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Abstract

The 2.0 Ga pseudo-isochron age inferred from the mid-ocean ridge basalt 207Pb/204Ph
against 29°Pb/24Ph diagram is re-examined on the basis of a statistical box model of
mantle processes. Simple equations are presented which relate the pseudo-isochron
age to the decay constants and distribution of heterogeneity ages in the model man-
tle. In turn this age distribution is simply related to the history of melting. The
equations are in good agreement with results from mantle convection simulations.
The equations are different from but related to, and more general than, those found
previously for mean box models. While the pseudo-isochron age does not signify a
mean age in the usual sense, in the model presented it is related to a “generalised
mean” over the distribution of heterogeneity ages. If a constant melt rate over the
Earth’s history is assumed, a mean remelting time of 0.5 Ga is required.
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1 Introduction

When 2°"Pb/?%Pb is plotted against 2°°Pb/?*'Pb for data from mid-ocean
ridge basalt (MORB) or ocean island basalt (OIB) an approximate linear
relationship is found (Figure 1). The slope of a regression line through these
data points can be used to an infer an age by treating the regression line as if
it were an isochron [1,2]. Formally an isochron age dates a single fractionation
event, which is not the case for MORB and OIB; the isotopic systematics of
these basalts result from multiple fractionations due to repeated melting and
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recycling over the course of the Earth’s history. As such the ages calculated by
the isochron method are often referred to as pseudo-isochron ages, and the aim
of this work is to relate the pseudo-isochron ages to real physical parameters.

The isotopic systems we will study consist of a parent isotope p which decays
to a daughter isotope d with decay constant A. There is a reference isotope
d’ with respect to which these isotopes are measured. The reference isotope
is of the same element as the daughter d, but neither decays nor is a decay
product. There are two particular isochrons we will focus on, and we will refer
to these as the parent-daughter isochron and the daughter-daughter isochron.

The parent-daughter isochron involves plotting d/d" against p/d’. The parent-
daughter isochron age 7,q; is related to the slope 3 of the regression line by

i 1 = 3. (1)

An example of this is the 1*7Sm /1 Nd-1*3Nd /1**Nd diagram. In practice parent
daughter isochrons are not very useful for analysing basalt as the melting
that occurs shortly before sampling fractionates parent from daughter, de-
stroying the underlying p/d’ signal. As such our main focus will be on the
daughter-daughter isochron which is not affected in this way by the melting
that occurs before sampling. This is where (d/d’), is plotted against (d/d’); for
two different isotopic systems which have the same parent and daughter ele-
ments. In practice there is just one case in which this applies: the 2°°Pb /2%4Pb-
20TPh /204Ph diagram. The lead-lead (daughter-daughter) isochron age 7qq; is
related to the slope [ of the regression line by

235U @*2357ddi -1

238U ' eA238Tddi -1 o /6’ (2>

where M35 and Aosg are the decay constants of U and 23%U respectively,
and the ratio 2°U/?3U has constant value of 1/137.88 at the present day
throughout the solar system. Measured MORB data leads to pseudo-isochron
ages around 2.0 Ga (Figure 1) and it is this age that we are most keen on
understanding.

There have been a number of attempts to model the MORB and OIB pseudo-
isochrons, and they have all been based on the same physical principles of
radioactive decay, stirring, melting and mixing. There have been three main
approaches: mean box models [3,4,5], statistical box models [6], and numerical
simulations of mantle convection [7,8]. This work aims to unite the different
approaches and show that most of the modelling work that has been done so
far can be best explained by some simple equations derived from a simplified
statistical box model of mantle processes [9]. For easier reading, we have split
the paper into two parts. The main text discusses the pseudo-isochron equa-
tions resulting from the model, and compares them to previous work. The



appendix presents the model derivations.

2 The model

The model used is a generalisation of the simple statistical box model described
in [9], and we refer the reader to that paper for a more thorough discussion
of the model. The model treats the mantle as a box containing a melting
region which is visited by parcels of mantle material on an average time scale
Tmelt- When parcels enter the melting region a melting event is performed
which fractionates parent from daughter, producing a fraction F' of melt and
a fraction 1 — F of residue. GG is the molar fraction of a chemical species that
enters the melt, and depends on partition coefficients and the melt fraction
F. For a given concentration C' of species entering the melting region the
concentration of the melt produced is CG/F and of the residue is C(1 —
G)/(1 — F) (Appendix A). The melt and residue produced are then recycled
back into the box. Importantly, we assume that the stirring in the box is
strong, and this allows us to treat melting as a Poisson process [10,11] with
the statistics of material entering the melting region being the same as those
over the whole box. Sampling is modelled by drawing N samples from the box
and averaging [12], representative of the mixing that occurs after melting.

There are three crucial differences in the current model from that described
in [9]. Firstly, the decay constant A is no longer assumed small which allows
20TPh /204Ph to be modelled. Secondly, a steady state is not assumed, but
instead the box is assumed to start with uniform concentrations of isotopes
at an age 7, before the present. Finally, the melt rate is no longer assumed
constant over time but instead given by some function of age ey (7). For
constant melt rate Yme(7) = 1/Tmet, and we now redefine 7,0, as just the
melting time scale at the present day.

A number of key analytic results can be derived from the model in the asymp-
totic limit where N — oo (heavy averaging), and all the results in the next
section are based on this limit (Appendices B and C). Numerical simulation
suggests that the dependence of the pseudo-isochron age on N is fairly weak
(Figure 2), and so using the N — oo asymptotics seems well justified. In
this limit the distribution of isotopic ratios tends to a multivariate normal
distribution, and expressions for the corresponding covariance matrix can be
derived. In particular these expressions allow us to estimate the slopes of re-
gression lines in plots of one isotopic ratio against another, and thus to derive
expressions for the model pseudo-isochron ages.

There are many different ways of fitting a line to a cloud of data points.
Following [3] we have focused on the geometric mean regression line (also



known as the reduced major axis regression line) whose slope is given by the
ratio of the standard deviations of the two isotopic ratios in question (solid
line in Figure 1). To give an estimate of the uncertainty in fitting a line we
have also included results from using the two linear regression lines (dotted
lines in Figure 1) in some of the figures. If the correlation is good all three
lines should be similar.

3 The pseudo-isochron equations

The key to determining the pseudo-isochron ages in the model is the random
variable T}, which gives the distribution of parcel ages for those parcels that
have passed through the melting region. The age of a parcel is defined as the
time since last visit to the melting region. The parcels that have not visited
the melting region are referred to as primordial parcels, and are not assigned
an age. Let [E be an expectation over a random variable, so that

Ef(T) = [ f(F)an(r)dr, 3)

where ¢,,(7) is the probability density function of parcel ages, and f(7) is an
arbitrary given function. The subscript ‘m’ is to emphasise that we consider
only those parcels that have passed through the melting region. In this model
the primordial parcels make no contribution to the pseudo-isochron ages, since
primordial parcels have uniform isotopic concentrations equal to the mean over

the whole box. In terms of T}, the model pseudo-isochron equations are simply
(Appendices D and E)

(X7 1) = B(Mr —1)2, ()
(e)\2357'ddi _1)2 ]E(e)\235Tm _1)2
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where 7,qi and 744; are the parent-daughter and lead-lead pseudo-isochron
ages respectively. Note that these expressions depend only on the decay con-
stants and the distribution of parcel ages. The expressions clearly show that
the pseudo-isochron ages are just particular weighted averages over the parcel
ages. In fact the pseudo-isochron ages are examples of “generalised means”
[13,14](Appendix F). It also follows from these expressions that the pseudo-
isochron ages are always greater than or equal to 7, = ET,, the mean age
of parcels that have passed through the melting region. This is an important
result as it means that models with 7, greater than the observed lead-lead
pseudo-isochron age of around 2.0 Ga cannot be compatible with the iso-
topic observations (such as the Davies model [15]). If the parcel ages < 1/A

then (4) reduces to 7pq = \/ET2, a result which is independent of A. Hence



parent-daughter pseudo-isochron ages will be the same for all slowly decay-
ing isotopes, namely for the 7Sm/!Nd-""3Nd /! Nd, ¥"Rb/®6Sr-87Sr /80Sr,
Y6 /YTTHE-YOHE/YTTHE, and 232Th /2%4Pb-29%Ph /204Ph diagrams.

