rheologies with large282

power-law exponents to explain the formation of shallow melt bands (Katz et al. 2006). However,283

while the presence of a melt phase impedes the grain-growth in the solid (Renner et al. 2002; Faul284

& Scott 2006), the pinning process is more complex than if the secondary phase were also solid,285

and, in particular, the effectiveness of pinning depends on various features such as melt intercon-286

nectedness, mobility and chemistry (Evans et al. 2001). More theoretical work on grain-growth in287

partially molten rocks is needed to better quantify this pinning process.288

Our models predict that grain-size and interfacial roughness should vary between melt-enriched289

and melt-depleted regions. Thus a detailed study of grain-size distributions within the experiments290

could form a useful test of the theory we have presented here. The natural next step for the devel-291

opment of the theory is to perform a full numerical solution of the governing equations, which will292

allow a detailed description of the time evolution of the bands (Katz et al. 2006; Butler 2012; Katz293

& Takei 2013; Alisic et al. 2014). With a numerical solution it will be possible to study the connec-294

tion between the local instantaneous rheology (which we have shown to be effectively strain-rate295

weakening) and the overall stress-strain curve observed over longer times (which may differ due296

to the development of the melt bands that concentrate deformation). Further work also needs to be297
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done to compare the predictions of this two-phase damage theory with those theories based on an298

anisotropic viscosity tensor, to see which (if any) features in the observations require anisotropy299

and which can be explained by other means.300
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