The history of the rate of melting can be directly related to the distribution
of parcel ages in the model. If y,04(7) is the melt rate as a function of age
then ¢un(7) = q(7)/ [3* q(7) dT where (Appendix G)

0(7) = Y (7) exp (= [ men(r) d7). )

An important special case is where melt rate is constant Yme(7) = 1/Tmelt,
where Ty is a constant melting time scale. In this case ¢y, (1) = e~/ Tmelt / (Tmers (1—
e~™/™ei)) and the model parent-daughter pseudo-isochron equation is (Ap-
pendix H)

f(;'s (e)\T _1)2 e—T/Tmclt dr

ATpdi 2 _
e rdi —1)° =
( ) Tmelt (1 — e*Ts/Tmelt)

(7)

The most important feature of this equation is that it depends only on the
three time scale parameters in the problem: the melting time scale 7,q1¢, the
start age 7, and the decay constant \; and not on any of the other parameters.
Figure 3 plots solutions to (7) for 3Nd/MNd-*"Sm/"Nd (A = 0.00654
Ga™!') in two different ways. Figure 4 shows similar graphs for 23U /2%4Pb-
207ph /24Ph (A = 0.985 Ga™'), a case for which the decay is not linearisable.
Note that there is a reasonable uncertainty in the parent-daughter pseudo-
isochron ages indicated by the wide grey region in Figures 3b and 4b. This
expected (and indeed observed) lack of very good correlation is another reason
why parent-daughter pseudo-isochron ages are not particularly useful.

The more useful pseudo-isochron equation is the lead-lead pseudo-isochron
equation given for constant melt rate by (Appendix I)

(e>\2357'ddi _1)2 (e/\2357 _

)2 e_T/Tmelt dT
)2 efT/Tmelt d7‘ ’

_ ! (8)
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Figure 5 plots solutions to (8). Note that the lead-lead pseudo-isochron ages
are fairly well constrained as the model correlation is good (as indicated by

the narrow grey regions of Figure 5b).

The pseudo-isochron equations only encode age information, and do not in-
volve the parameters G and F'. However, if we are concerned with the variance
of isotopic ratios, or the slopes in plots of one isotopic ratio against another
which do not have common parent and daughter elements, then these pa-
rameters are involved. This was the main focus of [9], and the corresponding
generalisation of (1) of [9] for the standard deviation o of d/d’ ratios after



sampling is (Appendix C)

—E.M. " 12 o) dr
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where p/d’ is the ratio of mean parent isotope concentration to mean reference
isotope concentration over the whole box at the present day.

4 Linear pseudo-isochron equations

There are three models based on linear evolution equations that have recently
been proposed for the pseudo-isochrons [3,4,5]. In fact, all three models pro-
duce identical pseudo-isochron equations and are closely related. Albarede [4]
and Donnelly et al. [5] both consider a two reservoir model, and derive the
pseudo-isochron equations in precisely the same way. Allegre and Lewin [3]
consider a different set of linear evolution equations for isotopic dispersion,
which with some rearranging are almost equivalent to the two interacting
reservoir equations.

The governing equations for two interacting reservoirs derived by [4] and [5]
are

(?;:—2—1—7:_22—)%1, (10)
(?;:j_ll_jj_mz, (11)
OT;:—Z?JFZ?JFA% (12)
d:infzrgll—rgf-i—/\ng, (13)

where the notation of [4] has been followed. n;, m; and s; are the total number
of moles of parent, daughter and reference isotopes respectively in reservoir ¢
(these should not be confused with p, d and d’ used throughout the appendix
to represent concentrations). 7; is the residence time of the parent element in
reservoir 7, ¢; the corresponding residence time for the daughter element. Let
Yin, 2m and X4 be the total number of moles of parent, daughter and reference
isotopes in both reservoirs: ¥,, = ny + nq, %, = my + mso, and X, = 51 + So.



Then

dX dX dX
dt Todt Toode ’ (16)
and the governing equations for reservoir 1 can be rewritten as
d?’Ll n1 Zn
B 17
dt T * To " (17)
dm1 mi Em
— T 18
a9 e (18)
d81 S1 ZS
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where 7 and 0 are the relaxation times of the two elements: the harmonic
means of the residence times in the two reservoirs

1 1 1 1 1 1
S, =t (20)

We now rewrite these equations for closer comparison with [3]. Introduce new
variables n} and m7j defined by

S (m s (Z)1+2> | (21)
R R

ZS

1

2
where the subscript 1+2 refers to the total system: (n/s),,, = ¥,/%, and
(m/s)y19 = Ym/Xs. Note that ny = —n] and m5 = —mj. The governing
equations in the starred variables can then be written as

dnj 1 1 n 1 (ny 51 /n
S ) I v S L 23
dt (7'2 62) (5>1+2 ™ Es (T 0 (S)1+2> ’ ( )

dmy my
=nj — —. 24
a Mg (24)
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These governing equations take on a particularly simple form if the relaxation
times for parent and daughter elements are the same, 7 = 6 = 1/ say. For
later convenience, define g, = 7/ and g,, = 6/61, and note that 0 < g,, g <
1. Then

dnj n
= — (g, — - — x 9
p; (9n = gm) ¥ (S)m (A+7)ni, (25)
dmj N N
dtl = An] —ymj. (26)

These can be compared to the governing equations (1) and (2) of Allegre and



Lewin [3]

d%(” — A() — (A M) ()(8), (27)
WO _ X iyo) + B(o) ~ M) @) (28)

These governing equations are identical to (25) and (26) if the chemical dis-
persion (u)(t) = n}, the isotopic dispersion («)(t) = m7J, the rate of injection
of chemical heterogeneity A(t) = — (gn, — gm) ¥ (n/5)1,,, the rate of injection
of isotopic heterogeneity B(t) = 0, and the stirring parameter M (t) = «. The
appendix of [3] discusses solutions to these equations in the simplified form
((A1-1) and (A1-2) of [3])

Wott) _ B (4 md) o) (29
A oy + S5 - 1200 (30)
where by comparison A{u)/R = — (gn — gm) 7(n/5),,5(0), Al{a) = 0, and

Teir = 7~ 1. These are solved subject to initial conditions (1) (0) = 0, (a)(0) =0
which corresponds to the two reservoirs having initially identical isotopic ra-
tios (n/$)1(0) = (1/5)2(0) = (n/s)12(0) and (m/s)i(0) = (m/s)a(0) =
(m/s)142(0). Allegre and Lewin define the slope of their parent-daughter
pseudo-isochron by the ratio («)(t)/(u)(t). However,

()(t) _mi _mu—si(m/s) _ (m/s), = (m/s),y, (31)

(1) () ni ny—45 (n/5)1+2 (n/s), — (n/3)1+2

Hence the definition of the slope by the ratio («)(t)/(u)(t) is the same as the
slope of the line through the reservoirs 1, 2 and 142 on the parent-daughter
isochron diagram. Thus provided the relaxation times are equal in the two
reservoir model, and there is no excess isotopic heterogeneity A(a) in the
Allegre and Lewin model, the pseudo-isochron equations are exactly the same.
Importantly, the stirring time 7y, of Allegre and Lewin can be reinterpreted
as the common relaxation time in the two reservoir model.

In one sense the Allegre and Lewin model is more general than the two reser-
voir model because of the excess isotopic heterogeneity term A(a), but in
practice this was always set to zero for their pseudo-isochron calculations. On
the other hand, the two reservoir model can be thought of as more general
since it allows the parent and daughter elements to have different relaxation
times. If parent and daughter are fractionated by the same melting process
we might expect relaxation times to be the same. Also, note that in secular
equilibrium only the relaxation time 6 of the daughter element determines the
pseudo-isochron [4].



Standard deviations are not conservative and should not be modelled by linear
evolution equations such as (27) and (28). The justification of these equations
by Allegre and Lewin is rather ad hoc. The two reservoir model and the Allegre
and Lewin model are both linear models and thus essentially concerned with
mean values, whereas standard deviations are fundamentally nonlinear. In the
statistical box model it possible to discuss standard deviations, variances and
covariances, as well as means, because the underlying probability distributions
are being modelled. Note that the starred variables which relate the Allegre
and Lewin model to the two reservoir model arise naturally from the lineari-
x

sation
. _
z - ~_<x—y‘f>, (32)

<8I

Y Y Y
valid for |z — Z| < Z and |y — g| < 7. The starred variables turn out to be

particularly useful when considering asymptotics for large N in the statistical
box model (Appendix B).

We can make an important connection between the statistical box model and
the two reservoir model by dividing the parcels in the box into two groupings.
Labelling the residue parcels and a fraction 1 — F' of the primordial parcels as
one reservoir, and the melt parcels and a fraction F' of the primordial parcels
as another reservoir, gives a two reservoir system with a common relaxation
time. The connection is made if v = ypert, ¢n = G, and g, = G4 (Appendix
J). Furthermore, this suggests an alternative way of writing the linear pseudo-
isochron equations of Allegre and Lewin in terms of an age distribution. These
are the same as (4) and (5) except with the squareds removed

eMpdil _] = E(eATm —1), (33)

e2357ddil ] E e>\235Tm -1
A - ( a ) Y (34)
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where 7,qn1 and 744i are the linear parent-daughter and lead-lead pseudo-
isochron ages respectively. It should be noted that the linear pseudo-isochron
ages will always be less than the corresponding ages obtained from (4) and
(5). The pseudo-isochron equations (4) and (5) for our problem are different
because they involve the variance of a mixture of melt, residue and primordial
parcels, whereas the above equations result from mean values of reservoirs.
The squareds reflect the difference between looking at a mean value and look-
ing at a variance. To emphasise the similarities and differences between the
linear pseudo-isochron equations and our pseudo-isochron equations, Figures
3, 4, and 5 mimic Figures 3, 4 and 9 of Allégre and Lewin [3].

A key result used in [3] to estimate a stirring time for the mantle is the lead-
lead pseudo-isochron age relationship 7qqy ~ 274 for vigorous stirring. In
the context of this paper the corresponding asymptotic result is 7qq; ~ 3Tmert
for rapid remelting. In practice this result is only accurate for very rapid



remelting, as it requires that Tey < 75 and e < 1/Ag35 = 1.0 Ga. Hence
comparison between the linear pseudo-isochron equations and our pseudo-
isochron equations is best done using the full equations rather than any rapid
remelting asymptotics. Using (A2-9) of [3], if 75 = 4.5 Ga then 7y, = 0.82 Ga
is needed to produce a lead-lead pseudo-isochron age of 2.0 Ga. Using our (8),
if 7y = 4.5 Ga then 1,0 = 0.45 Ga is needed, which is almost a factor of 2 less.
For parent-daughter isochrons the vigorous stirring relationship 7pqi ~ Teir in
3] becomes Tpai ~ V2T et for rapid remelting (Tmer < 75 and 1/X).

The statistical model of Kellogg et al. [16] also has a 7y;, parameter, but note
that this takes on a different meaning to the 7y; of the Allegre and Lewin
model [3]. The Kellogg et al. 7y reduces the length scale of heterogeneities
before sampling: essentially it relates to the parameter N in our model. The
Tair 10 the Allegre and Lewin model describes the destruction of heterogeneity
by repeated melting, and thus is 7 in our model.

5 Numerical simulations of mantle convection

Christensen and Hofmann [7] put isotopic tracers into a numerical simula-
tion of mantle convection. 252,000 tracers were used, and sampling was per-
formed by dividing the domain into 40 x 20 sampling cells, and averag-
ing over those cells. Thus N for their model is around 300, although note
that their model is slightly different to that presented here as different cells
may have different numbers of tracers. They have a constant rate of melting
in their model, so (8) applies. Their standard model has 7, = 3.6 Ga and
Tmet = —1.36/1og(1 — 0.9) = 0.59 Ga (inferred from the statement “in 1.36
Ga, statistically 90% of the total basalt content has been cycled through a
melting zone in the model”). They found a lead-lead pseudo-isochron age of
2.10 Ga which compares very favourably to the figure of 2.15 Ga that is pre-
dicted by (8) (and not as favourably with the figure of 1.39 Ga predicted by
the linear pseudo-isochron equation (A2-9) of [3]).

Xie and Tackley [8] used a similar approach to Christensen and Hofmann [7]
for a different numerical simulation. Their model differs in having a melt rate
which changes over time; melting being more vigorous in the past. 400,000
tracers were used, and the domain divided into 256 x 64 sampling cells, and
thus N for their model is around 25. This smaller amount of averaging prob-
ably explains why their arrays show less correlation than the Christensen and
Hofmann arrays. Their model has less frequent remelting than the Christensen
and Hofmann model, which is why larger isotopic ages are observed. A rough
rule of thumb for less frequent melting (7yer = 1-2 Ga) is 7qqi =~ 0.757 (Fig-
ure ba). The rule works reasonably well at estimating the pseudo-isochron ages
they found, but the simple constant melt rate formula of (8) does not actually
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apply in this case. To do a more accurate comparison we need to examine
carefully the distribution of ages the Xie and Tackley model produces.

In Figures 5¢ and 5e of [8] the integrated crustal production and crustal pro-
duction rate are plotted against time for a 7, = 4.5 Ga run. We can use this
information in our statistical box model to predict the distribution of ages (Ap-
pendix G). Figure 6 shows there is good agreement between these calculated
distributions and the age distribution observed (Figure 10a of [8]). Using (4)
and (5) we can use these age distributions to calculate pseudo-isochron ages.
The integrated crustal production gives a lead-lead pseudo-isochron age of
3.58 Ga, the crustal production rate an age of 3.76 Ga, and the observed age
distribution an age of 3.67 Ga. These estimates are all slightly greater than
the observed pseudo-isochron age of 3.39 Ga (Figure 8a of [8]). The small
differences may be due to various factors, including differences in line fitting,
the effects of binning and windowing, and the small value of N used in their
simulations.

Xie and Tackley discussed the effect of greater rates of melting in the past
on pseudo-isochron age. To examine this they introduced a box model and
calculated a mean parcel age for three different scenarios. Using our statistical
box model we can go further and calculate not only the mean age but also
the age distributions and pseudo-isochron ages. Their three different scenarios
were (1) melt rate constant, (2) melt rate proportional to the square of mantle
heating rate (referred to as H?), and (3) as H? but also proportional to depth
of melting (referred to as H2d). Mantle heating rate was assumed to decay with
a half-life of 2.247 Ga. This corresponds to an exponentially growing history
of melt rate Yme(7) = €7 /Tmere Where v = (2log2)/2.247 = 0.62 Ga™! and
Tmelt 1S the melting time scale at the present day. We have approximated
the H2d case by a similar exponential growth with » = 0.74 Ga™'; only a
small discrepancy in the mean ages results from this approximation. The age
distributions are plotted in Figure 7 and the mean and pseudo-isochron ages
are given in Table 1.

An important distinction should be drawn between the two mean ages given
in Table 1. Xie and Tackley [8] calculated the mean mantle age Tiota Which
includes all parcels, and in particular it includes the primordial parcels which
are assigned an age of 7. This is a misleading mean age to relate to the pseudo-
isochron ages, since for the pseudo-isochron ages it is only the parcels that have
passed through the melting region which matter. Hence of greater interest is
7m = ET., which is a mean age that only includes the parcels that have passed
through the melting region. It can be formally shown that the pseudo-isochron
ages must be greater than or equal to 7, but there is no such constraint on
Tiotal- Indeed Table 1 shows pseudo-isochron ages both greater than and less
than Tiotal.
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Note that the smallest Pb-Pb pseudo-isochron age in Table 1 is 2.97 Ga, so
none of the scenarios are compatible with the measured MORB data. Fur-
thermore note that more frequent remelting in the past can have the effect of
both increasing and decreasing the pseudo-isochron age (e.g. Tmer = 13.8 Ga
in Table 1). This is due to two competing effects: if melting is more rapid in
the past it can mean a lot of the early heterogeneity is destroyed, but it can
also mean that a lot of heterogeneity is created early on. For v = 0.62 Ga™*
and v = 0.74 Ga™! to get lead-lead pseudo-isochron ages of 2.0 Ga the present
melting time scale 7,0 must be 1.45 Ga and 1.83 Ga respectively.

6 Conclusions

The key results of this work are the simple pseudo-isochron equations (4) and
(5) which relate in a straightforward way melting history and pseudo-isochron
age. The equations are similar to those examined by previous authors but
differ in certain important details. In the case of constant melt rate these
relationships can expressed in terms of just two unknown parameters: the age
T, at which you begin the model, and 7,,; the melting time scale. The natural
choice for 7y is the age of the Earth, but the unmodeled process of continent
formation motivates younger choices for 7 such as 3.6 Ga [7]. To produce the
observed lead-lead pseudo-isochron ages of 2.0 Ga values of T, = 0.45 Ga
(for 7y = 4.5 Ga) or Te = 0.52 Ga (for 7, = 3.6 Ga) are needed. If the melt
rate is not constant but is instead greater in the past, then slower present day
melting time scales may be needed, for example 7,r = 1.45 Ga found earlier
when the rate of melting was proportional to the square of mantle heating rate.
Figure 8 plots the corresponding probability density functions for a constant
melt rate case and a variable melt rate case.

There is quantitative agreement between the predictions of this simple statisti-
cal box model and the much more complicated mantle convection calculations
that have been done by previous authors. This helps justify some of the key
assumptions that are made in the statistical box model, and in particular
the neglect of the particular details of the underlying flow. Statistical box
models are still in their infancy, but they seem to provide a powerful way of
approaching the problem of isotopic heterogeneity in the mantle. A great ad-
vantage is that general analytical results can derived which can lead to better
understanding of the problem without the need to run lots of numerical simu-
lations. However, mantle convection simulations still have an important role to
play; of most interest for the pseudo-isochron problem is knowing the kinds of
melting history that they can produce. Future simulations should investigate
further the validity of these simple analytic relationships between melt rate
and age distribution, and between age distribution and pseudo-isochron age.
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An important caveat to bear in mind when using this model, and indeed in the
convection simulations as well, is that no attempt is made to model continent
formation. This is an important process to consider as early heterogeneity may
become locked up in the continents and not be recycled into the mantle. It is
this idea which prompts the use of younger values of 7,. The multi-reservoir
statistical box models of [6] have made some attempt at addressing this issue,
although as is remarked it is somewhat difficult to see through the myriad of
parameters used in that model. A key problem in modelling continent forma-
tion is that it requires modelling properly the mean lead isotopic evolution of
mantle, which in itself is still not clearly understood. There is still yet to be
any consensus on the resolution of the various lead paradoxes.

For isotopic ratios d/d’ for which the decay is linearisable the outcome of the
model we present here is little changed from that described in [9]. In particular
the slopes in plots of one isotopic system against another are unchanged ((5)
of [9]). There thus remains the fundamental inconsistency between the Pb
isotopes and the Nd, Sr and Hf isotopes. Furthermore, the value of 7,01 ~ 0.5
Ga inferred here from the lead-lead pseudo-isochron is a factor of 3 different
from the value of Tt ~ 1.7 Ga inferred from the standard deviations of the
Nd, Sr and Hf isotopic ratios in [9]. In fact, Tper ~ 0.5 Ga provides a much
better match to the observed standard deviations of the Pb isotopic ratios than
Tmelt ~ 1.7 Ga (in [9], model lead isotopic standard deviations were around
3 times larger than observed). Note that the pseudo-isochron is a much more
robust way of estimating 7,0 as it depends only on the decay constants and
start age, whereas the standard deviation of isotopic ratios depends on all the
parameters in the model. It is still not possible in the model as it stands to
match both the Pb isotopes and the Nd, Sr and Hf isotopes with a single set
of parameters.

As outlined in the conclusion of [9] there are still many possible generalisations
of this model that might prove useful. One particular generalisation that we are
interested in developing is to look at removal of species from the box during
a melting event. This could model continent formation or the degassing of
isotopes of noble gases (such as 3He and *He). Again, further investigation is
needed.
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A Statistical box model

The model used is the simple statistical box model described in [9] with three
restrictions lifted: the decay is no longer linearised, a steady state is not as-
sumed, and the melt rate may vary with time. There are three types of parcel
in our model mantle: melt parcels (parcels last formed as melt in the melting
region), residue parcels (parcels last formed as residue in the melting region),
and primordial parcels. Melt and residue parcels have an associated age T
of when they last visited the melting region. The distribution of parcel ages
is given by a random variable T', which is defined so that those parcels of
age > T, are primordial. Let ¢(7) be the probability density function of T.
Thus a fraction 1 — [;® ¢(7) d7 of parcels are primordial.

We track the concentrations of a parent isotope p, a daughter d, and a reference
d'. G is the molar fraction of a chemical species that enters the melt, and de-
pends on the melt fraction F' and the partition coefficients. The corresponding
concentrations of the three parcel types at the present day are:

Pprim = 15_7 (Al)
dprim = C{; (A2>
prim =d. (AB)
G
Pmelt (T> Fpﬁv (A4>
_ Gd 7 Gp Gd AT —
e (7) = —d + = (e =1)p, (A.5)
: Ga 5
melt<T> = Fdd/ (A6>
1-G,
Pres(T) = TP (A7)
. 1 - Gd - Gp Gd T _
dres(T) T F d T F ( 1) D, (A.8)
, 1—-Gy
dI‘eS(T) 1 _ F ? (Ag)

where p, d, and d’ are the mean concentrations of the isotopes in the box at
the present day, and A is the decay constant.
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B The asymptotics of averaging ratio quantities

As before, we model sampling by taking a number N of independent identically
distributed (i.i.d.) samples from our model mantle and averaging. Again, it
is important to note that we are interested in ratio quantities. This section
describes some important general results on the asymptotics of averaging ratio
quantities.

Consider i.i.d. pairs of random variables {%;,¢;}, ¢ = 1,2, ...N. Suppose g; > 0.
We are interested in the asymptotic behaviour of the ratio of sums

Z =3 /3 0 (B.1)
for N large. Let

(B.2)

/N
=>
|
<8I
N
~_

>
*

(B.3)

—~
<
|
S
S~—

L~ Q|

where z = E(2), y = E(y). Note that E(z*) = E(g*) = 0. Note also that

2T +7Z@/N . (B.4)

7 — z
vy 1+X9r/N

It can be shown [17] that Z is asymptotically normal for large N under ap-
propriate assumptions (assumptions which give the central limit theorem for
> &7 and give the law of large numbers for > ;). The condition g; > 0 en-
sures that moments of Z are well defined, and Cauchy distribution problems
do not arise. By Taylor expanding (B.4) and taking expectations the following
expressions for the asymptotic moments can be derived:

—7-E(Z) = ; }V (#§) + O (]\1[2) (B.5)
=o?=E(Z- ) ]if]E (#2) +0 (]\1[2> : (B.6)
1 A*3 Sk Ak ~Ax2 1

=E(2-2) = 35 () - B@E () + 0 (1)

(B.7)
Hence the skew parameter ~; is
~ws E(@) - 6E(@§)E @) 1

M= (M2)3/2 - N2 (E (x*g))?,/z 0 (N3/2) : (B.8)

The kurtosis and higher order moments can be derived similarly by expanding
to higher orders.
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In this work we are most concerned with plots of one ratio against another.
So consider two sets of i.i.d. pairs of random variables {Z;, 9;}, and {Z;, 7;},,
1=1,2,...N. Then the covariance of Z; and Z; is given by

cov (2,2) =E((21 - 2) (%~ 22)) = xE G + 0 () (B)

1 1
= N COV (i’;,[ﬁ;) + O (]\[2) s

with corresponding correlation

r1y = cOr (Zl 22) _ COV (ZI; Z2> _ E (j:,l(i;) + O (1) (BlO)
| 712 EGPE@) WV
1
= cor (27}, 25) + O (N) :

We are most interested in calculating the slope of a regression line of one
system against another. There are many different methods for fitting regression
lines to a cloud of data points which make various assumptions about the
underlying data. Three commonly used estimates are

oy E(z723) ( 1 >
= = = O|— B.11
P2 =112 o EGD) + N ( )

Bsz:«§§2+o(§>, (B.12)

By = —22 = +0<>, (B.13)

where (315 is the slope of the linear least squares regression line of system 2 on
system 1, and [y is the same line but for system 1 on system 2. 3 is the slope
of the geometric mean regression line, and following [3] it is this estimate of
the slope we will focus on here. Note that the sign of 3 is chosen to be the same
as r12 and that B2 < 3 < [91. If the correlation is good all three estimates
will be similar.
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C Calculating the asymptotic moments

Based on the general analysis of the previous section, introduce new variables
p*, d* and d™* defined by:

1 D
* = = — = / 1
= (p d,d), (C.1)

1 d
== |d—=d 2
d/ (d d/ >7 (C )

Ix _ 1 ! 77
d —?(d—d). (C.3)

In these new variables the different parcel types are given by

pprlm = 07 .
i = 0, (C.5)
/%
dprlm = 0. (C6>
N pG,—G
pmelt(T) - ? £ F d7 (C?)
* _ p GP B Gd AT
dmelt(T) d ja (e _1) ) (C 8)
. Gyg—F
dmelt(T) = dF (Cg)
* _ _BGP — Gy
pres(T) - CZ/ 1-F ’ (C].O)
* _ D GP — Gd AT
dres(T) = 7 1-F (e —1> ) (C.11)
Gyg—F
I _
dres(T) - 1 — F . (ClQ)
Key moments are then
oy _ (PG —Ga)®
B6) = (3) Fraofy ) 00 (C.13)
Tk Ak P 2 (GP — Gd>2 A
E = (= T—1 14
@) =(5) Faopy f (7 )eman(©1)
sy _ (P (G —=Ga)’ (7 2
E(d*?) = <CZ’> F_F) /0 (e 1) q(7)dr. (C.15)

Let Zd => d; /> d be the random variable giving the distribution of isotopic
ratios d/d’ after averaglng, and Z = > Di/> d’ be the random variable giving
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the distribution of isotopic ratios p/d’ after averaging. From (B.6) we have that

var Zg ~ ;E (62*2> = <§/>2<Gp_Gd)2 /OTS (e)‘T —1)2 q()dr, (C.16)

NF(1=F)
7% 1 ~x2 P\ Gp -G ’ ™
var Z, ~ NE (p ) = (5/) M/O q(7)dr. (C.17)

(C.16) is the generalisation of (1) of [9]. A similar generalisation for the skew
(4) of [9] can obtained using (B.8).

D Parent-daughter isochrons

It is convenient to introduce T},: this is the random variable giving the dis-
tribution of parcel ages restricted to those parcels that have passed through
the melting region. ¢, (7) = ¢(7)/ [o° ¢(7) d7 is then the probability density
function of T},. Suppose we plot d/d’ against p/d’. Then the correlation is
estimated by (B.10) as

]E(cz E(eMm —1)

\/IE cf \/E eATm_

(D.1)

Tpd ~

The slopes of the regression lines are estimated by (B.11), (B.12), and (B.13)
as

E(d*p*)
E(p*2)

d*2
\EG) = \/E (eXfn — (D.3)

E<d*2> B E(e”‘“—l)
E(dp*) E(eMn—1)

Bpa ~ =E (M —1) , (D.2)

ﬁdp ~

(D.4)

The parent-daughter pseudo-isochron age is related to the slope of the regres-
sion line by

e rdi 1 = (3, (D.5)

and thus using the geometric mean regression line (D.3) the model parent-
daughter pseudo-isochron equation is

(¥ —1)" = E (¥ —1)", (D.6)
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Note that when the decay is linearisable (T}, < 1/)) (D.1) and (D.6) reduce
t0 7pg = BT/ ET2 and 1pq = \/ET2.

E Daughter-daughter isochrons

Now suppose we plot (d/d'), against (d/d'); for two different isotopic systems
1 and 2. Key moments are then

E(d}?) = @) m | (e =1) g a. (E.1)
e e p1\ (D2 (Gp1 — Gar)(Gpo — Gaz) [T ¢ xr N

E(did;) = <Z,1> (i) ( ja (1)(_ F) ) /0 (e —1) (e —1) q()dr,

(E.2)

E(ds?) = (ZZ) %_—Glf)) [ (e =1) atryar (B.3)

The correlation is then given by
E(eMTm —1)(e2Tm —1)
- 2 R 2
JE(X T —1) B (e 1)

Note that |rys| ~ 1 if the decay is linearisable (T, < 1/A; and 1/);), which
is why in Figure 4 of [9] the model data form almost perfect straight lines.
However, when the decay is not linearisable we will not get perfect correlation.
The slope of the geometric mean regression line is given by

sgn ((Gp1 — Ga1)(Gp2 — Ga2)) . (E4)

T19 ~

B N (ﬁz/czé) (Gp2 — Gdg) E(e/\QTm —1)2 (E 5)
(]51/67,1) (Gpp — Gar) E(eMTm _1)2- )

Note that if the decay is linearisable this reduces to

o () 0n G -
(Pl/d1) (Gpl - Gdl) A

which is precisely (5) of [9]. (E.5) is the generalisation of (5) of [9]. Hence
for those isotopic systems for which a linear decay approximation is valid the
slopes are unchanged from [9].

We are particularly interested in a special case of (E.5). If the parent and
daughter elements are the same, and the reference isotope is also the same,
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then (E.5) reduces to

_ Py E(e)‘ﬁm —1)2
ey

This is the generalisation of (6) of [9]. The other estimates of the slope of the
regression line in this special case are given by

(E.7)

Do E(ez\lifm _1>(6A2Tm —1)
D1 ]E(eA1Tm _1)2

e )
21 ™~ — ¢

D1 E(e/\lfm _1)(eA2Tm _1)' (E.8)

Y

The daughter-daughter pseudo-isochron age is related to the slope of the re-

gression lines by
5 A2Tddi _
P2 € 1 .
- e 0. (E.9)

Hence, combining (E.7) and (E.9) the model pseudo-isochron age 744; satisfies
the simple relationship
(elemaar —1)2 E(e*2Tm —1)2
(eAITddi _1)2 - E(e)\le _1)2 .

(E.10)

Note that when the decay is linearisable (T < 1/A1 and 1/X;) (E.10) reduces
to Tqai = ET3 /ET? (by Taylor series expansion).

F Means

It is important to distinguish between different definitions of the mean age
of parcels. Since the heterogeneity we are interested in is generated by frac-
tionation on melting, an important mean age is 7, = ET,,, the mean age of
the parcels that have passed through the melting region. Primordial parcels
do not contribute to the pseudo-isochron ages. The mean mantle age Tiotal iS
often defined by including the primordial parcels and assigning them an age
of 75, and it is this definition that is used in [8]. Hence Tiotal > 7. We have

7_—t0ta1 - /Ts TQ(T> dT + Ts (]- - /Ts Q(T) dT) ) <F1>
0 0
Fo =BTy = [ rgu(r)dr. (F.2)
0

The parent-daughter pseudo-isochron age 7,q; is an example of a generalised
mean [13]. A generalised mean M is defined by M, (X) = ¢! (Eqb(f()), where

¢ is a strictly monotonic function, and X is a random variable. Commonly
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encountered examples include ¢(z) = x (arithmetic mean), ¢(z) = 2" (power
mean), and ¢(x) = log x (geometric mean). In the case of the parent-daughter

pseudo-isochron (D.6), ¢(z) = (e’\x —1)2. Generalised means have a number of
important properties, but of most interest to us is the notion of ‘comparability’:
whether there is always an inequality between different means regardless of the
distribution of the random variable X. A common example of comparability
is the arithmetic mean - geometric mean inequality. There is an important
theorem which states that if 1) and x are monotonically increasing functions,
¢ = xy~!, and ¢” > 0, then M,, < M, (Theorem 96 of [13]). By use of this
theorem we find the following inequalities are satisfied by the parent-daughter
pseudo-isochron age:

minT, < 7, < \/ETI% < Tpai (A1) < Tpai(A2) < maXTm, (F.3)

where 0 < A\; < A2, and min Ty and max T}, are the smallest and largest ages
respectively with any probability mass.

The daughter-daughter pseudo-isochron age 744; is not a generalised mean as
described by [13], but it is an example of a generalised abstracted mean (Def-
inition 2.4 of [14]). A generalised abstracted mean is defined by My, 4,(X) =
(1))t (Egbl (X)/E@(X)) where ¢1/¢9 is a strictly monotonic function. In
the case of the daughter-daughter pseudo-isochron equation (E.10), ¢;(z) =

(e)‘w —1)2 and ¢y(z) = (e)‘” —1)2. The generalised abstracted mean shares
many of the properties of the generalised mean of [13], and under a suitable
transformation of the probability density function can be written in the same
form. However, for our purposes what is of most interest is the inequality

Tpdi(A2) < Tadi( A1, A2) < max T, (F.4)

The above inequalities (F.3) and (F.4) are strict inequalities unless all the
probability mass is concentrated at a single age. In this case all the inequalities
are equalities, and all the means yield this single age.

G Relating melt rate and parcel ages

Suppose melt rate as a function of age 7 iS Ve (7). Define 7pex to be the
melting time scale at the present day, so that Ymer(0) = 1/Tmer. Let Q(7) =
IP’(T < 7) be the proportion of material in the box with age less than 7
(the cumulative distribution function), with 1 — Q(7;) being the proportion of
primordial material. Q(7) satisfies

dQ(7)
dr

= ’ymelt(T) (1 - Q(T>> ) Q(()) = O? (G1>
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and thus
Q) =1-exp (= [ man(r)dr). (G.2)

Hence the probability density functions are

q(1) = dcgl(:) = Ymelt(T) €xp (— /0 ' Yumelt (T) dT) : (G.3)
() = g(r) _ 1 dQ(r) (GA)

a Q(7s) B Q) dr

In some cases it is more convenient to work with the cumulative distribution
function (cdf) rather than the pdf. Note that if f(0) = 0 (as it is for all
functions we consider) then

Ef(Tu) = [ f(0)1 = Qu(r)dr, (G.5)
where the cdf @,,(7) is given by

Q(7)
Q(TS)'

Qu(r) = [ au(r)ar = (G.6)

Xie and Tackley [8] quote results from their numerical simulations in terms
of the crustal production rate given by byme(7), where b is their basalt frac-
tion (b = 0.3 in their standard runs). Their integrated crustal production
(integrated forward in time) is given as a function of age by

(r) = 1= exp (= [ bman(r) dr). (G.7)

which implies

oxp ([ war(ryar) = (1=0) 9

Hence the cdf @,,,(7) (and thus also pseudo-isochron ages) can be calculated
directly from their integrated crustal production or their crustal production
rate.

For a constant melt rate Vet (7) = 1/Tmers and T is an exponential random
variable with parameter 1/7y,c;. The corresponding probability density func-
tions are

q(r) = e /Tt fr (G.9)
Qm(7-> — o T/ Tmels / (Tmelt (1 _ e—Ts/Tmelt)> ’ (Gl())
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and corresponding means are

Ttotal = Tmelt(l — e_TS/Tmelt)’ (Gll)

1 _ e_Ts/Tmelt(l + Ts/Tmelt)
1— e—Ts/Tmclt

~ 1 _e_Ts/Tmelt 1 +7-s Tmel + z Ts/ Tmel 2
VETZ = \/éTmeltJ (L 70/ ot + 3 (7Tt ) (G.13)

1 _ e*Ts/Tmelt

, (G.12)

Tm = IEjjm = Tmelt

H Constant melt rate: Parent-daughter isochrons

For constant melt rate the parent-daughter pseudo-isochron equation is

(e)‘Tpdi _1)2 _ f(;-s(e)‘T —1)2 e~ T/Tmelt 1
Tmelt (1 — e_TS/Tme1t>

(H.1)

To gain some insight into the behaviour of this equation we now consider some
simple asymptotics.

H.1 Asymptotics when Tyey or Ts <K 1/A
Since we often study slowly decaying isotopes, the most important asymptotics
are when Tye, or 73 < 1/A. In this limit the correlation becomes

1 _ e_Ts/Tmclt (1 _|_ Ts/Tmelt)
Tpd = 5 .
\/2 (1 - eiTS/Tmelt) (1 — €778/ Tmelt (1 + Ts/Tmelt + % (Ts/Tmelt) ))

(H.2)

Furthermore, if 75/ Tiperr > 1 then r,g ~ 1/ V2 ~ 0.71. Alternatively if 7, [ Tanels <K
1 then rpq ~ V3 /2 =~ 0.87. For linearisable decay r,q always lies between these

two values. It is important to note that there is thus never a perfect correlation
between d/d and p/d'.

When 704 or 73 < 1/ the parent-daughter pseudo-isochron age becomes

simply 7pq;i = /ET2, which is given for constant melt rate by (G.13). If

Ts/Tmert > 1 (G.13) simplifies to 7,4 ~ V2T melt, which determines the slope of
curves near the origin in Figures 3b and 4b, and the asymptotes for large 7, in
Figure 3a. On the other hand, if 75/ 7mer < 1 (G.13) simplifies to Tpa; ~ 7./V'3,
which determines the slope of curves near the origin in Figures 3a and 4a, and
the asymptotes for large 7,0¢ in Figure 3b.
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H.2  Asymptotics when Ty < Telt

When the decay is not linearisable, asymptotics based solely on 7, < Telr can
be found. The pseudo-isochron equation (H.1) becomes

2+ 3 —4eM 4P

e)\Tpdi _1 2
( ) 2\T, ’

(H.3)

which is independent of 7. This equation determines the T,y = oo Ga
curve in Figures 3a and 4a, and asymptotes for large 7, in Figures 3b and
4b.

H.3  Asymptotics when T, > Telt

(H.1) has two regimes of asymptotic behaviour when 74 /Tipere > 1. If ATpper >
1/2 then

e(2)‘7_mclt - I)Ts /Tmclt

2>\7_pdi — H4
¢ 2)\7—melt — 1 ’ ( )
whereas if ATper < 1/2 then
2(A me 2
(e’\Tpdi _1)2 — ( i 1t) (H5>

(1 - /\Tmelt>(1 — 2)\Tmelt) '

Note that (H.4) depends on 7, whereas (H.5) is independent of 7. This is why
in Figure 4a curves with 7, < 1/2\ flatten out for large 75, while curves
with Tierr > 1/2X grow linearly for large 7, with slope 1 — 1/2A 71t

I Constant melt rate: Daughter-daughter isochrons

The constant melt rate daughter-daughter pseudo-isochron equation is

(e)\QTddi _1)2
(e)\ledi _1)2

(L.1)

(e/\gr _1)2 e—’l’/Tmelt dr
(e)\lT _1)2 e~ T/Tmelt d7°

Jo
Jo

Again, insights into the behaviour of (I.1) can be gained by some simple
asymptotics, although linearising the decay is not as relevant here. We will
assume without loss of generality that Ay > A; for the subsequent asymptotics.
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1.1 Asymptotics when Ty < Tmelt

When 7, < Tey the pseudo-isochron equation (I.1) becomes

(e>\27'ddi _1)2 B ﬁ . 2)\27_5 13- 4 eH2Ts +62A275
(e)‘ledi —1)2 - )\2 2)\17’5 +3 - 46)‘17—5 —+ e2 s '

(1.2)

Note that this equation is independent of 7,.;. This equation determines the
asymptotes for large 7, in Figure 5b, and the 7,0y = oo Ga curve in Fig-
ure ba. Furthermore, if it is also the case that A7y < 1, we can Taylor expand
both sides to find

A2 A2 3(A— A
—QLHM—MhM+q:—§1+ll—Q@+m, (1.3)
A2 A2 4

and thus get the simple result that 744; ~ %TS, which determines the slope of
curves near the origin in Figure 5a. If instead Aty > 1 then we can approximate
both sides as
e2(A2=A1)Taai _ ﬁ e2()‘27)\1)7-s’
A2
which demonstrates that the slope of the 7,61 = 00 Ga curve in Figure ba will
approach 1 for large 7.

(L4)

L2 Asymptotics when Ts > Tielt

We have three different regimes of asymptotic behaviour for (I.1) when 7, >
Tmelt- 1f Tmere > 1/2A1 the pseudo-isochron equation is

62()\27)\1)Tddi — 62()\2*/\1)7'52/\17}11761‘5_1’ (I5)
2/\27—melt —1

if 1/2)\2 < Thelt < 1/2)\1 then

0222 Tadi 6(2/\27‘“9“_1)%/%9“(1 — M Tmelt ) (1 — 2X1 Tinelt)
(>\17_melt)2 (2)\27-melt - ]-)

, (L6)

and if Tep < 1/2Ag then

(e)\QTddi _1)2 _ /\g(l — )\17—melt)(1 — 2/\17_melt) (I 7)
(e>\17ddi —1)2 /\%(1 — )\QTmelt)<]- — 2/\2Tmelt) . .

The most important feature of (1.7) is that it is independent of 7, whereas
in the other two asymptotic regimes there is a dependence on 7. This is
why for values of Tep < 1/2XA2 in Figure ba the curve flattens out for large
T, whereas in the other regimes they grow linearly for large 7, with slopes
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(A2 — 1/27mert) /(A2 — A1) and 1 respectively. (1.7) can be further simplified if
Amet << 1. Both sides can be Taylor expanded to yield

A5

/\2
v (1+ X = A)Taai +-.) = 2 (1 +30N2 — A)Twmete + ) (L8)
1

AT
leading to the simple result that 7y4; ~ 37mer, which determines the slope of
curves near the origin in Figure 5b.

J Relationship to linear evolution models

There is an important connection between our statistical box model and the
pseudo-isochron equations derived from linear evolution models by previous
authors [3,4,5]. Suppose we divide the box into two based on parcel type. Let
all the residue parcels and a fraction 1 — F' of the primordial parcels be called
reservoir 1, and all the melt parcels and a fraction F' of the primordial parcels
be reservoir 2. These two reservoirs do not change in size over time. Reservoir
1 is a fraction 1 — F of the box, and reservoir 2 a fraction F. At an age 7
before the present all parcels are primordial and thus both reservoirs have the
same uniform isotopic concentrations. The mean concentrations of p, d and d’
at the present in each reservoir can be calculated by integrating (A.1-A.9) over
the age distribution of parcels. For the isochron calculation it is simplest to
consider instead the p* and d* values. Let pj be the random variable giving the
distribution of p* in reservoir 1, and CZ{, p5 and cfg be defined similarly. Note
that the subscripts 1 and 2 now refer to the different reservoirs, rather than
the different isotopic systems as in earlier sections. Integration of (C.4-C.12)
yields the mean values as

By =0 5 " gy ar, (1)
Ed} = —C];Gf__?d OTS (X =1) g(r) dr, (J.2)
Ep; = g/Gp;Gd /OTS q(7)dr, (J.3)
Ed — gGP;Gd /0 " (M —1) g(7) dr. (J.4)

By multiplying these expressions by the fraction of the box each reservoir
occupies these can be converted into molar values n* and m* ((21) and (22))
as

wi = (1= FYEp =~ 5 (G, — Ga) [ q(r)ar, (15)
mi = (1= F)Ed; =~ 2 (G, - Gu) /O (1) g(r)dr.  (36)
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where ny = —n} and mj = —mj. (J.5) and (J.6) are solutions of (25) and
(26), and are the backward in time versions of (A1-4) and (A1-5) of [3] with
A(a) = 0. The number of moles of each isotope species in the two reservoirs
must be modelled by the linear evolution equations (10-15); the only question
is finding expressions for the residence times. Here the relaxation times for
parent and daughter are both given by 1/vmer, since they are both fractionated
by the same melting process on the same timescale. The individual residence
times for each reservoir are determined by the fraction of moles G that enter
the melt for each chemical species as

1 1

T = , Tpg = ——, J.7

! pr)/melt ? (1 - Gp) “Ymelt ( )
1 1

6, = . J.8

! Gdf)/melt ? (1 - Gd) Ymelt ( )

Consider a pseudo-isochron defined by the where the two reservoirs and the
whole box lie on the isochron diagram. The slope in the parent-daughter
isochron diagram is given by

(/) = (mfs)ysy _ mf _ AT D) _ g gy g
(n/s)y—(n/s)1, ™M o q(r)dr
Hence the corresponding pseudo-isochron equations are
ol 1 = F(eMm —1), (J.10)
A2Tddil Asz _
. I Gt (J.11)
eMTddil —] (e>\1Tm _1>

which are just (D.6) and (E.10) with squareds removed, and hence we will
refer to these as the linear pseudo-isochron equations.

An alternative reservoir representation is to consider the box split into three
reservoirs, one with all the melt parcels, one with all the residue parcels,
and one with all the primordial parcels. These three reservoirs change in size
over time, with the melt and residue reservoirs growing at the expense of the
primordial reservoir. This is analogous to model I of Jacobsen and Wasserburg
[18] where their depleted mantle reservoir 2 and crust reservoir 3 grow from
an homogenous undepleted mantle reservoir 1. Compare the statistical box
model result, obtained by integrating (A.4-A.9),

By d __PGp=Gap (X 1), (J.12)

Ed’ d d 1—-Gy

Bdwee d 5 Gp—Ga_ /i
_ & _ PGy Cdp (g J.13
s a-a G B, (3.13)

melt
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with (19) of [18], rewritten using an integration by parts,

Naj(m)  Naa(r) _ Nea(7) i /OT (eA(T—E) _1> L dM;(E) dé. (J.14)

Nej(r)  Naalr) — Nea(r)™ M;(r)  dg

(J.12) and (J.13) are equivalent to (J.14), although note that (J.14) is writ-
ten with 7 running forward in time. The fractionation factors relate through
1+ fo=(1-G,)/(1—Gy) and 1+ f3 = G,/G4. The corresponding proba-
bility density function of parcels ages is (1/M;(7))dM;(§)/d€ (compare with
(G.4)). Note that the relationship between melt rate and age distribution will
be slightly different between the two models, since there is recycling in the
statistical box model (a melt parcel may become a residue parcel and vice-
versa), but not in model I. The pseudo-isochron equations that result from
where the three reservoirs plot on the isochron diagram are also (J.10) and

(J.11).

The linear parent-daughter pseudo-isochron age 7,4 is also an example of a
generalised mean, with ¢(z) = e —1. The linear pseudo-isochron ages satisfy

min T}, < 7 < Tpdil (A1) < Tpait(A2) < Taai(Ar, A2) < max T, (J.15)

where 0 < A; < Xy. For linearisable decay (T < 1/A) the linear parent-
daughter pseudo-isochron equation (J.10) reduces to Tpan = ]ETm = Tm, and the
linear daughter-daughter pseudo-isochron equation (J.11) to Tqqn = IETAI?1 / ET,.
It can be shown that the linear ages are always less than the corresponding
quadratic ages, namely that m,4n(A) < Tpai(A), and Taain (A1, A2) < Taai(A1, A2).

For the case of constant melt rate the linear parent-daughter pseudo-isochron
equation is

Ao 1 T (eM —1) e/ Tmeit dr
eMedil ] =

Tme1t<1 — e_Ts/Tmelt)
B )\Tmelt + (1 _ /\Tmelt) e_Ts/Tmelt _ e()‘Tmelt_l)Ts/Tmelt
a (1 = Miets) (1 — 77/ Tmett ) ,

(1.16)

which is the parent-daughter pseudo-isochron equation (A2-4) of [3]. This
should be compared with our (H.1). The corresponding linear daughter-daughter
pseudo-isochron equation is

A2Tddi Ts (@aA2T —T/Tm
eQddl_]_:fos(GQ —1)e [Tmelt
eAMTadil —] foﬁ (eAlT _1) e—T/Tmels 7
1 - )\leeIt (]- - /\QTmelt) e_TS/Tmelt +>\2Tmelt - e()\QTmelt_l)Ts/Tmelt

1 — )\27—11’16113 (1 — /\17—melt) e_Ts/Tmelt +)\le611; — e(Aleelt_l)Ts/Tmelt ’

(J.17)

which is precisely the daughter-daughter pseudo-isochron equation (A2-9) of
[3]. This should be compared with our (I.1). Furthermore, when 7 < 75
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and Aar < 1 (J.16) and (J.17) become

A me 1
e)\Tpdil -1 = # E Tpdil = _X log (1 — )\Tmelt> s (J18)
- melt
e)‘szdﬂ —1 . )\2 (1 - )\leelt)

e)\ledil -1 o )\1 (1 - )\QTmelt)’

(1.19)

which are the pseudo-isochron equations (A2-6) and (A2-10) of [3], (31) and
(32) of [4], and (7) and (9) of [5]. The corresponding equations in our model
are (H.5) and (1.7). The Tyery < 75 and Ampey < 1 limit is precisely the same
as the conditions for secular equilibrium in [4] and [5]. [3] explores various
other asymptotic regimes for (J.16) and (J.17), as we have for our constant
melt rate equations in Appendices H and 1.
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Fig. 1. Scatterplot of measured MORB data (see Appendix F of [9] for a list of data
sources). Three regression lines are plotted, and the corresponding pseudo-isochron
ages shown. Linear regression of 207Pb/204Ph against 2°6Pb/2%4Pb gives a pseu-
do-isochron age of 1.41 Ga. Linear regression of 200Pb/24Pb against 207Pb/204Ph
gives a pseudo-isochron age of 2.47 Ga. The geometric mean regression line has a
pseudo-isochron age of 1.96 Ga.
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Fig. 6. Plot of cumulative distribution function Q,(7) = [ gm(7) d7 for a Xie and
Tackley [8] numerical simulation. The solid line shows the observed age distribution
(their Figure 10a), where residue and basalt tracers have been lumped together. The
dashed line is a calculated age distribution (Appendix G) based on their observed
integrated crustal production (solid line of their Figure 5c). The dotted line is a
calculated age distribution based on their observed crustal production rate (solid
line of their Figure 5e), although note that this rate is actually an average over
three slightly different runs. The three age distributions are very similar. Using (4)
and (5), the age distributions correspond to lead-lead pseudo-isochron ages 744; of
3.67 Ga, 3.58 Ga, and 3.76 Ga, Sm-Nd pseudo-isochron ages 7,q; of 3.00 Ga, 2.88
Ga, and 3.06 Ga, and mean ages Ty, of 2.81 Ga, 2.67 Ga, and 2.86 Ga respectively.
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Fig. 8. Plot of probability density function gy, (7). Two cases are shown which both
yield a lead-lead pseudo-isochron age of 2.0 Ga. The solid line has constant melt
rate Ymelt (7) = 1/Tmers where Tyerr = 0.45 Ga. The dashed line has varying melt rate
Ymelt (T) = €7 /Tielt where v = 0.62 Ga™! and 70 = 1.45 Ga. While the lead-lead
ages are identical for the two cases, the parent-daughter and mean ages are not.
Sm-Nd 7,q; = 0.64 Ga and 1.10 Ga, and 7, = 0.45 Ga and 0.90 Ga respectively.
Note that in both cases the very old (> 3.0 Ga) heterogeneity has been essentially
eliminated.
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Table 1

Age calculations for varying melt rate Ymelt(7) = €7 /Tmels (compare with Table 4
of [8]). The three cases are constant (v = 0 Ga™!), H? (v = 0.62 Ga~!), and H?d
(v = 0.74 Ga™!). The present day crustal production rate b/Tye; = 1/46 Ga™! in
all cases. b = 0.1, 0.2, and 0.3, and hence Tt = 4.6 Ga, 9.2 Ga and 13.8 Ga.
75 = 4.5 Ga and all ages are quoted in Ga.

Constant H? H?d
Tmelt 46 92 138 46 92 138 46 92 138
Ttotal 2.87 3.56 3.84 1.82 2.54 2.96 1.67 231 2.72
Tm 1.89 2.07 2.13 1.81 2.39 2.64 1.67 2.27 2.58
Tpdi [Sm-Nd] 2.28 244 250 2.09 2.66 2.89 1.92 2.53 2.82
Tadi[Pb-Pb] 3.72 3.777 3.78 3.29 3.69 3.81 297 354 3.73
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